

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

14-BIT REGISTERED BUFFER WITH SSTL I/O

IDT74SSTVF16857

FEATURES:

- 2.3V to 2.7V Operation
- SSTL_2 Class I style data inputs/outputs
- · Differential CLK input
- RESET control compatible with LVCMOS levels
- Flow-through architecture for optimum PCB design
- · Drive up to equivalent of 14 SDRAM loads
- Latch-up performance exceeds 100mA
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model (C = 200pF, R = 0)
- Available in TSSOP package

APPLICATIONS:

 Along with CSPT857C, Zero Delay PLL Clock buffer, provides complete solution for DDR1 DIMMs

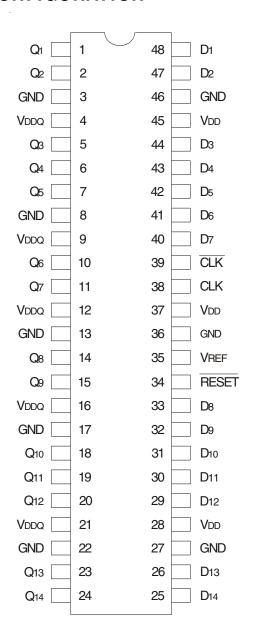
DESCRIPTION:

The SSTVF16857 is a 14-bit registered buffer designed for 2.3V-2.7V VDD and supports low standby operation. All data inputs and outputs are SSTL_2 level compatible with JEDEC standard for SSTL_2.

RESET is an LVCMOS input since it must operate predictably during the power-up phase. RESET, which can be operated independent of CLK and CLK, must be held in the low state during power-up in order to ensure predictable outputs (low state) before a stable clock has been applied.

 $\overline{\text{RESET}}$, when in the low state, will disable all input receivers, reset all registers, and force all outputs to a low state, before a stable clock has been applied. With inputs held low and a stable clock applied, outputs will remain low during the Low-to-High transition of $\overline{\text{RESET}}$.

FUNCTIONAL BLOCK DIAGRAM



 $The \, IDT \, logo \, is \, a \, registered \, trademark \, of \, Integrated \, Device \, Technology, \, Inc. \,$

COMMERCIAL TEMPERATURE RANGE

JUNE 2003

PIN CONFIGURATION

TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VDD or VDDQ	Supply Voltage Range	-0.5 to 3.6	٧
VI ⁽²⁾	Input Voltage Range	ge -0.5 to VDD +0.5	
Vo ⁽³⁾	Output Voltage Range	-0.5 to VDDQ +0.5	٧
lık	Input Clamp Current, Vi < 0	- 50	mA
Іок	Output Clamp Current,	±50	mA
	Vo < 0 or Vo > VDDQ		
lo	Continuous Output Current,	±50	mA
	Vo = 0 to VDDQ		
VDD	Continuous Current through each	±100	mA
	VDD, VDDQ or GND		
Tstg	Storage Temperature Range	-65 to +150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
 permanent damage to the device. This is a stress rating only and functional operation
 of the device at these or any other conditions above those indicated in the operational
 sections of this specification is not implied. Exposure to absolute maximum rating
 conditions for extended periods may affect reliability.
- 2. The input and output negative voltage ratings may be exceeded if the ratings of the I/P and O/P clamp current are observed.
- 3. The output current will flow if the following conditions are observed:
 - a) Output in HIGH state
 - b) Vo = VDDQ

FUNCTION TABLE (1)

RESET	CLK	CLK	D	Q Outputs
Н	↑	\downarrow	L	L
Н	↑	\rightarrow	Н	Н
Н	L or H	L or H	Х	Qo ⁽²⁾
L	Х	Χ	Х	L

NOTES:

- 1. H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Don't Care
- \uparrow = LOW to HIGH
- \downarrow = HIGH to LOW
- 2. Qo = Output level before the indicated steady-state conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = 0^{\circ}C$ to $+70^{\circ}C$, $VDD = 2.5V \pm 0.2V$, $VDDQ = 2.5V \pm 0.2V$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
Vik	Control Inputs	VDD = 2.3V, II = -18mA	_	_	-1.2	V	
Vон		$VDD = 2.3V \text{ to } 2.7V, IOH = -100\mu\text{A}$		_	_	V	
		VDD = 2.3V, IOH = -8mA	1.95	_	_		
Vol		V _{DD} = 2.3V to 2.7V, I _{DL} = 100μA	_	_	0.2	V	
		VDD = 2.3V, IOL = 8mA	_	_	0.35		
lı .	All Inputs	V _{DD} = 2.7V, VI = V _{DD} or GND	_	_	±5	μΑ	
IDD	Static Standby	Io = 0, VDD = 2.7V, RESET = GND	_	_	0.01	mA	
	Static Operating	$IO = 0$, $VDD = 2.7V$, $\overline{RESET} = VDD$, $VI = VIH$ (AC) or VIL (AC)	–	6	_		
IDDD	Dynamic Operating (Clock Only)	$IO = 0$, $VDD = 2.7V$, $\overline{RESET} = VDD$, $VI = VIH$ (AC) or VIL (AC),	_	_	_	μΑ/Clock	
		CLK and CLK Switching 50% Duty Cycle.				MHz	
	Dynamic Operating	$IO = 0$, $VDD = 2.7V$, $\overline{RESET} = VDD$, $VI = VIH (AC)$ or $VIL (AC)$,	_	_	_	μΑ/Clock	
	(Per Each Data Input)	CLK and CLK Switching 50% Duty Cycle. One Data Input				MHz/Data	
		Switching at Half Clock Frequency, 50% Duty Cycle.				Input	
	Data Inputs	$VDD = 2.5V$, $VI = VREF \pm 310mV$	2.5	_	3.5		
Сі	CLK and CLK	VICR = 1.25V, VI (PP) = 360mV	2.5	_	3.5	pF	
	RESET	VI = VDD or GND			_		

OPERATING CHARACTERISTICS, TA = 25°C (1)

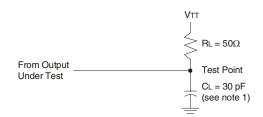
Symbol	Parameter		Min.	Typ. ⁽¹⁾	Max.	Unit
VDD	Supply Voltage		VDDQ	_	2.7	V
VDDQ	Output Supply Voltage		2.3	2.5	2.7	V
VREF	Reference Voltage (VREF=VDDQ/2)		1.15	1.25	1.35	V
VTT	Termination Voltage		VREF-40mV	VREF	VREF+ 40mV	V
Vı	Input Voltage		0	_	VDD	V
ViH	AC High-Level Input Voltage	Data Inputs	VREF+ 310mV	_	_	V
VIL	AC Low-Level Input Voltage	Data Inputs	_	_	VREF-310mV	V
ViH	DC High-Level Input Voltage	Data Inputs	VREF+ 150mV	_	_	V
VIL	DC Low-Level Input Voltage	Data Inputs	_	_	VREF-150mV	V
ViH	High-Level Input Voltage	RESET	1.7	_	_	V
VIL	Low-Level Input Voltage	RESET	_	_	0.7	V
Vicr	Common-Mode Input Range	CLK, CLK	0.97	_	1.53	V
VI(PP)	Peak-to-Peak Input Voltage	CLK, CLK	360	_	_	mV
Іон	High-Level Output Current		_	_	-20	mA
loL	Low-Level Output Current		_	_	20	
TA	Operating Free-Air Temperature		0	_	+70	°C

NOTE

^{1.} The RESET input of the device must be held at VDD or GND to ensure proper device operation.

TIMING REQUIREMENTS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE

			VDD = 2.5		
Symbol	Parameter		Min.	Max.	Unit
CLOCK	Clock Frequency		_	200	MHz
tw	Pulse Duration, CLK, CLK HIGH or LOW		2.5	_	ns
tact	Differential Inputs Active Time ⁽¹⁾		_	22	ns
tinact	Differential Inputs Inactive Time ⁽²⁾		_	22	ns
tsu	Setup Time, Fast Slew Rate(3,5)	Data Before CLK↑, CLK↓	0.75	_	ns
	Setup Time, Slow Slew Rate(4,5)		0.9	_	ns
tN	Hold Time, Fast Slew Rate(3,5)	Data Before CLK↑, CLK ↓	0.75	_	ns
	Hold Time, Slow Slew Rate(2,5)		0.9	_	ns

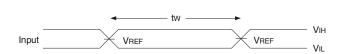

NOTES:

- 1. Data inputs must be low a minimum time of tact max., after RESET is taken HIGH.
- 2. Data and clock inputs must be held at valid levels (not floating) a minimum time of tinact max., after RESET is taken LOW.
- 3. For data signal input slew rate is $\geq 1V/ns$.
- 4. For data signal input slew rate is ≥0.5V/ns and <1V/ns.
- 5. CLK, CLK signal input slew rates are ≥1V/ns.

SWITCHING CHARACTERISTICS OVER RECOMMENDED FREE-AIR OPERATING RANGE (UNLESS OTHERWISE NOTED)

		$V_{DD} = 2.5V \pm 0.2V$		
Symbol	Parameter	Min	Max.	Unit
fMAX		200	_	MHz
t _{PD}	CLK and CLK to Q	1.1	2.8	ns
tPHL	RESET to Q	_	5	ns

TEST CIRCUITS AND WAVEFORMS (VDD = 2.5V ± 0.2V)


Load Circuit

Timing Input VICR VICP VICP VICP VICP VICP VICP VOH

Voltage and Current Waveforms Inputs Active and Inactive Times

Voltage Waveforms - Propagation Delay Times

LVCMOS
RESET
Input

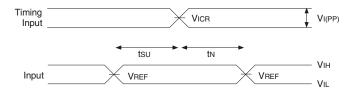
VDD/2

VIH

VDD/2

VIL

VTT

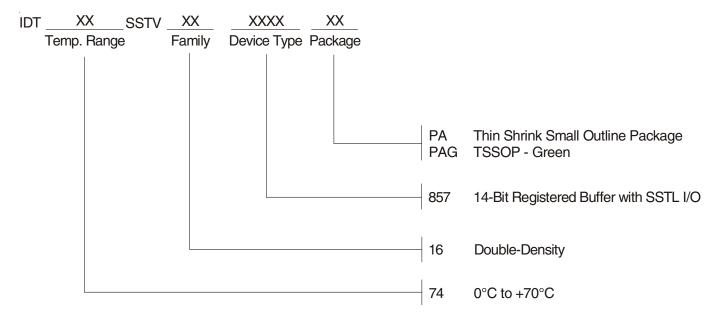

VOH

VTT

VOH

Voltage Waveforms - Pulse Duration

Voltage Waveforms - Propagation Delay Times



Voltage Waveforms - Setup and Hold Times

NOTES:

- 1. CL includes probe and jig capacitance.
- 2. IDD tested with clock and data inputs held at VDD or GND, and Io = 0mA.
- 3. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Zo = 50 Ω , input slew rate = 1 V/ns \pm 20% (unless otherwise specified).
- 4. The outputs are measured one at a time with one transition per measurement.
- 5. VTT = VREF = VDDQ/2
- 6. VIH = VREF + 310mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS input.
- 7. VIL = VREF 310mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS input.
- 8. tplh and tphl are the same as tpd.

ORDERING INFORMATION

San Jose, CA 95138

for SALES: fax: 408-284-2775 www.idt.com