: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Logic Diagrams

Absolute Maximum Ratings(Note 7)	
Supply Voltage (V_{CC})	-0.5 V to +4.6 V
DC Input Voltage (V_{1})	-0.5 V to +4.6 V
Output Voltage (V_{0})	
Outputs 3-STATE	-0.5 V to +4.6 V
Outputs Active (Note 8)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current (I_{K}) $\mathrm{V}_{1}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-50 mA
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{Cc}}$	$+50 \mathrm{~mA}$
DC Output Source/Sink Current	
($\mathrm{lOH}^{\text {/ }} \mathrm{l} \mathrm{L}$)	$\pm 50 \mathrm{~mA}$
DC V_{CC} or Ground Current per	
Supply Pin (ICC or GND)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 9)| Power Supply | |
| :--- | ---: |
| Operating | 1.4 V to 3.6 V |
| Input Voltage | -0.3 V to 3.6 V |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ | |
| Output in Active States | 0 V to V_{CC} |
| Output in 3 -STATE | 0 V to 3.6 V |
| Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$ | |
| $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | $\pm 24 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | $\pm 18 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.3 V | $\pm 6 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | $\pm 2 \mathrm{~mA}$ |
| Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Minimum Input Edge Rate ($\Delta \mathrm{t} / \Delta \mathrm{V}$)

$$
\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { to } 2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}
$$

$10 \mathrm{~ns} / \mathrm{V}$
Note 7: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the Absolute Maximum Rat-
ings. The Recommended Operating Conditions tables will define the condi-
tions for actual device operation.
Note 8: I_{O} Absolute Maximum Rating must be observed.
Note 9: Floating or unused pin (inputs or I/O's) must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	Min	Max	Units
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$	2.0 1.6 $0.65 \times \mathrm{V}_{\mathrm{CC}}$ $0.65 \times \mathrm{V}_{\mathrm{CC}}$		V
V_{IL}	LOW Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$		0.8 0.7 $0.35 \times \mathrm{V}_{\mathrm{CC}}$ $0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
$\overline{\mathrm{V}_{\mathrm{OH}}}$	HIGH Level Output Voltage	$\begin{array}{\|l} \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{array}$	$2.7-3.6$ 2.7 3.0 3.0 $2.3-2.7$ 2.3 2.3 2.3 $1.65-2.3$ 1.65 $1.4-1.6$ 1.4	 $\mathrm{V}_{\mathrm{CC}}-0.2$ 2.2 2.4 2.2 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 2.0 1.8 1.7 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.25 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.05		V

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA}$	3.0		0.4	
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	
		$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.3-2.7		0.2	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.3		0.4	
		$\mathrm{I}_{\mathrm{OL}}=18 \mathrm{~mA}$	2.3		0.6	
		$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	1.65-2.3		0.2	
		$\mathrm{l}_{\mathrm{LL}}=6 \mathrm{~mA}$	1.65		0.3	
		$\mathrm{l}_{\text {OL }}=100 \mu \mathrm{~A}$	1.4-1.6		0.2	
		$\mathrm{l}_{\mathrm{LL}}=2 \mathrm{~mA}$	1.4		0.35	
I	Input Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	1.4-3.6		± 5.0	$\mu \mathrm{A}$
I_{Oz}	3-STATE Output Leakage	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	1.4-3.6		± 10.0	$\mu \mathrm{A}$
IofF	Power Off Leakage Current	$0 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10.0	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	1.4-3.6		40.0	
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}(\text { Note } 10)$	1.4-3.6		± 40.0	$\mu \mathrm{A}$
$\triangle \mathrm{l}_{\text {CC }}$	Increase in I ICC per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		750	$\mu \mathrm{A}$

Note 10: Outputs disabled or 3-STATE only.
AC Electrical Characteristics (Note 11)

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Figure Number
				Min	Max		
$\mathrm{f}_{\text {MAX }}$	Setup Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	3.3 ± 0.3	250		MHz	
			2.5 ± 0.2	200			
			1.8 ± 0.15	100			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	1.5 ± 0.1	80.0			
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	Propagation Delay Bus-to-Bus	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	2.7	ns	Figures 1 , 2
			2.5 ± 0.2	0.8	3.5		
			1.8 ± 0.15	1.5	7.0		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	14.0		Figures 7, 8
$\mathrm{t}_{\mathrm{PHL}}$ tpLh	Propagation Delay Clock-to-Bus	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	4.2	ns	Figures 1, 2
			2.5 ± 0.2	0.8	5.3		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	1.0	19.6		Figures 7,
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	Propagation Delay LE-to-Bus	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	3.8	ns	Figures 1, 2
			2.5 ± 0.2	0.8	4.9		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	1.0	19.6		$\begin{gathered} \text { Figures } 7, \\ 8 \end{gathered}$
$\begin{aligned} & \hline t_{\text {PZL }} \\ & t_{\text {PZZH }} \end{aligned}$	Output Enable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	3.8	ns	$\begin{gathered} \text { Figures } 1 \text {, } \\ 3,4 \end{gathered}$
			2.5 ± 0.2	0.8	4.9		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	19.6		$\begin{gathered} \text { Figures } 7, \\ 9,10 \end{gathered}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	3.7	ns	Figures 1, 3, 4
			2.5 ± 0.2	0.8	4.2		
			1.8 ± 0.15	1.5	7.6		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	15.2		Figures 7, 9, 10

AC Electrical Characteristics (Continued)							
Symbol	Parameter	Conditions	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Figure Number
				Min	Max		
t_{s}	Setup Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	$\begin{gathered} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 2.5 \end{aligned}$		ns	$\begin{gathered} \text { Figures } 1 \text {, } \\ 6 \end{gathered}$
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	3.0			$\begin{gathered} \text { Figures } 7, \\ 8 \end{gathered}$
t_{H}	Hold Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	$\begin{gathered} 3.3 \pm 0.3 \\ 2.5 \pm 0.2 \\ 1.8 \pm 0.15 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$		ns	$\begin{gathered} \text { Figures } 1, \\ 6 \end{gathered}$
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	2.0			$\begin{gathered} \text { Figures } 7, \\ 6 \end{gathered}$
t_{W}	Pulse Width	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	$\begin{gathered} 3.3 \pm 0.3 \\ 2.5 \pm 1.2 \\ 1.8 \pm 0.15 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 4.0 \end{aligned}$		ns	Figures 1, 5
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	4.0			Figures 5, 7

Note 11: For $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, add approximately 300ps to the AC maximum specification.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			(V)	Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	0.25	V
	Peak V OL		2.5	0.6	
			3.3	0.8	
$\overline{\mathrm{V}} \mathrm{OLV}$	Quiet Output Dynamic	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	-0.25	v
	Valley $\mathrm{V}_{\text {OL }}$		2.5	-0.6	
			3.3	-0.8	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	1.5	V
	Valley V_{OH}		2.5	1.9	
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	$\mathbf{T}_{\mathbf{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{l}}=0 \mathrm{~V}$ or V_{CC} $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.3 V,	6.0	pF
$\mathrm{C}_{I / \mathrm{O}}$	Output Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	7.0	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	20.0	pF

AC Loading and Waveforms（ $\mathrm{V}_{\mathrm{CC}} 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$ ）

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

FIGURE 8. Waveform for Inverting and Non-Inverting Functions

FIGURE 9. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 10. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$
	$\mathbf{1 . 5 V} \pm \mathbf{0 . 1 V}$
V_{mi}	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA114ArevE
114-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA114A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
