: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Connection Diagram

Functional Description

The 74VCXH162373 contains sixteen edge D-type latches with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16 -bit operation. The following description applies to each byte. When the Latch Enable (LE_{n}) input is HIGH, data on the I_{n} enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time

Truth Tables

Inputs			Outputs
LE_{1}	$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathrm{I}_{0}-\mathrm{I}_{\mathbf{7}}$	$\mathrm{O}_{\mathbf{0}}-\mathrm{O}_{\mathbf{7}}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}

Inputs			Outputs
$\mathrm{LE}_{\mathbf{2}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{8}} \mathbf{- I}_{15}$	$\mathrm{O}_{\mathbf{8}}-\mathrm{O}_{\mathbf{1 5}}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	O_{0}

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial (HIGH or LOW, control inputs may not float)
= High Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW of Latch Enable
its I input changes. When $L E_{n}$ is LOW, the latches store information that was present on the I inputs a setup time preceding the HIGH-to-LOW transition on $L E_{n}$. The 3-STATE outputs are controlled by the Output Enable $\left(\overline{\mathrm{OE}}_{\mathrm{n}}\right)$ input. When $\overline{\mathrm{OE}}_{n}$ is LOW the standard outputs are in the 2-state mode. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagrams

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays

Absolute Maximum Ratings(Note 2)

Supply Voltage (V_{CC})	-0.5 V to +4.6 V
DC Input Voltage (V_{1})	-0.5 V to 4.6 V
Output Voltage (V_{0})	
Outputs 3-STATED	-0.5 V to +4.6 V
Outputs Active (Note 3)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current (I_{K}) $\mathrm{V}_{1}<0 \mathrm{~V}$	-50 mA
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {cc }}$	+50 mA
DC Output Source/Sink Current	
($\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$)	$\pm 50 \mathrm{~mA}$
DC $\mathrm{V}_{\text {cC }}$ or GND Current per	
Supply Pin (lcc or GND)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 4)| Power Supply | |
| :--- | ---: |
| \quad Operating | 1.4 V to 3.6 V |
| Input Voltage | -0.3 V to V_{CC} |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ | |
| Output in Active States | 0 V to V_{CC} |
| Output in 3-STATE | 0.0 V to 3.6 V |
| Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$ | $\pm 12 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | $\pm 8 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | $\pm 3 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.3 V | $\pm 1 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | |
| Minimum Input Edge Rate $(\Delta \mathrm{t} / \Delta \mathrm{V})$ | $10 \mathrm{~ns} / \mathrm{V}$ |
| $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | |

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 3: I_{O} Absolute Maximum Rating must be observed.
Note 4: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	$\begin{gathered} \hline \mathrm{V}_{\mathrm{cc}} \\ (\mathrm{~V}) \end{gathered}$	Min	Max	Units
V_{IH}	HIGH Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$	$\begin{gathered} \hline 2.0 \\ 1.6 \\ 0.65 \times V_{\mathrm{CC}} \\ 0.65 \times \mathrm{V}_{\mathrm{CC}} \end{gathered}$		V
$\overline{\mathrm{V}} \mathrm{IL}$	LOW Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$		0.8 0.7 $0.35 \times V_{C C}$ $0.35 \times V_{C C}$	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \hline \end{aligned}$	$2.7-3.6$ 2.7 3.0 3.0 $2.7-3.6$ 2.3 2.3 2.3 $1.65-2.3$ 1.65 $1.4-1.6$ 1.4	 $\mathrm{V}_{\mathrm{CC}}-0.2$ 2.2 2.4 2.2 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 2.0 1.8 1.7 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.25 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.05		V

AC Electrical Characteristics (Note 8)

Symbol	Parameter	Conditions	V_{CC}	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Figure Number
			(V)	Min	Max		
$\overline{t_{\text {PHL }}}$ $t_{\text {PLH }}$	Propagation Delay I_{n} to O_{n}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.3	ns	Figures$1,2$
			2.5 ± 0.2	1.0	4.5		
			1.8 ± 0.15	1.5	9.0		
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	18.0		$\begin{gathered} \text { Figures } \\ 7,8 \end{gathered}$
$\overline{t_{\text {PHL }}}$ $t_{\text {PLH }}$	Propagation Delay LE to O_{n}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.6	ns	Figures 1, 2
			2.5 ± 0.2	1.0	4.9		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	1.0	19.6		Figures 7, 8
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.9	ns	Figures$1,3,4$
			2.5 ± 0.2	1.0	5.4		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	19.6		Figures $7,9,10$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	4.0	ns	Figures$1,3,4$
			2.5 ± 0.2	1.0	4.4		
			1.8 ± 0.15	1.5	7.9		
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	15.8		Figures 7, 9, 10
t_{S}	Setup Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.5		ns	Figure 6
			2.5 ± 0.2	1.5			
			1.8 ± 0.15	2.5			
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	3.0			
t_{H}	Hold Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.0		ns	Figure 6
			2.5 ± 0.2	1.0			
			1.8 ± 0.15	1.0			
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	2.0			
t_{w}	Pulse Width	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.5		ns	Figure 5
			2.5 ± 0.2	1.5			
			1.8 ± 0.15	4.0			
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	4.0			
toshi $\mathrm{t}_{\mathrm{OSLH}}$	Output to Output Skew (Note 9)	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3		0.5	ns	
			2.5 ± 0.2		0.5		
			1.8 ± 0.15		0.75		
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1		1.5		

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshL) or LOW-to-HIGH (tosLh).

Capacitance				
Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	7	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$	20	pF

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{CC}} 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$)

TEST	SWITCH
$t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3 . \mathrm{V} 3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2 . \mathrm{V} 5 \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND
FIGURE 1. AC Test Circuit	

FIGURE 4. 3-STATE Output LOW Enable and Disable Times for Low Voltage Logic

FIGURE 5. Propagation Delay, Pulse Width and $\mathrm{t}_{\mathrm{REC}}$ Waveforms

FIGURE 6. Setup Time, Hold Time and Recovery Time for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3} \mathrm{V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

TEST	SWITCH
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=1.5 \pm 0.1 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND
FIGURE 7. AC Test Circuit	

FIGURE 7. AC Test Circuit

FIGURE 8. Waveform for Inverting and Non-Inverting Functions

FIGURE 9. 3-STATE Output HIGH Enable and Disable Times for Low Voltage Logic

FIGURE 10. 3-STATE Output LOW Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$
	$\mathbf{1 . 5} \mathrm{V} \pm \mathbf{0 . 1} \mathrm{V}$
V_{mi}	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
