

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74VCXH16373

LOW VOLTAGE CMOS 16-BIT D-TYPE LATCH (3-STATE) WITH 3.6V TOLERANT INPUTS AND OUTPUTS

- 3.6V TOLERANT INPUTS AND OUTPUTS
- HIGH SPEED:
 - t_{PD} = 3.0 ns (MAX.) at V_{CC} = 3.0 to 3.6V t_{PD} = 3.4 ns (MAX.) at V_{CC} = 2.3 to 2.7V
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $|I_{OH}| = I_{OL} = 24$ mA (MIN) at $V_{CC} = 3.0$ V $|I_{OH}| = I_{OL} = 18$ mA (MIN) at $V_{CC} = 2.3$ V
- OPERATING VOLTAGE RANGE: V_{CC}(OPR) = 2.3V to 3.6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES H16373
- BUS HOLD PROVIDED ON DATA INPUTS
- LATCH-UP PERFORMANCE EXCEEDS 300mA (JESD 17)
- ESD PERFORMANCE: HBM > 2000V (MIL STD 883 method 3015); MM > 200V

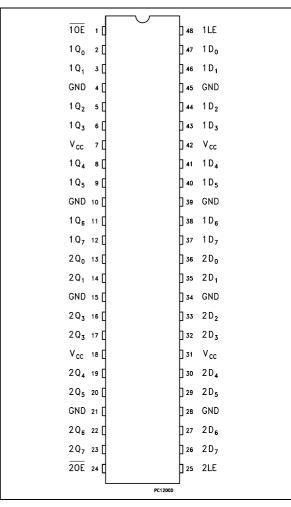
The 74VCXH16373 is a low voltage CMOS 16 BIT D-TYPE LATCH with 3 STATE OUTPUTS NON INVERTING fabricated with sub-micron silicon gate and five-layer metal wiring C²MOS technology. It is ideal for low power and very high speed 2.3 to 3.6V applications; it can be interfaced to 3.6V signal environment for both inputs and outputs.

These 16 bit D-TYPE latches are bite controlled by two latch enable inputs (nLE) and two output enable inputs (OE).

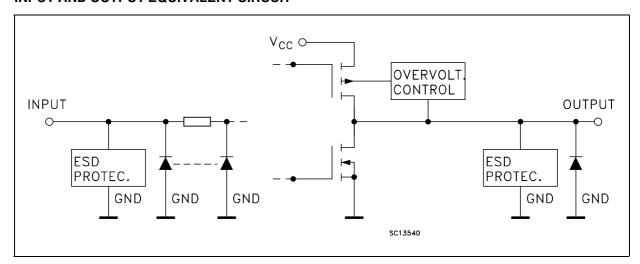
While the nLE input is held at a high level, the nQ outputs will follow the data input precisely.

When the nLE is taken low, the nQ outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state.

Bus hold on data inputs is provided in order to eliminate the need for external pull-up or pull-down resistor.


All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

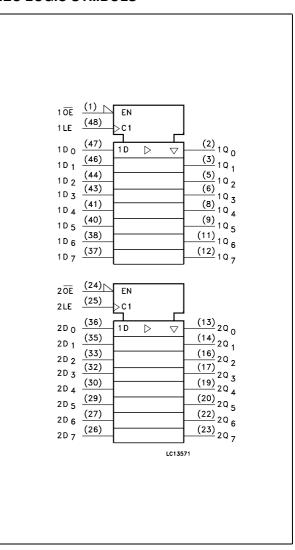
ORDER CODES


PACKAGE	TUBE	T&R
TSSOP		74VCXH16373TTR

PIN CONNECTION

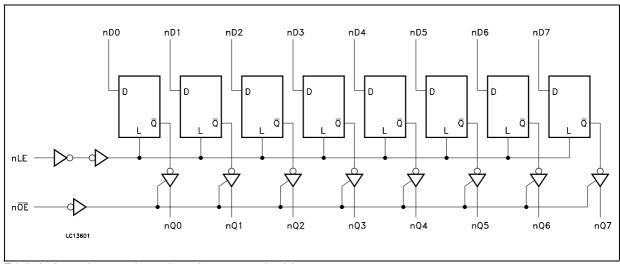
February 2003 1/12

INPUT AND OUTPUT EQUIVALENT CIRCUIT


PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	1OE	3 State Output Enable Input (Active LOW)
2, 3, 5, 6, 8, 9, 11, 12	1Q0 to 1Q7	3-State Outputs
13, 14, 16, 17, 19, 20, 22, 23	2Q0 to 2Q7	3-State Outputs
24	2OE	3 State Output Enable Input (Active LOW)
25	2LE	Latch Enable Input
36, 35, 33, 32, 30, 29, 27, 26	2D0 to 2D7	Data Inputs
47, 46, 44, 43, 41, 40, 38, 37	1D0 to 1D7	Data Inputs
48	1LE	Latch Enable Input
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive Supply Voltage

TRUTH TABLE


INPUTS			OUTPUT
OE	LE	D	Q
Н	Χ	Χ	Z
L	L	Х	NO CHANGE *
L	Н	Ĺ	L
L	Н	Н	Н

IEC LOGIC SYMBOLS

X : Don't Care
Z : High Impedance
* : Q outputs are latched at the time when the LE input is taken low logic level.

LOGIC DIAGRAM

This logic diagram has not to be used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +4.6	V
V _I	DC Input Voltage	-0.5 to +4.6	V
V _O	DC Output Voltage (OFF State)	-0.5 to +4.6	V
V _O	DC Output Voltage (High or Low State) (note 1)	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 50	mA
I _{OK}	DC Output Diode Current (note 2)	- 50	mA
Io	DC Output Current	± 50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Supply Pin	± 100	mA
P_{D}	Power Dissipation	400	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

1) I_O absolute maximum rating must be observed
2) V_O < GND, V_O > V_{CC}

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2.3 to 3.6	V
V _I	Input Voltage	-0.3 to 3.6	V
V _O	Output Voltage (OFF State)	0 to 3.6	V
V _O	Output Voltage (High or Low State)	0 to V _{CC}	V
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 3.0 to 3.6V)	± 24	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 2.3 to 2.7V)	± 18	mA
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 1)	0 to 10	ns/V

¹⁾ V_{IN} from 0.8V to 2V at $V_{CC} = 3.0V$

74VCXH16373

DC SPECIFICATIONS (2.7V < $V_{CC} \le 3.6V$ unless otherwise specified)

		Te	est Condition		Va	lue		
Symbol	Parameter	v _{cc}	Vcc		-40 to 85 °C		-55 to 125 °C	
	(V)	(V)		Min.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	2.7 to 3.6		2.0		2.0		V
V _{IL}	Low Level Input Voltage	2.7 10 3.0			0.8		0.8	V
V _{OH}	High Level Output	2.7 to 3.6	I _O =-100 μA	V _{CC} -0.2		V _{CC} -0.2		
	Voltage	2.7	I _O =-12 mA	2.2		2.2		V
		2.0	I _O =-18 mA	2.4		2.4]
		3.0	I _O =-24 mA	2.2		2.2		
V _{OL}	Low Level Output	2.7 to 3.6	I _O =100 μA		0.2		0.2	
	Voltage	2.7	I _O =12 mA		0.4		0.4	V
		2.0	I _O =18 mA		0.4		0.4	V
		3.0	I _O =24 mA		0.55		0.55	
I _I	Input Leakage Current	2.7 to 3.6	V _I = 0 to 3.6V		± 5		± 5	μΑ
I _{I(HOLD)}	Input Hold Current	2.0	V _I = 0.8V	75		75		
		3.0	V _I = 2V	-75		-75		μΑ
		3.6	$V_1 = 0 \text{ to } 3.6V$		± 500		± 500	
l _{off}	Power Off Leakage Current	0	V_I or $V_O = 0$ to 3.6V		10		10	μΑ
l _{OZ}	High Impedance Output Leakage Current	2.7 to 3.6	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 0 \text{ to } 3.6 \text{V}$		± 10		± 10	μΑ
I _{CC}	Quiescent Supply		$V_I = V_{CC}$ or GND		20		20	
	Current	2.7 to 3.6	V_{I} or $V_{O} = V_{CC}$ to 3.6V		± 20		± 20	μΑ
ΔI_{CC}	I _{CC} incr. per Input	2.7 to 3.6	$V_{IH} = V_{CC} - 0.6V$		750		750	μΑ

DC SPECIFICATIONS (2.3V < $V_{CC} \le 2.7V$ unless otherwise specified)

		Test Condition						
Symbol	Parameter	v _{cc}		-40 to 85 °C		-55 to 125 °C		Unit
		(V)		Min.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	2.3 to 2.7		1.6		1.6		V
V _{IL}	Low Level Input Voltage	2.3 10 2.7			0.7		0.7	V
V _{OH}	High Level Output	2.3 to 2.7	I _O =-100 μA	V _{CC} -0.2		V _{CC} -0.2		
	Voltage		I _O =-6 mA	2.0		2.0		V
		2.3	I _O =-12 mA	1.8		1.8		V
			I _O =-18 mA	1.7		1.7		
V _{OL}	Low Level Output	2.3 to 2.7	I _O =100 μA		0.2		0.2	
	Voltage	2.3	I _O =12 mA		0.4		0.4	V
		2.3	I _O =18 mA		0.6		0.6	
I _I	Input Leakage Current	2.3 to 2.7	V _I = 0 to 3.6V		± 5		± 5	μΑ
I _{I(HOLD)}	Input Hold Current	2.3	$V_1 = 0.7V$	45		45		^
		2.3	V _I = 1.7V	-45		-45		μΑ
l _{off}	Power Off Leakage Current	0	V_I or $V_O = 0$ to 3.6V		10		10	μА
l _{OZ}	High Impedance Output Leakage Current	2.3 to 2.7	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 0 \text{ to } 3.6 \text{V}$		± 10		± 10	μΑ
I _{CC}	Quiescent Supply		$V_I = V_{CC}$ or GND		20		20	
	Current	2.3 to 2.7	V_{I} or $V_{O} = V_{CC}$ to 3.6V		± 20		± 20	μΑ

$\textbf{DYNAMIC SWITCHING CHARACTERISTICS} \ \ (T_a = 25^{\circ}C, \ Input \ t_f = t_f = 2.0 ns, \ C_L = 30 pF, \ R_L = 500 \Omega)$

		Tes	st Condition		Value		
Symbol	Parameter	v _{cc}		-	Γ _A = 25 °C	2	Unit
		(V)		Min.	Тур.	Max.	
V _{OLP}	Dynamic Low Voltage Quiet	2.5	$V_{IL} = 0V$		0.6		V
	Output (note 1, 3)	3.3	$V_{IH} = V_{CC}$		0.8		v
V _{OLV}	Dynamic Low Voltage Quiet	2.5	$V_{IL} = 0V$		-0.6		V
	Output (note 1, 3)	3.3	$V_{IH} = V_{CC}$		-0.8		v
V _{OHV}	Dynamic High Voltage Quiet	2.5	$V_{IL} = 0V$		1.9		V
	Output (note 2, 3)	3.3	$V_{IH} = V_{CC}$		2.2		V

477

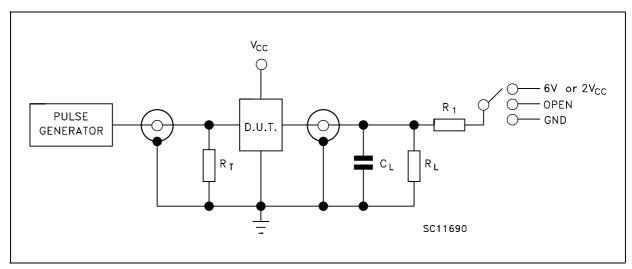
¹⁾ Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

2) Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the HIGH state.

3) Parameters guaranteed by design.

AC ELECTRICAL CHARACTERISTICS ($C_L = 30 pF$, $R_L = 500 \Omega$, Input $t_f = t_f = 2.0 ns$)

		Test Condition			Va	lue		
Symbol	Parameter	v _{cc}		-40 to	85 °C	-55 to	125 °C	Unit
		(V)		Min.	Max.	Min.	Max.	
t _{PLH} t _{PHL}	Propagation Delay	2.3 to 2.7		1.0	3.4	1.0	4.0	no
	Time Dn to Qn	3.0 to 3.6		0.8	3.0	0.8	3.5	ns
t _{PLH} t _{PHL}	Propagation Delay	2.3 to 2.7		1.0	3.9	1.0	4.5	
	Time LE to Qn	3.0 to 3.6		0.8	3.0	0.8	3.5	ns
t _{PZL} t _{PZH}	Output Enable Time	2.3 to 2.7		1.0	4.6	1.0	5.1	
		3.0 to 3.6		0.8	3.5	0.8	4.1	ns
t _{PLZ} t _{PHZ}	Output Disable Time	2.3 to 2.7		1.0	3.8	1.0	4.4	
		3.0 to 3.6		0.8	3.5	0.8	4.1	ns
t _s	Setup Time, HIGH or	2.3 to 2.7		1.5		1.5		
	LOW level Dn to LE	3.0 to 3.6		1.5		1.5		ns
t _h	Hold Time High or	2.3 to 2.7		1.0		1.0		
	LOW level Dn to LE	3.0 to 3.6		1.0		1.0		ns
t _w	LE Pulse Width, HIGH	2.3 to 2.7		1.5		1.5		no
		3.0 to 3.6		1.5		1.5		ns
t _{OSLH} t _{OSHL}	Output To Output	2.3 to 2.7			0.5		0.5	
	Skew Time (note1, 2)	3.0 to 3.6			0.5		0.5	ns

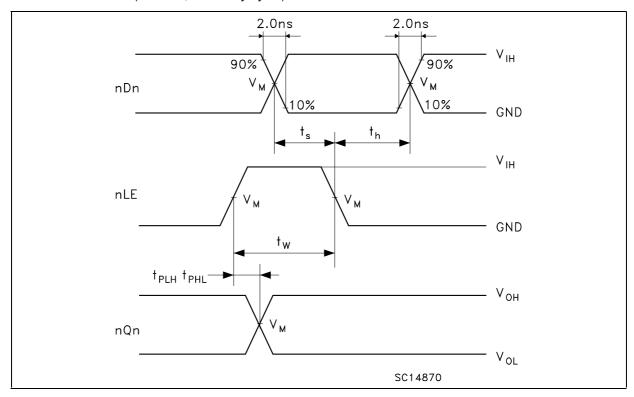

¹⁾ Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (t_{OSLH} = | t_{PLHm} - t_{PLHn}|, t_{OSHL} = | t_{PHLm} - t_{PHLn}|)
2) Parameter guaranteed by design

CAPACITIVE CHARACTERISTICS

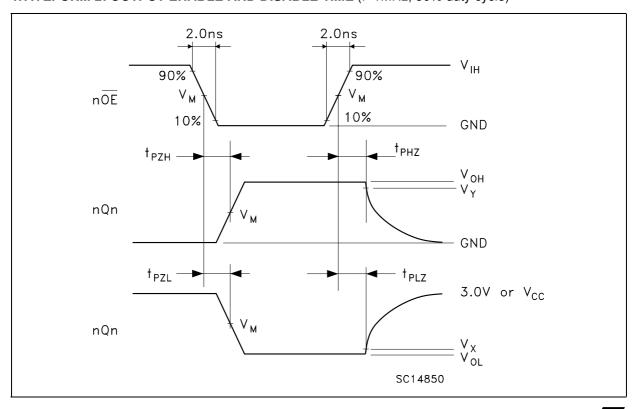
		Test Condition			Value		
Symbol	Parameter	V _{CC}		T _A = 25 °C		C	Unit
		(V)		Min.	Тур.	Max.	
C _{IN}	Input Capacitance	2.5 or 3.3	$V_{IN} = 0$ or V_{CC}		6		pF
C _{OUT}	Output Capacitance	2.5 or 3.3	$V_{IN} = 0 \text{ or } V_{CC}$		7		pF
C _{PD}	Power Dissipation Capacitance (note 1)	2.5 or 3.3	$f_{IN} = 10MHz$ $V_{IN} = 0$ or V_{CC}		20		pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $C_{C(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/16$ (per circuit)

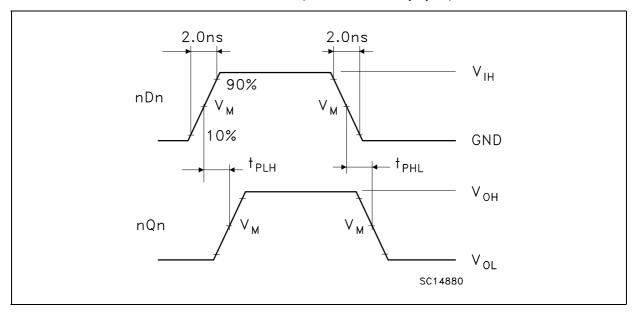
TEST CIRCUIT


TEST	SWITCH
t _{PLH} , t _{PHL}	Open
$t_{PZL}, t_{PLZ} (V_{CC} = 3.0 \text{ to } 3.6 \text{V})$	6V
t_{PZL} , t_{PLZ} ($V_{CC} = 2.3 \text{ to } 2.7 \text{V}$)	2V _{CC}
t _{PZH} , t _{PHZ}	GND

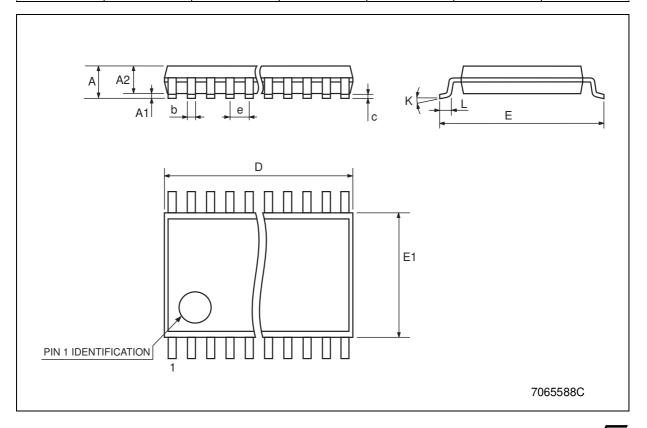
 C_L = 30 pF or equivalent (includes jig and probe capacitance) R_L = R_L = 500 Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)


WAVEFORM SYMBOL VALUES

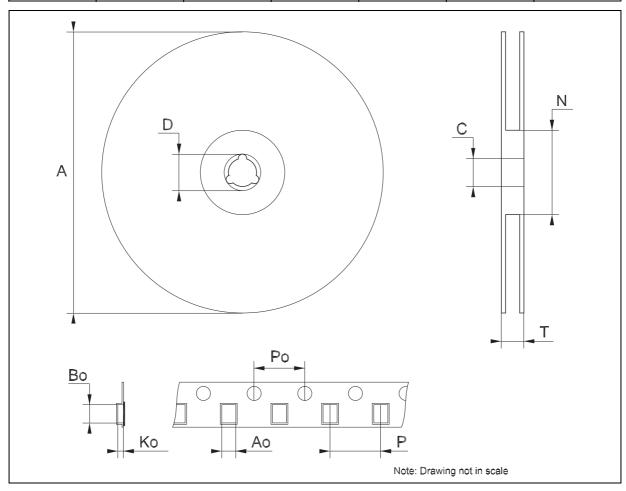
Symbol	Vc	С
Symbol	3.0 to3.6V	2.3 to 2.7V
V _{IH}	2.7V	V _{CC}
V _M	1.5V	V _{CC} /2
V _X	V _{OL} + 0.3V	V _{OL} + 0.15V
V _Y	V _{OH} - 0.3V	V _{OH} - 0.15V


WAVEFORM 1 : LE TO Qn PROPAGATION DELAYS, LE MINIMUM PULSE WIDTH, Dn TO LE SETUP AND HOLD TIMES (f=1) (f=1) duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50% duty cycle)



WAVEFORM 3: PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)


TSSOP48 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
Α			1.2			0.047
A1	0.05		0.15	0.002		0.006
A2		0.9			0.035	
b	0.17		0.27	0.0067		0.011
С	0.09		0.20	0.0035		0.0079
D	12.4		12.6	0.488		0.496
E		8.1 BSC			0.318 BSC	
E1	6.0		6.2	0.236		0.244
е		0.5 BSC			0.0197 BSC	
К	0°		8°	0°		8°
L	0.50		0.75	0.020		0.030

Tape & Reel TSSOP48 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			30.4			1.197
Ao	8.7		8.9	0.343		0.350
Во	13.1		13.3	0.516		0.524
Ko	1.5		1.7	0.059		0.067
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com