

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

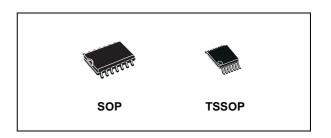
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HEX SCHMITT INVERTER


- HIGH SPEED: $t_{PD} = 5.5 \text{ns}$ (TYP.) at $V_{CC} = 5 \text{V}$
- LOW POWER DISSIPATION: $I_{CC} = 2 \mu A \text{ (MAX.)}$ at $T_A = 25 \text{ °C}$
- TYPICAL HYSTERESIS: V_h = 1V at VCC = 4.5V
- POWER DOWN PROTECTION ON INPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 8 mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- OPERATING VOLTAGE RANGE: V_{CC}(OPR) = 2V to 5.5V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 14
- IMPROVED LATCH-UP IMMUNITY
- LOW NOISE: V_{OLP} = 0.8V (MAX.)

DESCRIPTION

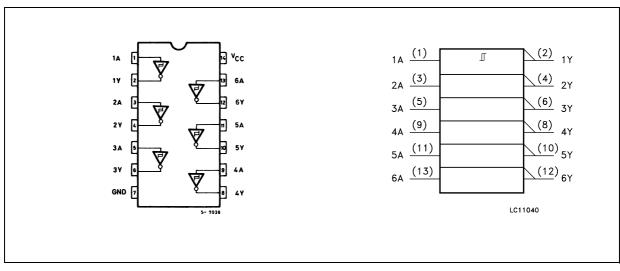
The 74VHC14 is an advanced high-speed CMOS HEX SCHMITT INVERTER fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology.

The internal circuit is composed of 3 stages including buffer output, which enables high noise immunity and stable output.

Power down protection is provided on all inputs and 0 to 7V can be accepted on inputs with no

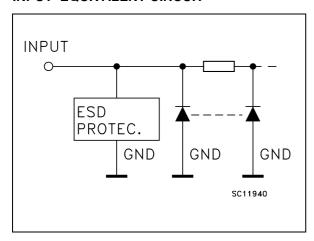
ORDER CODES

PACKAGE	TUBE	T&R
SOP	74VHC14M	74VHC14MTR
TSSOP		74VHC14TTR


regard to the supply voltage. This device can be used to interface 5V to 3V.

Pin configuration and function are the same as those of the 74VHC04 but the 74VHC14 has hysteresis.

This together with its schmitt trigger function allows it to be used on line receivers with slow rise/fall input signals.


All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

March 2002 1/8

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 3, 5, 9, 11, 13	1A to 6A	Data Inputs
2, 4, 6, 8, 10, 12	1Y to 6Y	Data Outputs
7	GND	Ground (0V)
14	V _{CC}	Positive Supply Voltage

TRUTH TABLE

Α	Y
L	Н
Н	L

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage	-0.5 to +7.0	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2 to 5.5	V
V _I	Input Voltage	0 to 5.5	V
V _O	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C

2/8

DC SPECIFICATIONS

		1	est Condition				Value				
Symbol	Parameter	V _{CC}		T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{t+}	High Level	3.0		1.2		2.2	1.2	2.2	1.2	2.2	
	Threshold Voltage	4.5		1.75		3.15	1.75	3.15	1.75	3.15	V
		5.5		2.15		3.85	2.15	3.85	2.15	3.85	
V_{t-}	Low Level	3.0		0.9		1.9	0.9	1.9	0.9	1.9	
	Threshold Voltage	4.5		1.35		2.75	1.35	2.75	1.35	2.75	V
		5.5		1.65		3.35	1.65	3.35	1.65	3.35	
V_h	V _h Hysteresis Voltage	3.0		0.3		1.2	0.3	1.2	0.3	1.2	
		4.5		0.4		1.4	0.4	1.4	0.4	1.4	V
		5.5		0.5		1.6	0.5	1.6	0.5	1.6	
V_{OH}	High Level Output	2.0	I _O =-50 μA	1.9	2.0		1.9		1.9		
	Voltage	3.0	I _O =-50 μA	2.9	3.0		2.9		2.9		
		4.5	I _O =-50 μA	4.4	4.5		4.4		4.4		V
		3.0	I _O =-4 mA	2.58			2.48		2.4		
		4.5	I _O =-8 mA	3.94			3.8		3.7		
V _{OL}	Low Level Output	2.0	I _O =50 μA		0.0	0.1		0.1		0.1	
	Voltage	3.0	I _O =50 μA		0.0	0.1		0.1		0.1	
		4.5	I _O =50 μA		0.0	0.1		0.1		0.1	V
		3.0	I _O =4 mA			0.36		0.44		0.55	
		4.5	I _O =8 mA			0.36		0.44		0.55	
I _I	Input Leakage Current	0 to 5.5	V _I = 5.5V or GND			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			2		20		20	μΑ

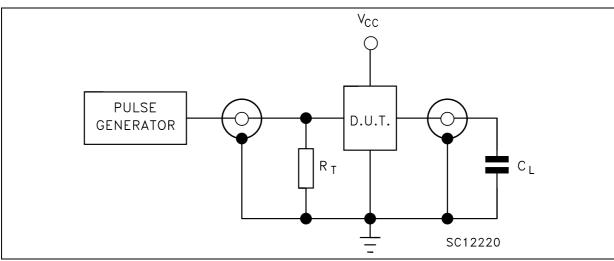
AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3ns$))

	Symbol Parameter		Test Condition		Value							
Symbol			V _{CC} C _L		T _A = 25°C -40			-40 to	to 85°C -55 to 125°C			Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay	3.3 ^(*)	15			8.3	12.8	1.0	15.0	1.0	15.0	
t _{PHL}	Time	3.3(*)	50			10.8	16.3	1.0	18.5	1.0	18.5	ns
		5.0 ^(**)	15			5.5	8.6	1.0	10.0	1.0	10.0	115
		5.0 ^(**)	50			7.0	10.6	1.0	12.0	1.0	12.0	

^(*) Voltage range is 3.3V ± 0.3V (**) Voltage range is 5.0V ± 0.5V

CAPACITIVE CHARACTERISTICS

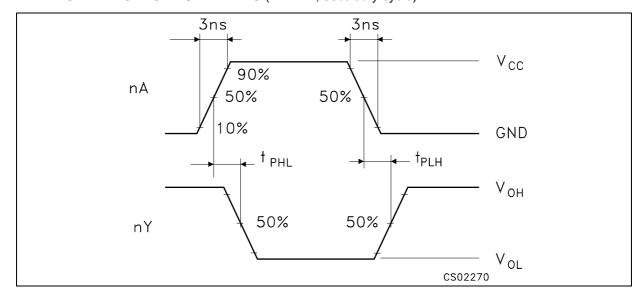
		Test Condition	Value							
Symbol	Parameter		Т	T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit
			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance			6	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)			14						pF


¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. I_{CC(opr)} = C_{PD} x V_{CC} x f_{IN} + I_{CC}/6 (per gate)

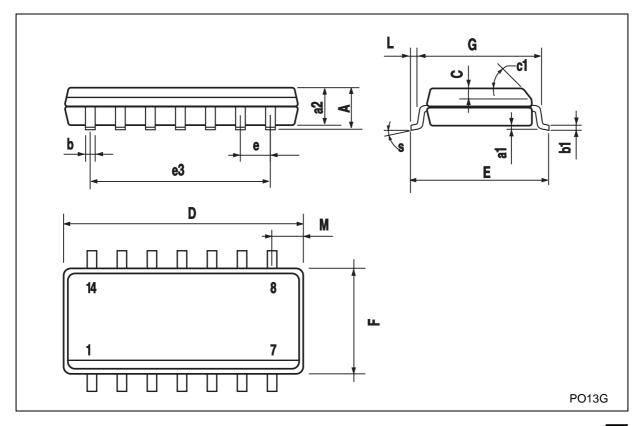
DYNAMIC SWITCHING CHARACTERISTICS

			Test Condition		Value							
Symbol	Symbol Parameter	V _{CC}		Т	T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
V _{OLP}	Dynamic Low					0.3	0.8					.,
V _{OLV}	Voltage Quiet Output (note 1, 2)	5.0		-0.8	-0.3						V	
V _{IHD}	Dynamic High Voltage Input (note 1, 3)	5.0	C _L = 50 pF	3.5							V	
V _{ILD}	Dynamic Low Voltage Input (note 1, 3)	5.0				1.5					V	

1) Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0V to 5.0V, (n-1) outputs switching and one output at GND.
3) Max number of data inputs (n) switching. (n-1) switching 0V to 5.0V. Inputs under test switching: 5.0V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f=1MHz.

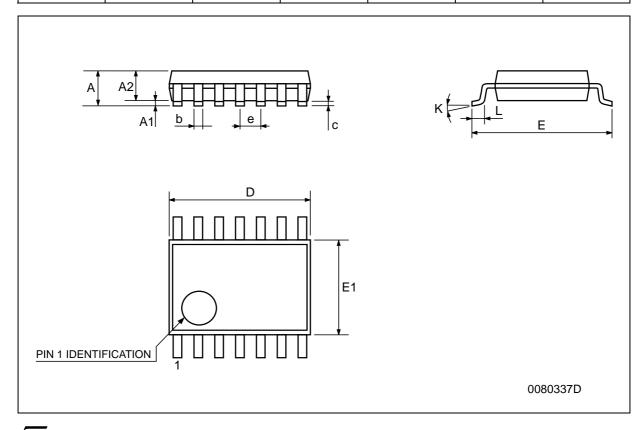

TEST CIRCUIT

 C_L =15/50pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically 50 Ω)


4/8

WAVEFORM: PROPAGATION DELAYS (f=1MHz; 50% duty cycle)

SO-14 MECHANICAL DATA


DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)	•	•
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026
S			8° (ı	max.)	•	•

6/8

TSSOP14 MECHANICAL DATA

DIM.		mm.		inch				
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	4.9	5	5.1	0.193	0.197	0.201		
Е	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com