imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

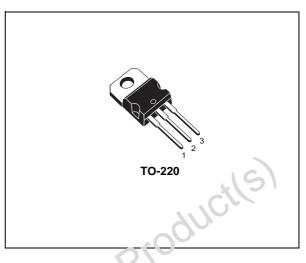
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

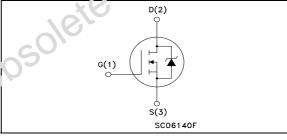
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IRF540N-CHANNEL 100V - 0.055 Ω - 22A TO-220LOW GATE CHARGE STripFET™ II POWER MOSFET

ТҮРЕ	V _{DSS}	R _{DS(on)}	ID
IRF540	100 V	<0.077 Ω	22 A


- TYPICAL $R_{DS}(on) = 0.055\Omega$
- EXCEPTIONAL dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- LOW GATE CHARGE
- APPLICATION ORIENTED CHARACTERIZATION

DESCRIPTION


This MOSFET series realized with STMicroelectronics unique STripFET process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced highefficiency, high-frequency isolated DC-DC converters for Telecom and Computer applications. It is also intended for any applications with low gate drive requirements.

APPLICATIONS

- HIGH-EFFICIENCY DC-DC CONVERTERS
- UPS AND MOTOR CONTROL

INTERNAL SCHEM.\TIC DIAGRAM

Ordering Information

SALES TYPE	MARKING	PACKAGE	PACKAGING
IRF540	TK. 540&	TO-220	TUBE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	$\overline{O}_{1,2}$ ir -source Voltage (V _{GS} = 0)	100	V
VDGR	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	100	V
Vus	Gate- source Voltage	± 20	V
10	Drain Current (continuous) at T _C = 25°C	22	A
I _D	Drain Current (continuous) at T _C = 100°C	15	A
IDM(•)	Drain Current (pulsed)	88	A
Ptot	Total Dissipation at $T_C = 25^{\circ}C$	85	W
	Derating Factor	0.57	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	9	V/ns
E _{AS} (2)	Single Pulse Avalanche Energy	220	mJ
T _{stg}	Storage Temperature	-55 to 175	°C
Tj	Max. Operating Junction Temperature	-55 10 175	C

(•) Pulse width limited by safe operating area.

1) I_{SD} ≤22A, di/dt ≤300A/µs, V_{DD} ≤ V_{(BR)DSS}, T_j ≤ T_{JMAX} (2) Starting T_j = 25 °C, I_D = 12A, V_{DD} = 30V

February 2003

NEW DATASHEET ACCORDING TO PCN DSG/CT/1C16 MARKING: IRF540 &

IRF540

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case	Max	1.76	°C/W
Rthi-amb	Thermal Resistance Junction-ambient	Max	62.5	°C/W
TI	Maximum Lead Temperature For Soldering Purpose	Тур	300	°C

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	100			V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T _C = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±100	nA

ON (1)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 11 A	0	0.055	0.077	Ω
DYNAMIC				e X	•		

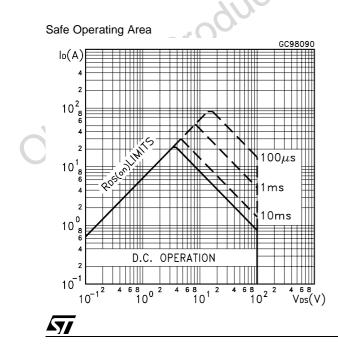
DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	V _{DS} =25 V I _D = 11 A		20		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		870 125 52		pF pF pF
		51		<u> </u>		
	AU					
	Produce					
	ete Produc					
psolf	ete Produc					

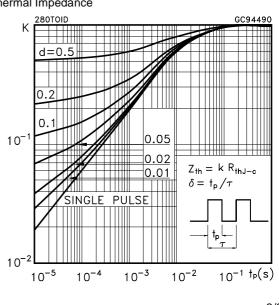
57

ELECTRICAL CHARACTERISTICS (continued)

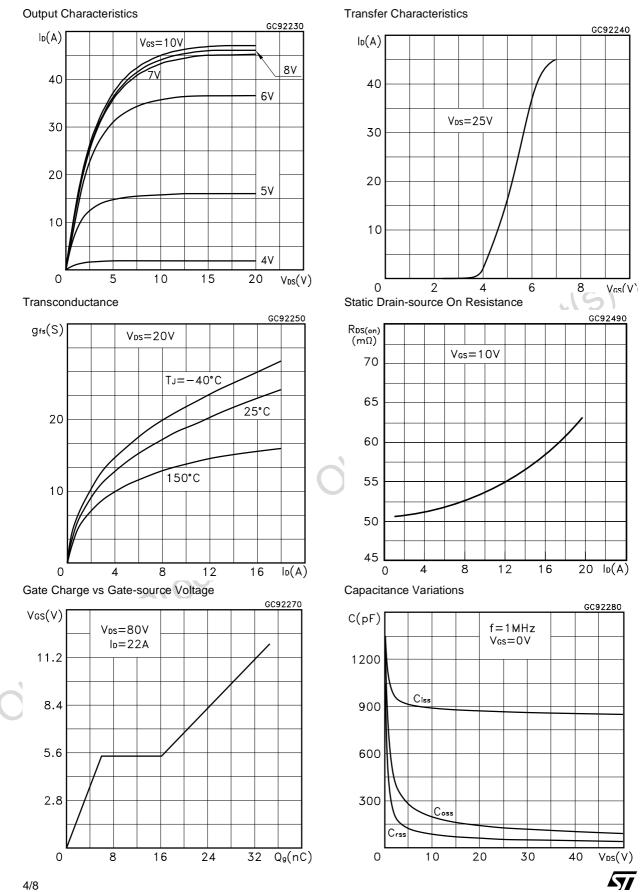
SWITCHING ON

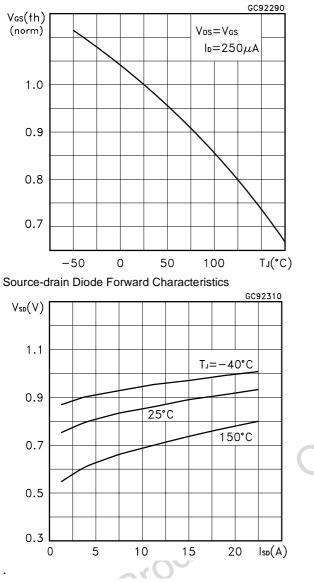

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			60 45		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 80 V I _D = 22 A V _{GS} = 10V		30 6 10	41	nC nC nC

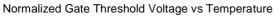
SWITCHING OFF


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time			50 20		ns ns

SOURCE DRAIN DIODE


Symbol	Parameter	Test C	Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (●)	Source-drain Current Source-drain Current (pulsed)			0	,00	22 88	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 22 A	$V_{GS} = 0$	X		1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 22 \text{ A}$ $V_{DD} = 30 \text{ V}$ (see test circle	di/dt = 100A/µs T _j = 150°C uit, Figure 5)	Ö	100 375 7.5		ns nC A
	e duration = 300 μ s, duty cycle 1.5 %. limited by safe operating area.	C	05				
		SÍ	~				

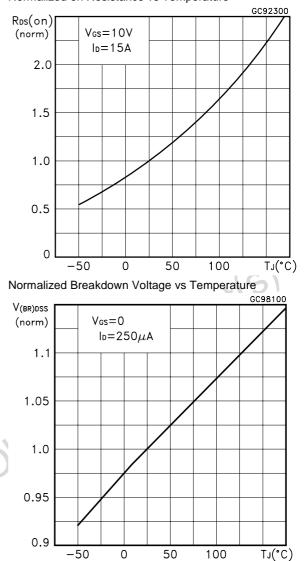
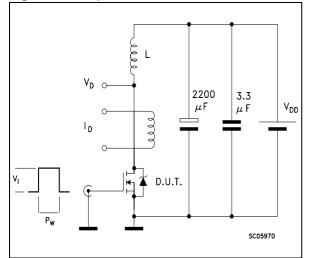
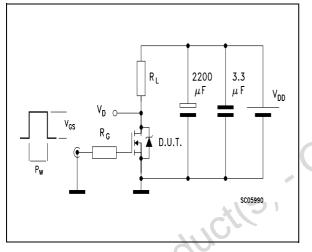


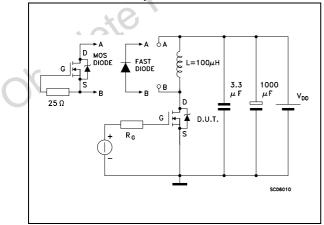


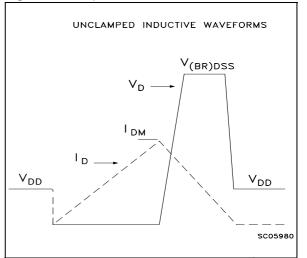
IRF540

4/8

Normalized on Resistance vs Temperature


Fig. 1: Unclamped Inductive Load Test Circuit


Fig. 3: Switching Times Test Circuits For Resistive Load

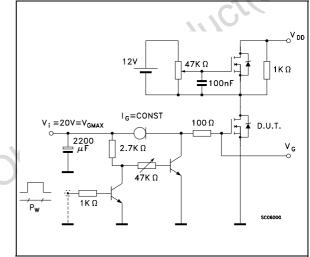

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

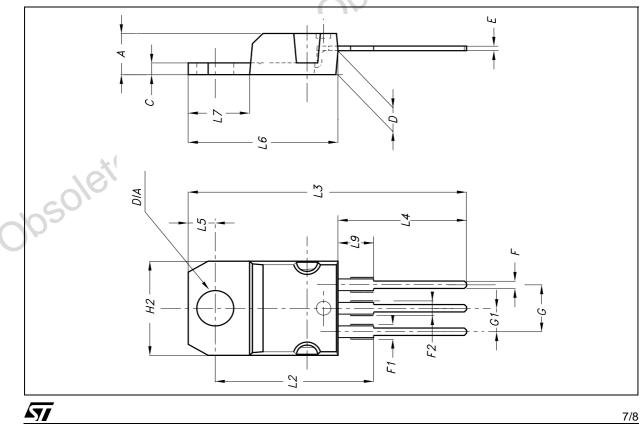


Fig. 4: Gate Charge test Circuit

57

TO-220 MECHANICAL DATA						
DIM.	mm.			inch.		
	MIN.	TYP.	MAX.	MIN.	TYP.	TYP.
Α	4.4		4.6	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
Е	0.49	1	0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.40		2.70	0.094		0.106
H2	10		10.40	0.393		0.409
L2		16.40			0.645	15
L3		28.90			1.137	r.V.
L4	13		14	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600	010	0.620
L7	6.20	1	6.60	0.244	\	0.260
L9	3.50	1	3.93	0.137		0.154
DIA	3.75	1	3.85	0.147		0.151

7/8

Information/furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as scritical components in life support devices or systems without express written approval of STMicroelectronics.

> All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

8/8

T