

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









# **OCTAL T1/E1 SHORT HAUL LINE** INTERFACE UNIT WITH SINGLE **ENDED OPTION**

#### IDT82V2048S

# **FEATURES**

- Fully integrated octal T1/E1 short haul line interface which supports 100  $\Omega$  T1 twisted pair, 120  $\Omega$  E1 twisted pair and 75  $\Omega$ E1 coaxial applications
- ◆ Optional Single Ended receive termination LIU on RTIPn/ RRINGn for 75  $\Omega$  E1 coaxial applications
- ◆ Selectable Single Rail mode or Dual Rail mode and AMI or B8ZS/HDB3 encoder/decoder
- Built-in transmit pre-equalization meets G.703 & T1.102
- ◆ Selectable transmit/receive jitter attenuator meets ETSI CTR12/ 13, ITU G.736, G.742, G.823 and AT&T Pub 62411 specifications
- ◆ SONET/SDH optimized jitter attenuator meets ITU G.783 mapping jitter specification
- ◆ Digital/Analog LOS detector meets ITU G.775, ETS 300 233 and T1.231

- ◆ ITU G.772 non-intrusive monitoring for in-service testing for any one of channel 1 to channel 7
- Low impedance transmit drivers with high-Z
- Selectable hardware and parallel/serial host interface
- Local, Remote and Inband Loopback test functions
- Hitless Protection Switching (HPS) for 1 to 1 protection without
- JTAG boundary scan for board test
- 3.3 V supply with 5 V tolerant I/O
- Low power consumption
- Operating temperature range: -40°C to +85°C
- Available in 144-pin Thin Quad Flat Pack (TQFP) and 160-pin Plastic Ball Grid Array (PBGA) packages

# **FUNCTIONAL BLOCK DIAGRAM**

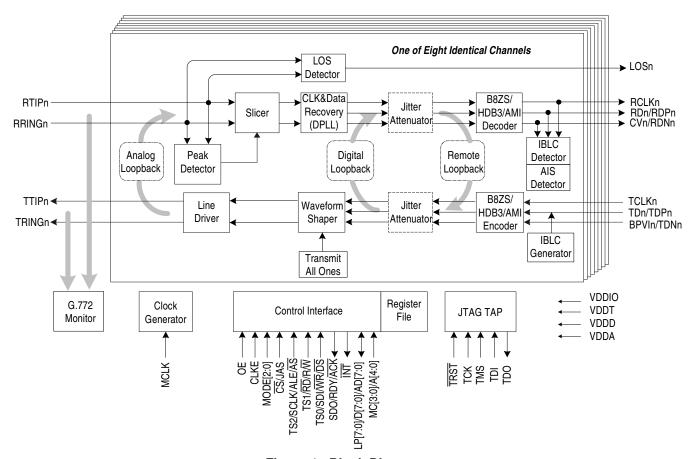



Figure-1 Block Diagram

IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.

DSC-6969/-© 2012 Integrated Device Technology, Inc.

#### DESCRIPTION

The IDT82V2048S is a single chip, 8-channel T1/E1 short haul PCM transceiver with a reference clock of 1.544 MHz (T1) or 2.048 MHz (E1). The IDT82V2048S contains 8 transmitters and 8 receivers.

All the receivers and transmitters can be programmed to work either in Single Rail mode or Dual Rail mode. B8ZS/HDB3 or AMI encoder/ decoder is selectable in Single Rail mode. Pre-encoded transmit data in NRZ format can be accepted when the device is configured in Dual Rail mode. The receivers perform clock and data recovery by using integrated digital phase-locked loop. As an option, the raw sliced data (no retiming) can be output on the receive data pins. Transmit equalization is implemented with low-impedance output drivers that provide shaped waveforms to the transformer, guaranteeing template conformance.

A jitter attenuator is integrated in the IDT82V2048S and can be switched into either the transmit path or the receive path for all channels. The jitter attenuation performance meets ETSI CTR12/13, ITU G.736, G.742, G.823, and AT&T Pub 62411 specifications.

The IDT82V2048S offers hardware control mode and software control mode. Software control mode works with either serial host interface or parallel host interface. The latter works via an Intel/Motorola compatible 8-bit parallel interface for both multiplexed or non-multiplexed applications. Hardware control mode uses multiplexed pins to select different operation modes when the host interface is not available to the device.

The IDT82V2048S also provides loopback and JTAG boundary scan testing functions. Using the integrated monitoring function, the IDT82V2048S can be configured as a 7-channel transceiver with non-intrusive protected monitoring points.

The IDT82V2048S can be used for SDH/SONET multiplexers, central office or PBX, digital access cross connects, digital radio base stations, remote wireless modules and microwave transmission systems.

# PIN CONFIGURATIONS

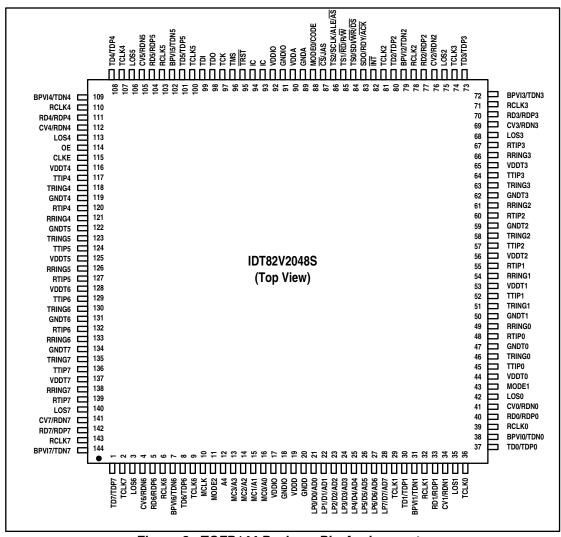



Figure-2 TQFP144 Package Pin Assignment

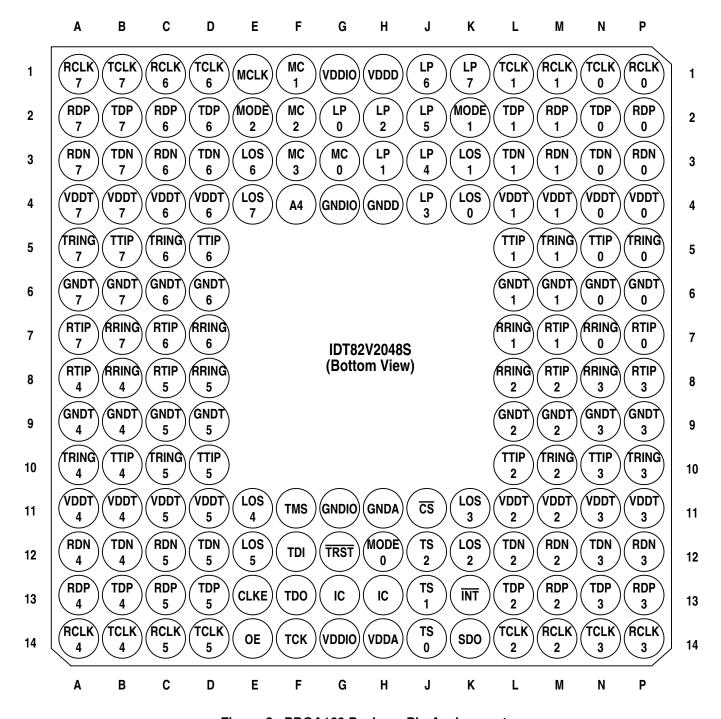



Figure-3 PBGA160 Package Pin Assignment

# 1 PIN DESCRIPTION

Table-1 Pin Description

| Name             | Type             | Pin No.  |            | Description                                                                                                                                                                                                                                                                                                                         |  |
|------------------|------------------|----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name             | Туре             | TQFP144  | PBGA160    | Description                                                                                                                                                                                                                                                                                                                         |  |
|                  | I.               |          | I.         | Transmit and Receive Line Interface                                                                                                                                                                                                                                                                                                 |  |
| TTIP0<br>TTIP1   |                  | 45<br>52 | N5<br>L5   |                                                                                                                                                                                                                                                                                                                                     |  |
| TTIP2            |                  | 57       | L10        |                                                                                                                                                                                                                                                                                                                                     |  |
| TTIP3            |                  | 64       | N10        |                                                                                                                                                                                                                                                                                                                                     |  |
| TTIP4            |                  | 117      | B10        |                                                                                                                                                                                                                                                                                                                                     |  |
| TTIP5            |                  | 124      | D10        |                                                                                                                                                                                                                                                                                                                                     |  |
| TTIP6            |                  | 129      | D5         |                                                                                                                                                                                                                                                                                                                                     |  |
| TTIP7            |                  | 136      | B5         | TTIPn/TRINGn: Transmit Bipolar Tip/Ring for Channel 0~7                                                                                                                                                                                                                                                                             |  |
| TRING0<br>TRING1 | Analog<br>Output | 46<br>51 | P5<br>M5   | These pins are the differential line driver outputs. They will be in high-Z if pin OE is low or the corresponding pin TCLKn is low (pin OE is global control, while pin TCLKn is per-channel control). In host mode, each pin can be in high-Z by programming a '1' to the corresponding bit in register <b>OE</b> <sup>(1)</sup> . |  |
| TRING2           |                  | 58       | M10        |                                                                                                                                                                                                                                                                                                                                     |  |
| TRING3           |                  | 63       | P10        |                                                                                                                                                                                                                                                                                                                                     |  |
| TRING4           |                  | 118      | A10        |                                                                                                                                                                                                                                                                                                                                     |  |
| TRING5           |                  | 123      | C10        |                                                                                                                                                                                                                                                                                                                                     |  |
| TRING6           |                  | 130      | <b>C</b> 5 |                                                                                                                                                                                                                                                                                                                                     |  |
| TRING7           |                  | 135      | <b>A</b> 5 |                                                                                                                                                                                                                                                                                                                                     |  |
| RTIP0            |                  | 48       | P7         |                                                                                                                                                                                                                                                                                                                                     |  |
| RTIP1            |                  | 55       | M7         |                                                                                                                                                                                                                                                                                                                                     |  |
| RTIP2            |                  | 60       | M8         |                                                                                                                                                                                                                                                                                                                                     |  |
| RTIP3            |                  | 67       | P8         | Differential line receiver inputs: RTIPn/RRINGn                                                                                                                                                                                                                                                                                     |  |
| RTIP4            |                  | 120      | A8         | RTIPn/RRINGn: Receive Bipolar Tip/Ring for Channel 0~7                                                                                                                                                                                                                                                                              |  |
| RTIP5            |                  | 127      | C8         | These pins are the differential RTIPn/RRINGn LIU inputs for 100 $\Omega$ T1 twisted pair, 120 $\Omega$ E1 twisted pair                                                                                                                                                                                                              |  |
| RTIP6            |                  | 132      | C7         | and 75 $\Omega$ E1 coaxial applications.                                                                                                                                                                                                                                                                                            |  |
| RTIP7            | Analog           | 139      | <b>A</b> 7 |                                                                                                                                                                                                                                                                                                                                     |  |
| RRING0           | Analog<br>Input  | 49       | N7         | Single ended line receiver inputs: RTIPn RTIPn: Receive Single Ended input for Channel 0~7                                                                                                                                                                                                                                          |  |
| RRING1           |                  | 54       | L7         | These pins are the single ended receive inputs for 75 $\Omega$ E1 coaxial applications.                                                                                                                                                                                                                                             |  |
| RRING2           |                  | 61       | L8         |                                                                                                                                                                                                                                                                                                                                     |  |
| RRING3           |                  | 66       | N8         | For more information about Single Ended receive termination, refer to 2.4.1 Single Ended Receive Termi-                                                                                                                                                                                                                             |  |
| RRING4           |                  | 121      | B8         | nation.                                                                                                                                                                                                                                                                                                                             |  |
| RRING5           |                  | 126      | D8         |                                                                                                                                                                                                                                                                                                                                     |  |
| RRING6           |                  | 133      | D7         |                                                                                                                                                                                                                                                                                                                                     |  |
| RRING7           |                  | 138      | B7         |                                                                                                                                                                                                                                                                                                                                     |  |

 $<sup>^{1}</sup>$ . Register name is indicated by bold capital letter. For example, **OE** indicates Output Enable Register.

Table-1 Pin Description (Continued)

| Nama                                                                                                                                                             | Tunc | Pin No.                                                                                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Description                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name                                                                                                                                                             | Туре | TQFP144                                                                                             | PBGA160                                                                                              | †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                  |      |                                                                                                     |                                                                                                      | Transmit a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd Receive Digi                                                                                                                     | tal Data Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | face                                                                                                                                                        |                                                                                                                                                                                                                                                                                                           |  |  |
| TD0/TDP0 TD1/TDP1 TD2/TDP2 TD3/TDP3 TD4/TDP4 TD5/TDP5 TD6/TDP6 TD7/TDP7  BPVI0/TDN0 BPVI1/TDN1 BPVI2/TDN2 BPVI3/TDN3 BPVI4/TDN4 BPVI5/TDN5 BPVI6/TDN6 BPVI7/TDN7 | 1    | 37<br>30<br>80<br>73<br>108<br>101<br>8<br>1<br>1<br>38<br>31<br>79<br>72<br>109<br>102<br>7<br>144 | N2<br>L2<br>L13<br>N13<br>B13<br>D13<br>D2<br>B2<br>N3<br>L3<br>L12<br>N12<br>B12<br>D12<br>D3<br>B3 | TDn: Transmit Data for Channel 0~7 When the device is in Single Rail mode, the NRZ data to be transmitted is input on this pin. Data on TDn sampled into the device on the falling edges of TCLKn, and encoded by AMI or B8ZS/HDB3 line code rules before being transmitted to the line.  BPVIn: Bipolar Violation Insertion for Channel 0~7 Bipolar violation insertion is available in Single Rail mode 2 (see Table-2 on page 14 and Table-3 on page 14) with AMI enabled. A low-to-high transition on this pin will make the next logic one to be transmitted of TDn the same polarity as the previous pulse, and violate the AMI rule. This is for testing.  TDPn/TDNn: Positive/Negative Transmit Data for Channel 0~7 When the device is in Dual Rail Mode, the NRZ data to be transmitted for positive/negative pulse is input on this pin. Data on TDPn/TDNn are sampled on the falling edges of TCLKn. The line code in dual rail mode is as the follow:  TDPn TDNn Output Pulse  0 0 Space  0 1 Negative Pulse  1 0 Positive Pulse  1 1 Space |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                  |      |                                                                                                     |                                                                                                      | channel into  TCLKn: Tra  The clock o  transmit dat  Pulling TCL  Ones (TAO)  clock refere  If TCLKn is  become hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ansmit Clock for<br>f 1.544 MHz (for<br>a at TDn/TDPn o<br>Kn high for more<br>S) state (when M<br>nce.<br>low, the correspondance. | Channel 0~7  Chann | 2-2 on page 14 and Ta<br>2.048 MHz (for E1 mon<br>appled into the device of<br>K cycles, the correspond). In TAOS state, the<br>t channel is set into posi- | cycles will configure the corresponding able-3 on page 14).  de) for transmit is input on this pin. The on the falling edges of TCLKn. Inding transmitter is set in Transmit Aller TAOS generator adopts MCLK as the ower down state, while driver output ports ansmit mode. It is summarized as the fol- |  |  |
| TCLK0<br>TCLK1                                                                                                                                                   |      | 36<br>29                                                                                            | N1<br>L1                                                                                             | MCLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TCLKn                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tuo                                                                                                                                                         | nsmit Mode                                                                                                                                                                                                                                                                                                |  |  |
| TCLK2                                                                                                                                                            |      | 81                                                                                                  | L14                                                                                                  | Clocked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clocked                                                                                                                             | Normal o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             | IIISIIII WUUC                                                                                                                                                                                                                                                                                             |  |  |
| TCLK3<br>TCLK4                                                                                                                                                   | 1    | 74<br>107                                                                                           | N14<br>B14                                                                                           | Clocked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | High (≥ 16 MC                                                                                                                       | Trancmit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | All Ones (TAOS) sign                                                                                                                                        | nals to the line side in the corresponding                                                                                                                                                                                                                                                                |  |  |
| TCLK5                                                                                                                                                            |      | 100                                                                                                 | D14                                                                                                  | Clocked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Low (≥ 64 MCI                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • · · • · · · · · · · · · · · · · · · ·                                                                                                                     | annel is set into power down state.                                                                                                                                                                                                                                                                       |  |  |
| TCLK6<br>TCLK7                                                                                                                                                   |      | 9 2                                                                                                 | D1<br>B1                                                                                             | High/Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TCLK1 is clock                                                                                                                      | TCLKn is TCLKn is (≥ 16 TC TCLKn is (≥ 64 TC The rece is high, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s clocked Normal opers high Transmit A in the correst low Correspondent CLK1) down state ive path is not affecte all receive paths just s                   | eration Il Ones (TAOS) signals to the line side esponding transmit channel. ding transmit channel is set into power                                                                                                                                                                                       |  |  |
|                                                                                                                                                                  |      |                                                                                                     |                                                                                                      | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TCLK1 is unava                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , an and 1000110 pt                                                                                                                                         | a porrorou dorriri                                                                                                                                                                                                                                                                                        |  |  |

Table-1 Pin Description (Continued)

| Massa                                                                                                                                                                                        | T           | Pin                                                                                              | No.                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name                                                                                                                                                                                         | Туре        | TQFP144 PBGA160                                                                                  |                                                                                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| RD0/RDP0<br>RD1/RDP1<br>RD2/RDP2<br>RD3/RDP3<br>RD4/RDP4<br>RD5/RDP5<br>RD6/RDP6<br>RD7/RDP7<br>CV0/RDN0<br>CV1/RDN1<br>CV2/RDN2<br>CV3/RDN3<br>CV4/RDN4<br>CV5/RDN5<br>CV6/RDN6<br>CV7/RDN7 | O<br>High-Z | 40<br>33<br>77<br>70<br>111<br>104<br>5<br>142<br>41<br>34<br>76<br>69<br>112<br>105<br>4<br>141 | P2<br>M2<br>M13<br>P13<br>A13<br>C13<br>C2<br>A2<br>P3<br>M3<br>M12<br>P12<br>A12<br>C12<br>C3<br>A3 | RDn: Receive Data for Channel 0-7 In Single Rail mode, the received NRZ data is output on this pin. The data is decoded by AMI or B8ZS/HDB3 line code rule.  CVn: Code Violation for Channel 0-7 In Single Rail mode, the bipolar violation, code violation and excessive zeros will be reported by driving pin CVn high for a full clock cycle. However, only bipolar violation is indicated when AMI decoder is selected.  RDPn/RDNn: Positive/Negative Receive Data for Channel 0-7 In Dual Rail Mode with clock recovery, these pins output the NRZ data. A high signal on RDPn indicates the receipt of a positive pulse on RTIPn/RRINGn while a high signal on RDNn indicates the receipt of a negative pulse on RTIPn/RRDNn are clocked out on the falling edges of RCLK when the CLKE input is low, or are clocked out on the rising edges of RCLK when CLKE is high.  In Dual Rail Mode without clock recovery, these pins output the raw RZ sliced data. In this data recovery mode, the active polarity of RDPn/RDNn is determined by pin CLKE. When pin CLKE is low, RDPn/RDNn is active low. When pin CLKE is high, RDPn/RDNn is active high.  In hardware mode, RDn or RDPn/RDNn will remain active during LOS. In host mode, these pins will either remain active or insert alarm indication signal (AIS) into the receive path, determined by bit AISE in register GCF. |  |  |
| RCLK0<br>RCLK1<br>RCLK2<br>RCLK3<br>RCLK4<br>RCLK5<br>RCLK5<br>RCLK6                                                                                                                         | O<br>High-Z | 39<br>32<br>78<br>71<br>110<br>103<br>6<br>143                                                   | P1<br>M1<br>M14<br>P14<br>A14<br>C14<br>C1<br>A1                                                     | RCLKn: Receive Clock for Channel 0~7 In clock recovery mode, this pin outputs the recovered clock from signal received on RTIPn/RRINGn. The received data are clocked out of the device on the rising edges of RCLKn if pin CLKE is high, or on falling edges of RCLKn if pin CLKE is low.  In data recovery mode, RCLKn is the output of an internal exclusive OR (XOR) which is connected with RDPn and RDNn. The clock is recovered from the signal on RCLKn.  If Receiver n is powered down, the corresponding RCLKn is in high-Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| MCLK                                                                                                                                                                                         | I           | 10                                                                                               | E1                                                                                                   | MCLK: Master Clock This is an independent, free running reference clock. A clock of 1.544 MHz (for T1 mode) or 2.048 MH (for E1 mode) is supplied to this pin as the clock reference of the device for normal operation. In receive path, when MCLK is high, the device slices the incoming bipolar line signal into RZ pulse (D Recovery mode). When MCLK is low, all the receivers are powered down, and the output pins RCLKn RDPn and RDNn are switched to high-Z. In transmit path, the operation mode is decided by the combination of MCLK and TCLKn (see TCLKn description for details).  NOTE: Wait state generation via RDY/ACK is not available if MCLK is not provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| LOS0<br>LOS1<br>LOS2<br>LOS3<br>LOS4<br>LOS5<br>LOS6                                                                                                                                         | 0           | 42<br>35<br>75<br>68<br>113<br>106<br>3                                                          | K4<br>K3<br>K12<br>K11<br>E11<br>E12<br>E3<br>E4                                                     | LOSn: Loss of Signal Output for Channel 0~7 A high level on this pin indicates the loss of signal when there is no transition over a specified period of time or no enough ones density in the received signal. The transition will return to low automatically when there is enough transitions over a specified period of time with a certain ones density in the received signal. The LOS assertion and desertion criteria are described in 2.4.5 Loss of Signal (LOS) Detection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |

Table-1 Pin Description (Continued)

| N                    | _                           | Pin     | No.     | Decadation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                 |        |
|----------------------|-----------------------------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Name                 | Туре                        | TQFP144 | PBGA160 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                 |        |
|                      |                             |         |         | Hardware/Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | st Control Into                             | erface                                                                                                                                                                                                                                                                                                                                                                          |        |
|                      |                             |         |         | MODE2: Control M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ode Select 2                                |                                                                                                                                                                                                                                                                                                                                                                                 |        |
|                      |                             |         |         | The signal on this pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n determines v                              | which control mode is selected to control the device:                                                                                                                                                                                                                                                                                                                           |        |
|                      |                             |         |         | MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                           | Control Interface                                                                                                                                                                                                                                                                                                                                                               | ]      |
|                      |                             |         |         | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | '                                           | Hardware Mode                                                                                                                                                                                                                                                                                                                                                                   |        |
|                      |                             |         |         | VDDIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )/2                                         | Serial Host Interface                                                                                                                                                                                                                                                                                                                                                           |        |
|                      |                             |         |         | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                           | Parallel Host Interface                                                                                                                                                                                                                                                                                                                                                         |        |
| MODE2                | (Pulled to<br>VDDIO/2)      | 11      | E2      | Serial host Interface<br>Parallel host Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pins include $\overline{C}$ be pins include | DE[2:0], TS[2:0], LP[7:0], CODE, CLKE, JAS and OE. $\overline{S}$ , SCLK, SDI, SDO and $\overline{\text{INT}}$ . $\overline{\text{CS}}$ , A[4:0], D[7:0], $\overline{\text{WR}}/\overline{\text{DS}}$ , $\overline{\text{RD}}/\overline{\text{RW}}$ , ALE/ $\overline{\text{AS}}$ , $\overline{\text{INT}}$ and st interface as follows ( <i>refer to MODE1 and MODE0</i> $\mu$ |        |
|                      |                             |         |         | MODEIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             | Host Interface                                                                                                                                                                                                                                                                                                                                                                  | $\neg$ |
|                      |                             |         |         | MODE[2:0]<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             | Non-multiplexed Motorola Mode Interface                                                                                                                                                                                                                                                                                                                                         | _      |
|                      |                             |         |         | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | Non-multiplexed Intel Mode Interface                                                                                                                                                                                                                                                                                                                                            |        |
|                      |                             |         |         | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | Multiplexed Motorola Mode Interface                                                                                                                                                                                                                                                                                                                                             |        |
|                      |                             |         |         | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | Multiplexed Intel Mode Interface                                                                                                                                                                                                                                                                                                                                                |        |
| MODE1  MODE0/CODE    | I                           | 88      | K2      | In parallel host mode, the parallel interface operates with separate address bus and data bus when this pin is low, and operates with multiplexed address and data bus when this pin is high. In serial host mode or hardware mode, this pin should be grounded.  MODEO: Control Mode Select 0  In parallel host mode, the parallel host interface is configured for Motorola compatible hosts when this pin is low, or for Intel compatible hosts when this pin is high.  CODE: Line Code Rule Select  In hardware control mode, the B8ZS (for T1 mode)/HDB3 (for E1 mode) encoder/decoder is enabled when this pin is low, and AMI encoder/decoder is enabled when this pin is high. The selections affect all the channels.  In serial host mode, this pin should be grounded. |                                             |                                                                                                                                                                                                                                                                                                                                                                                 |        |
| <mark>ՇS</mark> /JAS | I<br>(Pulled to<br>VDDIO/2) | 87      | J11     | CS: Chip Select (Active Low) In host mode, this pin is asserted low by the host to enable host interface. A high to low transition must occur on this pin for each read/write operation and the level must not return to high until the operation is over.  JAS: Jitter Attenuator Select In hardware control mode, this pin globally determines the Jitter Attenuator position:  JAS Jitter Attenuator (JA) Configuration  Low JA in transmit path  VDDIO/2 JA not used  High JA in receive path                                                                                                                                                                                                                                                                                 |                                             |                                                                                                                                                                                                                                                                                                                                                                                 |        |

Table-1 Pin Description (Continued)

| Na                  | <b>T</b> | Pin No. |         | Decariation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|---------------------|----------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name                | Туре     | TQFP144 | PBGA160 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| TS2/SCLK/<br>ALE/AS | I        | 86      | J12     | TS2: Template Select 2 In hardware control mode, the signal on this pin is the most significant bit for the transmit template select. Refer to 2.5.1 Waveform Shaper for details.  SCLK: Shift Clock In serial host mode, the signal on this pin is the shift clock for the serial interface. Data on pin SDO is clocked out on falling edges of SCLK if pin CLKE is high, or on rising edges of SCLK if pin CLKE is low. Data on pin SDI is always sampled on rising edges of SCLK.  ALE: Address Latch Enable In parallel Intel multiplexed host mode, the address on AD[4:0] is sampled into the device on the falling edges of ALE (signals on AD[7:5] are ignored). In non-multiplexed host mode, ALE should be pulled high.  AS: Address Strobe (Active Low) In parallel Motorola multiplexed host mode, the address on AD[4:0] is latched into the device on the falling edges of AS (signals on AD[7:5] are ignored). In non-multiplexed host mode, AS should be pulled high.                                                                                                                                                                                    |  |
| TS1/RD/R/W          | I        | 85      | J13     | TS1: Template Select 1 In hardware control mode, the signal on this pin is the second most significant bit for the transmit temp select. Refer to 2.5.1 Waveform Shaper for details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| TS0/SDI/WR/<br>DS   | I        | 84      | J14     | In hardware control mode, the signal on this pin is the least significant bit for the transmit template select. Refer to 2.5.1 Waveform Shaper for details.  SDI: Serial Data Input In serial host mode, this pin input the data to the serial interface. Data on this pin is sampled on the rising edges of SCLK.  WR: Write Strobe (Active Low) In parallel Intel host mode, this pin is active low during write operation. The data on D[7:0] (in non-multiplexed mode) or AD[7:0] (in multiplexed mode) is sampled into the device on the rising edges of WR.  DS: Data Strobe (Active Low) In parallel Motorola host mode, this pin is active low. During a write operation (R/W = 0), the data on D[7:0] (in non-multiplexed mode) or AD[7:0] (in multiplexed mode) is sampled into the device on the rising edges of DS. During a read operation (R/W = 1), the data is driven to D[7:0] (in non-multiplexed mode) or AD[7:0] (in multiplexed mode) by the device on the rising edges of DS.  In parallel Motorola non-multiplexed host mode, the address information on the 5 bits of address bus A[4:0] are latched into the device on the falling edges of DS. |  |

Table-1 Pin Description (Continued)

| Nama                                                                                                         | T                  | Pin No.                                      |                                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|--------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Name                                                                                                         | Type               | TQFP144                                      | PBGA160                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                              | _                  |                                              |                                              | SDO: Serial Data Output In serial host mode, the data is output on this pin. In serial write operation, SDO is always in high-Z. In serial read operation, SDO is in high-Z only when SDI is in address/command byte. Data on pin SDO is clocked out of the device on the falling edges of SCLK if pin CLKE is high, or on the rising edges of SCLK if pin CLKE is low.                                                                                                                                                                         |  |  |  |
| SDO/RDY/ACK                                                                                                  | 0                  | 83                                           | K14                                          | RDY: Ready Output In parallel Intel host mode, the high level of this pin reports to the host that bus cycle can be completed, while low reports the host must insert wait states.  ACK: Acknowledge Output (Active Low) In parallel Motorola host mode, the low level of this pin indicates that valid information on the data bus is ready for a read progration or acknowledge the acceptance of the purities data during a write paraction.                                                                                                 |  |  |  |
| ĪNT                                                                                                          | O<br>Open<br>Drain | 82                                           | K13                                          | ready for a read operation or acknowledges the acceptance of the written data during a write operation.  INT: Interrupt (Active Low)  This is an open drain, active low interrupt output. Four sources may cause the interrupt. Refer to 2.19  Interrupt Handling for details.                                                                                                                                                                                                                                                                  |  |  |  |
| LP7/D7/AD7<br>LP6/D6/AD6<br>LP5/D5/AD5<br>LP4/D4/AD4<br>LP3/D3/AD3<br>LP2/D2/AD2<br>LP1/D1/AD1<br>LP0/D0/AD0 | I/O<br>High-Z      | 28<br>27<br>26<br>25<br>24<br>23<br>22<br>21 | K1<br>J1<br>J2<br>J3<br>J4<br>H2<br>H3<br>G2 | LPn: Loopback Select 7~0 In hardware control mode, pin LPn configures the corresponding channel in different loopback mode, as follows:  LPn Loopback Configuration Low Remote Loopback VDDIO/2 No loopback High Analog Loopback Refer to 2.17 Loopback Mode for details.  Dn: Data Bus 7~0 In non-multiplexed host mode, these pins are the bi-directional data bus.  ADn: Address/Data Bus 7~0 In multiplexed host mode, these pins are the multiplexed bi-directional address/data bus.  In serial host mode, these pins should be grounded. |  |  |  |

Table-1 Pin Description (Continued)

| N                                          |              |                            | No.                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|--------------------------------------------|--------------|----------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Name                                       | Туре         | TQFP144                    | PBGA160                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| A4<br>MC3/A3<br>MC2/A2<br>MC1/A1<br>MC0/A0 | I            | 12<br>13<br>14<br>15<br>16 | F4<br>F3<br>F2<br>F1<br>G3 | MCn: Performance Monitor Configuration 3-0 In hardware control mode, A4 must be connected to GND. MC[3:0] are used to select one transmitter or receiver of channel 1 to 7 for non-intrusive monitoring. Channel 0 is used as the monitoring channel. If a transmitter is monitored, signals on the corresponding pins TTIPn and TRINGn are internally transmitted to RTIP0 and RRING0. If a receiver is monitored, signals on the corresponding pins RTIPn and RRINGn are internally transmitted to RTIP0 and RRING0. The monitored is then output to RDP0 and RDN0 pins. In host mode operation, the signals monitored by channel 0 can be routed to TTIP0/RING0 by activating the remote loopback in this channel. Refer to 2.20 G.772 Monitoring for more details.  Performance Monitor Configuration determined by MC[3:0] is shown below. Note that if MC[2:0] = 000, the device is in normal operation of all the channels.    MC[3:0] |  |  |  |
| OE                                         | ı            | 114                        | E14                        | When pin MODE1 is high or in serial host mode, these pins should be tied to GND.  OE: Output Driver Enable Pulling this pin low can drive all driver output into high-Z for redundancy application without external mechanical relays. In this condition, all other internal circuits remain active.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| CLKE                                       | ı            | 115                        | E13                        | CLKE: Clock Edge Select The signal on this pin determines the active edge of RCLKn and SCLK in clock recovery mode, or determines the active level of RDPn and RDNn in the data recovery mode. See 2.3 Clock Edges on page 15 for details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                            | •            | •                          | •                          | JTAG Signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| TRST                                       | l<br>Pull-up | 95                         | G12                        | TRST: JTAG Test Port Reset (Active Low) This is the active low asynchronous reset to the JTAG Test Port. This pin has an internal pull-up resistor and it can be left open.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| TMS                                        | l<br>Pull-up | 96                         | F11                        | TMS: JTAG Test Mode Select The signal on this pin controls the JTAG test performance and is clocked into the device on the rising edges of TCK. This pin has an internal pull-up resistor and it can be left open.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| тск                                        | ı            | 97                         | F14                        | TCK: JTAG Test Clock This pin input the clock of the JTAG Test. The data on TDI and TMS are clocked into the device on the rising edges of TCK, while the data on TDO is clocked out of the device on the falling edges of TCK. This pin should be connected to GNDIO or VDDIO pin when unused.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |

Table-1 Pin Description (Continued)

| Name                                                                 | T            | Pin                                              | No.                                                                                  | Donadation .                                                                                                                                                                                                                                                                        |  |
|----------------------------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name                                                                 | Туре         | TQFP144                                          | PBGA160                                                                              | Description                                                                                                                                                                                                                                                                         |  |
| TDO                                                                  | O<br>High-Z  | 98                                               | F13                                                                                  | TDO: JTAG Test Data Output  This pin output the serial data of the JTAG Test. The data on TDO is clocked out of the device on the falling edges of TCK. TDO is a high-Z output signal. It is active only when scanning of data is out. This pin should be left float when unused.   |  |
| TDI                                                                  | l<br>Pull-up | 99                                               | F12                                                                                  | TDI: JTAG Test Data Input This pin input the serial data of the JTAG Test. The data on TDI is clocked into the device on the rising edges of TCK. This pin has an internal pull-up resistor and it can be left open.                                                                |  |
|                                                                      | I            |                                                  |                                                                                      | Power Supplies and Grounds                                                                                                                                                                                                                                                          |  |
| VDDIO                                                                | -            | 17<br>92                                         | G1<br>G14                                                                            | 3.3 V I/O Power Supply                                                                                                                                                                                                                                                              |  |
| GNDIO                                                                | -            | 18<br>91                                         | G4<br>G11                                                                            | I/O GND                                                                                                                                                                                                                                                                             |  |
| VDDT0<br>VDDT1<br>VDDT2<br>VDDT3<br>VDDT4<br>VDDT5<br>VDDT6<br>VDDT7 | -            | 44<br>53<br>56<br>65<br>116<br>125<br>128<br>137 | N4, P4<br>L4, M4<br>L11, M11<br>N11, P11<br>A11, B11<br>C11, D11<br>C4, D4<br>A4, B4 | 3.3 V/5 V Power Supply for Transmitter Driver All VDDT pins must be connected to 3.3 V or all VDDT must be connected to 5 V. It is not allowed to leave any of the VDDT pins open (not-connected) even if the channel is not used. For T1 applications, only 5 V VDDT is supported. |  |
| GNDT0<br>GNDT1<br>GNDT2<br>GNDT3<br>GNDT4<br>GNDT5<br>GNDT6<br>GNDT7 | -            | 47<br>50<br>59<br>62<br>119<br>122<br>131<br>134 | N6, P6<br>L6, M6<br>L9, M9<br>N9, P9<br>A9, B9<br>C9, D9<br>C6, D6<br>A6, B6         | Analog GND for Transmitter Driver                                                                                                                                                                                                                                                   |  |
| VDDD<br>VDDA                                                         | -            | 19<br>90                                         | H1<br>H14                                                                            | 3.3 V Digital/Analog Core Power Supply                                                                                                                                                                                                                                              |  |
| GNDD<br>GNDA                                                         | -            | 20<br>89                                         | H4<br>H11                                                                            | Digital/Analog Core GND                                                                                                                                                                                                                                                             |  |
|                                                                      | ı            | 1                                                | 1                                                                                    | Others                                                                                                                                                                                                                                                                              |  |
| IC                                                                   | 0            | 93<br>94                                         | G13<br>H13                                                                           | IC: Internal Connection Internal use. Leave it float for normal operation.                                                                                                                                                                                                          |  |

# 2 FUNCTIONAL DESCRIPTION

#### 2.1 OVERVIEW

The IDT82V2048S is a fully integrated octal short-haul line interface unit, which contains eight transmit and receive channels for use in either T1 or E1 applications. The receiver performs clock and data recovery. As an option, the raw sliced data (no retiming) can be output to the system. Transmit equalization is implemented with low-impedance output drivers that provide shaped waveforms to the transformer, guaranteeing template conformance. A selectable jitter attenuator may be placed in the receive path or the transmit path. Moreover, multiple testing functions, such as error detection, loopback and JTAG boundary scan are also provided. The device is optimized for flexible software control through a serial or parallel host mode interface. Hardware control is also available. Figure-1 on page 1 shows one of the eight identical channels operation.

#### 2.2 T1/E1 MODE SELECTION

T1/E1 mode selection configures the device globally. In Hardware Mode, the template selection pins TS[2:0], determine whether the operation mode is T1 or E1 (see Table-9 on page 19). In Host Mode, the register **TS** determines whether the operation mode is T1 or E1.

#### 2.2.1 LINE INTERFACE

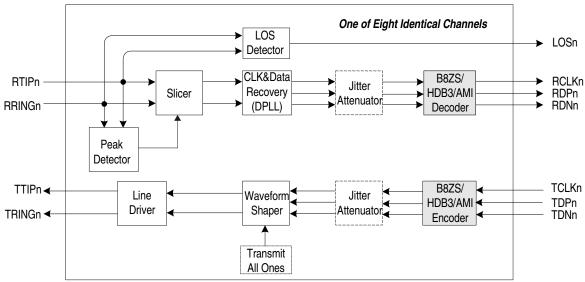
The device supports two line interfaces: differential and single ended. A differential receive termination on RTIPn and RRINGn is supported in Host mode and Hardware mode by default. A Single Ended receive termination on RTIPn is supported in Host mode only. By default, Differential receive termination is enabled. To enable Single Ended receive termination, bit SRX in register **e-SRX** has to be set. See 2.4.1 Single Ended Receive Termination.

#### 2.2.2 SYSTEM INTERFACE

The system interface of each channel can be configured to operate in different modes:

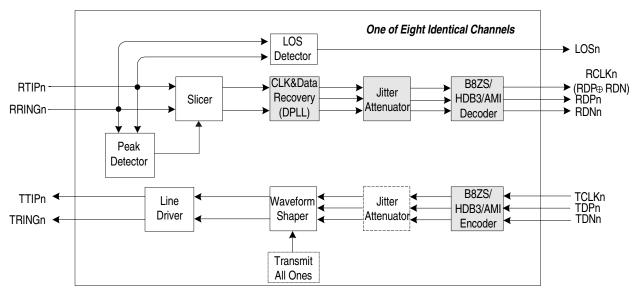
- 1. Single rail interface with clock recovery.
- 2. Dual rail interface with clock recovery.
- 3. Dual rail interface with data recovery (that is, with raw data slicing only and without clock recovery).

Each signal pin on system side has multiple functions depending on which operation mode the device is in.


The Dual Rail interface consists of TDPn<sup>1</sup>, TDNn, TCLKn, RDPn, RDNn and RCLKn. Data transmitted from TDPn and TDNn appears on TTIPn and TRINGn at the line interface; data received on RTIPn and RRINGn in differential receive termination or received on RTIPn in Single Ended receive termination at the line interface are transferred to RDPn and RDNn while the recovered clock extracting from the received data stream outputs on RCLKn. In Dual Rail operation, the clock/data recovery mode is selectable. Dual Rail interface with clock recovery shown in Figure-4 is a default configuration mode. Dual Rail interface with data recovery is shown in Figure-5. Pin RDPn and RDNn, are raw RZ slice outputs and internally connected to an EXOR which is fed to the RCLKn output for external clock recovery applications.

In Single Rail mode, data transmitted from TDn appears on TTIPn and TRINGn at the line interface. Data received on RTIPn and RRINGn in differential receive termination or received on RTIPn in Single Ended receive termination at the line interface appears on RDn while the recovered clock extracting from the received data stream outputs on RCLKn. When the device is in single rail interface, the selectable AMI or B8ZS/ HDB3 line encoder/decoder is available and any code violation in the received data will be indicated at the CVn pin. The Single Rail mode has 2 sub-modes: Single Rail Mode 1 and Single Rail Mode 2. Single Rail Mode 1, whose interface is composed of TDn, TCLKn, RDn, CVn and RCLKn, is realized by pulling pin TDNn high for more than 16 consecutive TCLK cycles. Single Rail Mode 2, whose interface is composed of TDn, TCLKn, RDn, CVn, RCLKn and BPVIn, is realized by setting bit CRS in register  $\mbox{e-CRS}^2$  and bit SING in register  $\mbox{e-SING}.$  The difference between them is that, in the latter mode bipolar violation can be inserted via pin BPVIn if AMI line code is selected.

The configuration of the Hardware Mode System Interface is summarized in Table-2. The configuration of the Host Mode System Interface is summarized in Table-3.


<sup>&</sup>lt;sup>1.</sup> The footprint 'n' (n = 0 - 7) indicates one of the eight channels.

<sup>&</sup>lt;sup>2.</sup> The first letter 'e-' indicates expanded register.



Note: The grey blocks are bypassed and the dotted blocks are selectable.

Figure-4 Dual Rail Interface with Clock Recovery



Note: The grey blocks are bypassed and the dotted blocks are selectable.

Figure-5 Dual Rail Interface with Data Recovery

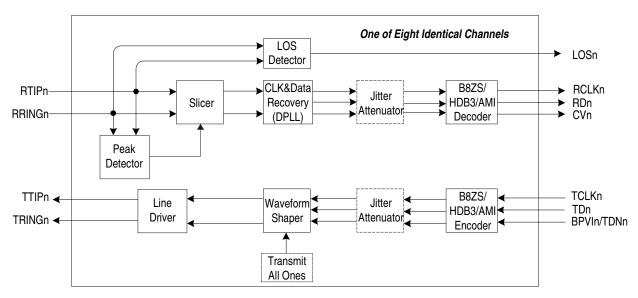



Figure-6 Single Rail Mode

Table-2 System Interface Configuration (In Hardware Mode)

| Pin MCLK | Pin TDNn         | Interface                                                                                                                |
|----------|------------------|--------------------------------------------------------------------------------------------------------------------------|
| Clocked  | High (≥ 16 MCLK) | Single Rail Mode 1                                                                                                       |
| Clocked  | Pulse            | Dual Rail mode with Clock Recovery                                                                                       |
| High     | Pulse            | Dual Rail mode with Data Recovery. Receive just slices the incoming data. Transmit is determined by the status of TCLKn. |
| Low      | Pulse            | Receiver is powered down. Transmit is determined by the status of TCLKn.                                                 |

Table-3 System Interface Configuration (In Host Mode)

| Pin MCLK | Pin TDNn | CRSn in e-CRS | SINGn in e-SING | Interface                                                                                                                |
|----------|----------|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|
| Clocked  | High     | 0             | 0               | Single Rail Mode 1                                                                                                       |
| Clocked  | Pulse    | 0             | 1               | Single Rail Mode 2                                                                                                       |
| Clocked  | Pulse    | 0             | 0               | Dual Rail mode with Clock Recovery                                                                                       |
| Clocked  | Pulse    | 1             | 0               | Dual Rail mode with Data Recovery. Receive just slices the incoming data. Transmit is determined by the status of TCLKn. |
| High     | Pulse    | -             | -               | Dual Rail mode with Data Recovery. Receive just slices the incoming data. Transmit is determined by the status of TCLKn. |
| Low      | Pulse    | -             | -               | Receiver is powered down. Transmit is determined by the status of TCLKn.                                                 |

Table-4 Active Clock Edge and Active Level

| Pin CLKE  | Pin RDn/F    | RDPn and CVn/RDN             | ٧n          | Pin SDO  |             |  |
|-----------|--------------|------------------------------|-------------|----------|-------------|--|
| FIII OLKL | Clock Recove | Clock Recovery Slicer Output |             | FIII 3DO |             |  |
| High      | RCLKn        | Active High                  | Active High | SCLK     | Active High |  |
| Low       | RCLKn        | Active High                  | Active Low  | SCLK     | Active High |  |

### 2.3 CLOCK EDGES

The active edge of RCLKn and SCLK are selectable. If pin CLKE is high, the active edge of RCLKn is the rising edge, as for SCLK, that is falling edge. On the contrary, if CLKE is low, the active edge of RCLK is the falling edge and that of SCLK is rising edge. Pins RDn/RDPn, CVn/RDNn and SDO are always active high, and those output signals are clocked out on the active edge of RCLKn and SCLK respectively. See Table-4 Active Clock Edge and Active Level on page 14 for details. However, in dual rail mode without clock recovery, pin CLKE is used to set the active level for RDPn/RDNn raw slicing output: High for active high polarity and low for active low. It should be noted that data on pin SDI are always active high and are sampled on the rising edges of SCLK. The data on pin TDn/TDPn or BPVIn/TDNn are also always active high but are sampled on the falling edges of TCLKn, despite the level on CLKE.

#### 2.4 RECEIVER

In receive path with differential termination, the line signals couple into RRINGn and RTIPn via a transformer and are converted into RZ digital pulses by a data slicer. In the receive path with Single Ended termination (E1 75  $\Omega$ ), the line signal is coupled into RTIPn via a transformer and is converted into RZ digital pulses by a data slicer. Adaptation for attenuation is achieved using an integral peak detector that sets the slicing levels. Clock and data are recovered from the received RZ digital pulses by a digital phase-locked loop that provides jitter accommodation. After passing through the selectable jitter attenuator, the recovered data are decoded using B8ZS/HDB3 or AMI line code rules and clocked out of pin RDn in single rail mode, or presented on RDPn/RDNn in an undecoded dual rail NRZ format. Loss of signal, alarm indication signal, line code violation and excessive zeros are detected. The presence of programmable inband loopback codes are also detected. These various changes in status may be enabled to generate interrupts.

#### 2.4.1 SINGLE ENDED RECEIVE TERMINATION

The 82V2048S offers a Single Ended receive termination mode to enable a true single ended termination on both the primary and secondary side of the transformer. Refer to Figure-13 for details. Single Ended receive termination is only available when the device is operated in Host mode. To enable the Single Ended receive termination, bit SRX in register **e-SRX** has to be set to '1' which will configure the corresponding receiver in Single Ended receive termination mode.

#### 2.4.2 PEAK DETECTOR AND SLICER

The slicer determines the presence and polarity of the received pulses. In data recovery mode, the raw positive slicer output appears on RDPn while the negative slicer output appears on RDNn. In clock and data recovery mode, the slicer output is sent to Clock and Data Recovery circuit for abstracting retimed data and optional decoding. The slicer circuit has a built-in peak detector from which the slicing threshold is derived. The slicing threshold is default to 50% (typical) of the peak value.

Signals with an attenuation of up to 11 dB (from 2.4 V) can be recovered by the receiver. To provide immunity from impulsive noise, the peak detectors are held above a minimum level of 0.1 V typically, despite the received signal level.

#### 2.4.3 CLOCK AND DATA RECOVERY

The Clock and Data Recovery is accomplished by Digital Phase Locked Loop (DPLL). The DPLL is clocked 16 times of the received clock rate, i.e. 24.704 MHz in T1 mode or 32.768 MHz in E1 mode. The recovered data and clock from DPLL is then sent to the selectable Jitter Attenuator or decoder for further processing.

The clock recovery and data recovery mode can be selected on a per channel basis by setting bit CRSn in register **e-CRS**. When bit CRSn is defaulted to '0', the corresponding channel operates in data and clock recovery mode. The recovered clock is output on pin RCLKn and retimed NRZ data are output on pin RDPn/RDNn in dual rail mode or on RDn in single rail mode. When bit CRSn is set to '1', dual rail mode with data recovery is enabled in the corresponding channel and the clock recovery is bypassed. In this condition, the analog line signals are converted to RZ digital bit streams on the RDPn/RDNn pins and internally connected to an EXOR which is fed to the RCLKn output for external clock recovery applications.

If MCLK is pulled high, all the receivers will enter the dual rail mode with data recovery. In this case, register **e-CRS** is ignored.

#### 2.4.4 B8ZS/HDB3/AMI LINE CODE RULE

Selectable B8ZS/HDB3 and AMI line coding/decoding is provided when the device is configured in single rail mode. B8ZS rules for T1 and HDB3 rules for E1 are enabled by setting bit CODE in register **GCF** to '0' or pulling pin CODE low. AMI rule is enabled by setting bit CODE in register **GCF** to '1' or pulling pin CODE high. The settings affect all eight channels.

Individual line code rule selection for each channel, if needed, is available by setting bit SINGn in register **e-SING** to '1' (to activate bit CODEn in register **e-CODE**) and programming bit CODEn to select line code rules in the corresponding channel: '0' for B8ZS/HDB3, while '1' for AMI. In this case, the value in bit CODE in register **GCF** or pin CODE for global control is unaffected in the corresponding channel and only affect in other channels.

In dual rail mode, the decoder/encoder are bypassed. Bit CODE in register **GCF**, bit CODEn in register **e-CODE** and pin CODE are ignored.

The configuration of the line code rule is summarized in Table-5.

# 2.4.5 LOSS OF SIGNAL (LOS) DETECTION

The Loss of Signal Detector monitors the amplitude and density of the received signal on receiver line before the transformer (measured on port A, B shown in Figure-12 and Figure-13). The loss condition is reported by pulling pin LOSn high. At the same time, LOS alarm registers track LOS condition. When LOS is detected or cleared, an interrupt will generate if not masked. In host mode, the detection supports the ANSI T1.231 for T1 mode, ITU G.775 and ETSI 300 233 for E1 mode. In hardware mode, it supports the ITU G.775 and ANSI T1.231.

Table-6 summarizes the conditions of LOS in clock recovery mode.

During LOS, the RDPn/RDNn continue to output the sliced data when bit AISE in register **GCF** is set to '0' or output all ones as AIS (alarm indication signal) when bit AISE is set to '1'. The RCLKn is replaced by MCLK only if the bit AISE is set.

Table-5 Configuration of the Line Code Rule

| Hardware Mode |                           |  |  |  |  |
|---------------|---------------------------|--|--|--|--|
| CODE          | Line Code Rule            |  |  |  |  |
| Low           | All channels in B8ZS/HDB3 |  |  |  |  |
| High          | All channels in AMI       |  |  |  |  |

| Host Mode   |                 |                 |                                  |  |  |  |  |
|-------------|-----------------|-----------------|----------------------------------|--|--|--|--|
| CODE in GCF | CODEn in e-CODE | SINGn in e-SING | Line Code Rule                   |  |  |  |  |
| 0           | 0/1             | 0               | All channels in B8ZS/HDB3        |  |  |  |  |
| 0           | 0               | 1               | 7111 011011111010 111 0020/11000 |  |  |  |  |
| 1           | 0/1             | 0               | All channels in AMI              |  |  |  |  |
| 1           | 1               | 1               | All Charliness III Alvii         |  |  |  |  |
| 0           | 1               | 1               | CHn in AMI                       |  |  |  |  |
| 1           | 0               | 1               | CHn in B8ZS/HDB3                 |  |  |  |  |

Table-6 LOS Condition in Clock Recovery Mode

|                 |                          |              |                                                                                          | Standard                                                                               |                                                                                        | Signal on |
|-----------------|--------------------------|--------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------|
|                 |                          |              | ANSI T1.231 for T1                                                                       | G.775 for E1                                                                           | ETSI 300 233 for E1                                                                    | LOSn      |
| 1.00            | Continuous In            | tervals      | 175                                                                                      | 32                                                                                     | 2048 (1 ms)                                                                            |           |
| LOS<br>Detected | Amplitude <sup>(1)</sup> | Differential | below typical 200 mVp                                                                    | below typical 200 mVp                                                                  | below typical 200 mVp                                                                  | High      |
| 20100104        | Ampillade                | Single Ended | below typical 158 mVp                                                                    | below typical 158 mVp                                                                  | below typical 158 mVp                                                                  |           |
| LOS<br>Cleared  |                          |              | 12.5% (16 marks in a sliding<br>128-bit period) with no more<br>than 99 continuous zeros | 12.5% (4 marks in a sliding<br>32-bit period) with no more<br>than 15 continuous zeros | 12.5% (4 marks in a sliding<br>32-bit period) with no more<br>than 15 continuous zeros | Low       |
| Cicaleu -       | Amplitude <sup>(1)</sup> | Differential | exceed typical 250 mVp                                                                   | exceed typical 250 mVp                                                                 | exceed typical 250 mVp                                                                 |           |
|                 | Ampillade                | Single Ended | exceed typical 197 mVp                                                                   | exceed typical 197 mVp                                                                 | exceed typical 197mVp                                                                  |           |

<sup>1.</sup> LOS levels at device RTIPn and RRINGn for differential receive termination and RTIPn for Single Ended receive termination. For more detail regarding the LOS parameters, please refer to Receiver Characteristics on page 49.

## 2.4.6 ALARM INDICATION SIGNAL (AIS) DETECTION

Alarm Indication Signal is available only in host mode with clock recovery, as shown in Table-7.

#### 2.4.7 ERROR DETECTION

The device can detect excessive zeros, bipolar violation and B8ZS/HDB3 code violation, as shown in Figure-7, Figure-8 and Figure-9. All the three kinds of errors are reported in both host mode and hardware mode with B8ZS/HDB3 line code rule used. In host mode, the **e-CZER** 

and **e-CODV** are used to determine whether excessive zeros and code violation are reported respectively. When the device is configured in AMI decoding mode, only bipolar violation can be reported.

The error detection is available only in single rail mode in which the pin CVn/RDNn is used as error report output (CVn pin).

The configuration and report status of error detection are summarized in Table-8.

Table-7 AIS Condition

|              | ITU G.775 for E1<br>(Register LAC defaulted to '0')                                | ETSI 300 233 for E1<br>(Register LAC set to '1')             | ANSI T1.231 for T1                                                                                              |
|--------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| AIS Detected | Less than 3 zeros contained in each of two consecutive 512-bit stream are received | Less than 3 zeros contained in a 512-bit stream are received | Less than 9 zeros contained in a 8192-bit stream (a ones density of 99.9% over a period of 5.3 ms) are received |
| AIS Cleared  | 3 or more zeros contained in each of two consecutive 512-bit stream are received   | 3 or more zeros contained in a 512-bit stream are received   | 9 or more zeros contained in a 8192-bit stream are received                                                     |

**Table-8 Error Detection** 

| Hardware Mode             |                                                            |  |  |  |  |
|---------------------------|------------------------------------------------------------|--|--|--|--|
| Line Code Pin CVn Reports |                                                            |  |  |  |  |
| AMI                       | Bipolar Violation                                          |  |  |  |  |
| B8ZS/<br>HDB3             | Bipolar Violation +<br>Code Violation<br>+ Excessive Zeros |  |  |  |  |

| Host Mode |                                                   |   |                                                      |  |  |  |  |
|-----------|---------------------------------------------------|---|------------------------------------------------------|--|--|--|--|
| Line Code | e CODVn in e-CODV CZERn in e-CZER Pin CVn Reports |   |                                                      |  |  |  |  |
| AMI       | -                                                 | - | Bipolar Violation                                    |  |  |  |  |
|           | 0                                                 | 0 | Bipolar Violation + Code Violation                   |  |  |  |  |
| B8ZS/HDB3 | 0                                                 | 1 | Bipolar Violation + Code Violation + Excessive Zeros |  |  |  |  |
|           | 1                                                 | 0 | Bipolar Violation                                    |  |  |  |  |
|           | 1                                                 | 1 | Bipolar Violation + Excessive Zeros                  |  |  |  |  |

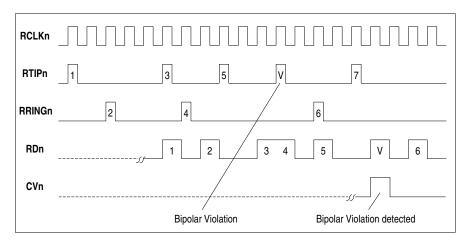



Figure-7 AMI Bipolar Violation

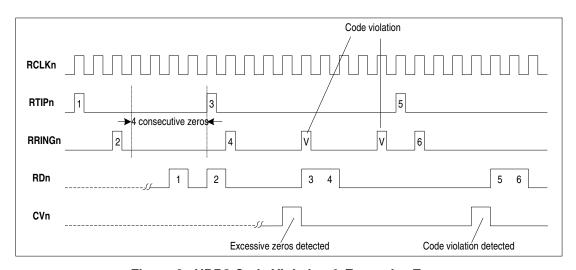



Figure-8 HDB3 Code Violation & Excessive Zeros

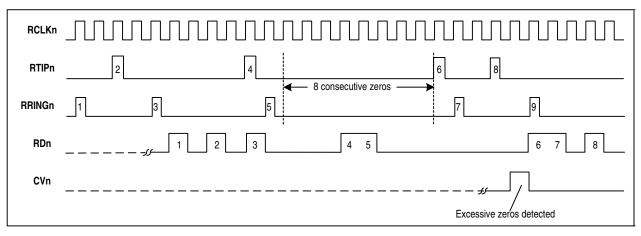



Figure-9 B8ZS Excessive Zeros

#### 2.5 TRANSMITTER

In transmit path, data in NRZ format are clocked into the device on TDn and encoded by AMI or B8ZS/HDB3 line code rules when single rail mode is configured or pre-encoded data in NRZ format are input on TDPn and TDNn when dual rail mode is configured. The data are sampled into the device on falling edges of TCLKn. Jitter attenuator, if enabled, is provided with a FIFO through which the data to be transmitted are passing. A low jitter clock is generated by an integral digital phase-locked loop and is used to read data from the FIFO. The shape of the pulses are user programmable to ensure that the T1/E1 pulse template is met after the signal passes through different cable lengths or types. Bipolar violation, for diagnosis, can be inserted on pin BPVIn if AMI line code rule is enabled.

#### 2.5.1 WAVEFORM SHAPER

T1 pulse template, specified in the DSX-1 Cross-Connect by ANSI T1.102, is illustrated in Figure-10. The device has built-in transmit waveform templates, corresponding to 5 levels of pre-equalization for cable of a length from 0 ft to 655 ft with each increment of 133 ft.

E1 pulse template, specified in ITU-T G.703, is shown in Figure-11. The device has built-in transmit waveform templates for cable of 75  $\Omega$  or 120  $\Omega$ .

Any one of the six built-in waveforms can be chosen in both hardware mode and host mode. In hardware mode, setting pins TS[2:0] can select the required waveform template for all the transmitters, as shown in Table-9. In host mode, the waveform template can be configured on a per-channel basis. Bits TSIA[2:0] in register **TSIA** are used to select the channel and bits TS[2:0] in register **TS** are used to select the required waveform template.

The built-in waveform shaper uses an internal high frequency clock which is 16XMCLK as the clock reference. This function will be bypassed when MCLK is unavailable.

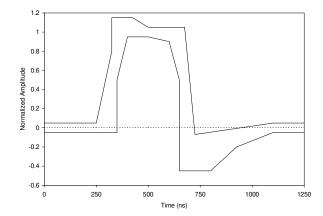



Figure-10 DSX-1 Waveform Template

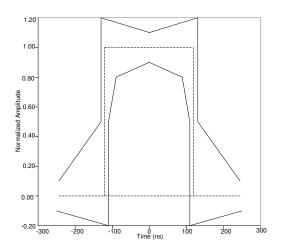



Figure-11 CEPT Waveform Template

Table-9 Built-in Waveform Template Selection

| TS2 | TS1 | TS0 | Service | Clock Rate | Cable Length                   | Maximum Cable Loss (dB) <sup>(1)</sup> |     |  |  |
|-----|-----|-----|---------|------------|--------------------------------|----------------------------------------|-----|--|--|
| 0   | 0   | 0   | E1      | 2.048 MHz  | 120 $\Omega/75$ $\Omega$ Cable | -                                      |     |  |  |
|     | Ů   | Ů   |         | 2.0.0      | . 10 14. 0 11 0 00.0           | -                                      |     |  |  |
| 0   | 0   | 1   |         | Reserved   |                                |                                        |     |  |  |
| 0   | 1   | 0   |         |            | Hosbived                       |                                        |     |  |  |
| 0   | 1   | 1   |         |            | 0-133 ft. ABAM                 | 0.6                                    |     |  |  |
| 1   | 0   | 0   |         | 1.544 MHz  | 1.544 MHz                      | 133-266 ft. ABAM                       | 1.2 |  |  |
| 1   | 0   | 1   | T1      |            |                                | 266-399 ft. ABAM                       | 1.8 |  |  |
| 1   | 1   | 0   |         |            | 399-533 ft. ABAM               | 2.4                                    |     |  |  |
| 1   | 1   | 1   |         |            | 533-655 ft. ABAM               | 3.0                                    |     |  |  |

<sup>1.</sup> Maximum cable loss at 772 kHz.

#### 2.5.2 BIPOLAR VIOLATION INSERTION

When configured in Single Rail Mode 2 with AMI line code enabled, pin TDNn/BPVIn is used as BPVI input. A low-to-high transition on this pin inserts a bipolar violation on the next available mark in the transmit data stream. Sampling occurs on the falling edges of TCLK. But in TAOS (Transmit All Ones) with Analog Loopback, Remote Loopback and Inband Loopback, the BPVI is disabled. In TAOS with Digital Loopback, the BPVI is looped back to the system side, so the data to be transmitted on TTIPn and TRINGn are all ones with no bipolar violation.

#### 2.6 JITTER ATTENUATOR

The jitter attenuator can be selected to work either in transmit path or in receive path or not used. The selection is accomplished by setting pin JAS in hardware mode or configuring bits JACF[1:0] in register **GCF** in host mode, which affects all eight channels.

For applications which require line synchronization, the line clock needed to be extracted for the internal synchronization, the jitter attenuator is set in the receive path. Another use of the jitter attenuator is to provide clock smoothing in the transmit path for applications such as synchronous/asynchronous demultiplexing applications. In these applications, TCLK will have an instantaneous frequency that is higher than the nominal T1/E1 data rate and in order to set the average long-term TCLK frequency within the transmit line rate specifications, periods of TCLK are suppressed (gapped).

The jitter attenuator integrates a FIFO which can accommodate a gapped TCLK. In host mode, the FIFO length can be 32 X 2 or 64 X 2 bits by programming bit JADP in **GCF**. In hardware mode, it is fixed to 64 X 2 bits. The FIFO length determines the maximum permissible gap width (see Table-10 Gap Width Limitation). Exceeding these values will cause FIFO overflow or underflow. The data is 16 or 32 bits' delay

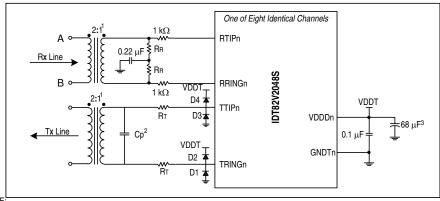
through the jitter attenuator in the corresponding transmit or receive path. The constant delay feature is crucial for the applications requiring "hitless" switching.

**Table-10 Gap Width Limitation** 

| FIFO Length | Max. Gap Width |
|-------------|----------------|
| 64 bit      | 56 UI          |
| 32 bit      | 28 UI          |

In host mode, bit JABW in GCF determines the jitter attenuator 3 dB corner frequency (fc) for both T1 and E1. In hardware mode, the fc is fixed to 2.5 Hz for T1 or 1.7 Hz for E1. Generally, the lower the fc is, the higher the attenuation. However, lower fc comes at the expense of increased acquisition time. Therefore, the optimum fc is to optimize both the attenuation and the acquisition time. In addition, the longer FIFO length results in an increased throughput delay and also influences the 3 dB corner frequency. Generally, it's recommended to use the lower corner frequency and the shortest FIFO length that can still meet jitter attenuation requirements.

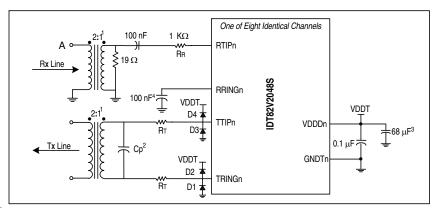
Table-11 Output Jitter Specification


| T1             | E1             |
|----------------|----------------|
| AT&T Pub 62411 | ITU-T G.736    |
| GR-253-CODE    | ITU-T G.742    |
| TR-TSY-000009  | ITU-T G.783    |
| 111 131-00009  | ETSI CTR 12/13 |

#### 2.7 LINE INTERFACE CIRCUITRY

The transmit and receive interface RTIPn/RRINGn and TTIPn/TRINGn connections provide a matched interface to the cable. Figure-12 and Figure-13 show the appropriate external components to connect with the cable for one transmit/receive channel. Table-12 summarizes the component values based on the specific application.

**Table-12 External Components Values** 


| Component      |                        | T1                                                                                      |                                  |  |  |  |
|----------------|------------------------|-----------------------------------------------------------------------------------------|----------------------------------|--|--|--|
| Component      | 75 <b>Ω</b> Coax       | 120 Ω Twisted Pair                                                                      | 100 Ω Twisted Pair, VDDT = 5.0 V |  |  |  |
| R <sub>⊤</sub> | $9.5~\Omega\pm1\%$     | $9.5~\Omega\pm1\%$                                                                      | 9.1 Ω ± 1%                       |  |  |  |
| $R_{R}$        | 9.31 $\Omega$ $\pm$ 1% | 15 $\Omega$ $\pm$ 1%                                                                    | 12.4 $\Omega$ $\pm$ 1%           |  |  |  |
| Ср             | 220                    | 00 pF                                                                                   | 1000 pF                          |  |  |  |
| D1 - D4        | Nihon Inter Electronic | Nihon Inter Electronics - EP05Q03L, 11EQS03L, EC10QS04, EC10QS03L; Motorola - MBR0540T1 |                                  |  |  |  |



- NOTE:

  1. Pulse T1124 transformer is recommended to be used in Standard (STD) operating temperature range (0°C to 70°C), while Pulse T1114 transformer is recommended to be used in Extended (EXT) operating temperature range is -40°C to +85°C. See Transformer Specifications Table for
- 2. Typical value. Adjust for actual board parasitics to obtain optimum return loss.
- 3. Common decoupling capacitor for all VDDT and GNDT pins. One per chip.

Figure-12 External Transmit/Receive Line Circuitry (Differential Receive Interface)



NOTE:

- 1. Pulse T1124 transformer is recommended to be used in Standard (STD) operating temperature range (0°C to 70°C), while Pulse T1114 transformer is recommended to be used in Extended (EXT) operating temperature range is -40°C to +85°C. See Transformer Specifications Table for details.
- 2. Typical value. Adjust for actual board parasitics to obtain optimum return loss.
- 3. Common decoupling capacitor for all VDDT and GNDT pins. One per chip.
- 4. The line input signal is coupled to pin RTIPn with a 100 nF capacitor while pin RRINGn, should be AC coupled to ground through a 100 nF capacitor.

Figure-13 External Transmit/Receive Line Circuitry (Single Ended Receive Interface)

# 2.8 TRANSMIT DRIVER POWER SUPPLY

All transmit driver power supplies must be 5.0 V.

In E1 mode, despite the power supply voltage, the 75  $\Omega$ /120  $\Omega$  lines are driven through a pair of 9.5  $\Omega$  series resistors and a 1:2 transformer.

In T1 mode, only 5.0 V can be selected. 100  $\Omega$  lines are driven through a pair of 9.1  $\Omega$  series resistors and a 1:2 transformer. To optimize the power consumption of the device, series resistors are removed in this case.

For T1 applications, only 5.0 V operation is supported. However, in harsh cable environment, series resistors are required to improve the transmit return loss performance and protect the device from surges coupling into the device.

Table-13 Transformer Specifications<sup>(1)</sup>

| Electrical Specification @ 25°C |           |                |                |            |            |                    |         |                      |         |                     |
|---------------------------------|-----------|----------------|----------------|------------|------------|--------------------|---------|----------------------|---------|---------------------|
| Part                            | : No.     | Turns Ratio (F | Pri: sec ± 2%) | OCL @ 25°0 | C (mH MIN) | L <sub>L</sub> (μH | MAX)    | C <sub>w/w</sub> (pF | MAX)    | Package/Schematic   |
| STD Temp.                       | EXT Temp. | Transmit       | Receive        | Transmit   | Receive    | Transmit           | Receive | Transmit             | Receive | i dokage/odirematio |
| T1124                           | T1114     | 1:2CT          | 1CT:2          | 1.2        | 1.2        | .6                 | .6      | 35                   | 35      | TOU/3               |

<sup>1.</sup> Pulse T1124 transformer is recommended to be used in Standard (STD) operating temperature range (0°C to 70°C), while Pulse T1114 transformer is recommended to be used in Extended (EXT) operating temperature range is -40°C to +85°C.

### 2.9 POWER DRIVER FAILURE MONITOR

An internal power Driver Failure Monitor (DFMON), parallel connected with TTIPn and TRINGn, can detect short circuit failure between TTIPn and TRINGn pins. Bit SCPB in register **GCF** decides whether the output driver short circuit protection is enabled. When the short circuit protection is enabled, the driver output current is limited to a typical value: 180 mAp. Also, register **DF**, **DFI** and **DFM** will be available. When DFMON will detect a short circuit, register **DF** will be set. With a short circuit failure detected and short circuit protection enabled, register **DFI** will be set and an interrupt will be generated on pin  $\overline{|NT}$ .

# 2.10 TRANSMIT LINE SIDE SHORT CIRCUIT FAILURE DETECTION

In E1 or T1 with 5 V VDDT, a pair of 9.5  $\Omega$  serial resistors connect with TTIPn and TRINGn pins and limit the output current. In this case, the output current is a limited value which is always lower than the typical line short circuit current 180 mAp, even if the transmit line side is shorted.

Refer to Table-12 External Components Values for details.

#### 2.11 LINE PROTECTION

In transmit side, the Schottky diodes D1~D4 are required to protect the line driver and improve the design robustness. For differential receive interface and single ended receive interface, the line protection in receive side is different. To protect the receiver against current surges coupled in the device, two series resistors of 1 k $\Omega$  are used for differential receive interface and a series resistor of 1 k $\Omega$  is used for single ended receive interface. Refer to Figure-12 and Figure-13. The series resistor/resistors does/do not affect the receiver sensitivity, since the receiver impedance is as high as 120 k $\Omega$  typically.

# 2.12 HITLESS PROTECTION SWITCHING (HPS)

The IDT82V2048S transceivers include an output driver with high-Z feature for T1/E1 redundancy applications. This feature reduces the cost of redundancy protection by eliminating external relays. Details of HPS are described in relative Application Note.

#### 2.13 SOFTWARE RESET

Writing register **RS** will cause software reset by initiating about 1  $\mu s$  reset cycle. This operation set all the registers to their default value.

#### 2.14 POWER ON RESET

During power up, an internal reset signal sets all the registers to default values. The power-on reset takes at least 10  $\mu s$ , starting from when the power supply exceeds 2/3 VDDA.

#### 2.15 POWER DOWN

Each transmit channel will be powered down by pulling pin TCLKn low for more than 64 MCLK cycles (if MCLK is available) or about 30  $\mu s$  (if MCLK is not available). In host mode, each transmit channel will also be powered down by setting bit TPDNn in register **e-TPDN** to '1'.

All the receivers will be powered down when MCLK is low. When MCLK is clocked or high, setting bit RPDNn in register **e-RPDN** to '1' will configure the corresponding receiver to be powered down.

### 2.16 INTERFACE WITH 5 V LOGIC

The IDT82V2048S can interface directly with 5 V TTL family devices. The internal input pads are tolerant to 5 V output from TTL and CMOS family devices.

#### 2.17 LOOPBACK MODE

The device provides five different diagnostic loopback configurations: Digital Loopback, Analog Loopback, Remote Loopback, Dual Loopback and Inband Loopback. In host mode, these functions are implemented by programming the registers **DLB**, **ALB**, **RLB** and Inband Loopback register group respectively. In hardware mode, only Analog Loopback and Remote Loopback can be selected by pin LPn.

# 2.17.1 DIGITAL LOOPBACK

By programming the bits of register **DLB**, each channel of the device can be configured in Local Digital Loopback. In this configuration, the data and clock to be transmitted, after passing the encoder, are looped back to Jitter Attenuator (if enabled) and decoder in the receive path, then output on RCLKn, RDn/RDPn and CVn/RDNn. The data to be transmitted are still output on TTIPn and TRINGn while the data received on RTIPn and RRINGn are ignored. The Loss Detector is still in use. Figure-14 shows the process.

During Digital Loopback, the received signal on the receive line is still monitored by the LOS Detector (See 2.4.5 Loss of Signal (LOS) Detection for details). In case of a LOS condition and AIS insertion enabled, all ones signal will be output on RDPn/RDNn. With ATAO enabled, all ones signal will be also output on TTIPn/TRINGn. AIS insertion can be enabled by setting AISE bit in register **GCF** and ATAO can be enabled by setting register **ATAO** (default disabled).

#### 2.17.2 ANALOG LOOPBACK

By programming the bits of register **ALB** or pulling pin LPn high, each channel of the device can be configured in Analog Loopback. In this configuration, the data to be transmitted output from the line driver are internally looped back to the slicer and peak detector in the receive path and output on RCLKn, RDn/RDPn and CVn/RDNn. The data to be transmitted are still output on TTIPn and TRINGn while the data received on RTIPn and RRINGn are ignored. The LOS Detector (See 2.4.5 Loss of Signal (LOS) Detection for details) is still in use and monitors the internal looped back data. If a LOS condition on TDPn/TDNn is expected during Analog Loopback, ATAO should be disabled (default). Figure-15 shows the process.

The TTIPn and RTIPn, TRINGn and RRINGn cannot be connected directly to do the external analog loopback test. Line impedance loading is required to conduct the external analog loopback test.

### 2.17.3 REMOTE LOOPBACK

By programming the bits of register **RLB** or pulling pin LPn low, each channel of the device can be set in Remote Loopback. In this configuration, the data and clock recovered by the clock and data recovery circuits are looped to waveform shaper and output on TTIPn and TRINGn. The jitter attenuator is also included in loopback when enabled in the transmit or receive path. The received data and clock are still output on RCLKn, RDn/RDPn and CVn/RDNn while the data to be transmitted on TCLKn, TDn/TDPn and BPVIn/TDNn are ignored. The LOs Detector is still in use. Figure-16 shows the process.

#### 2.17.4 DUAL LOOPBACK

Dual Loopback mode is set by setting bit DLBn in register **DLB** and bit RLBn in register **RLB** to '1'. In this configuration, after passing the encoder, the data and clock to be transmitted are looped back to decoder directly and output on RCLKn, RDn/RDPn and CVn/RDNn. The recovered data from RTIPn and RRINGn are looped back to waveform shaper through JA (if selected) and output on TTIPn and TRINGn. The LOS Detector is still in use. Figure-17 shows the process.

# 2.17.5 TRANSMIT ALL ONES (TAOS)

In hardware mode, the TAOS mode is set by pulling pin TCLKn high for more than 16 MCLK cycles. In host mode, TAOS mode is set by programming register **TAO**. In addition, automatic TAOS signals are inserted by setting register **ATAO** when Loss of Signal occurs. Note that the TAOS generator adopts MCLK as a timing reference. In order to assure that the output frequency is within specified limits, MCLK must have the applicable stability.

The TAOS mode, the TAOS mode with Digital Loopback and the TAOS mode with Analog Loopback are shown in Figure-18, Figure-19 and Figure-20.

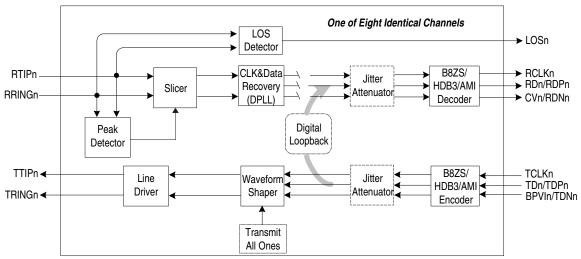



Figure-14 Digital Loopback

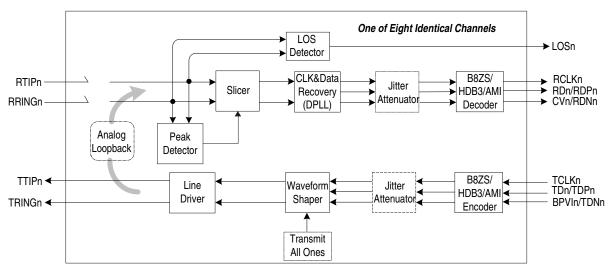



Figure-15 Analog Loopback

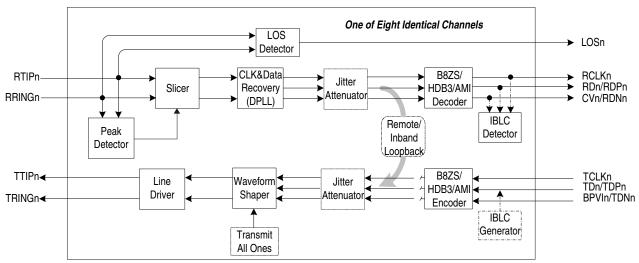



Figure-16 Remote Loopback

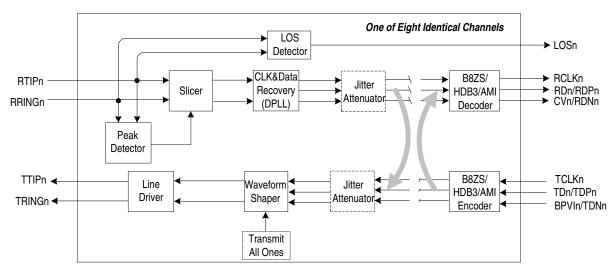



Figure-17 Dual Loopback

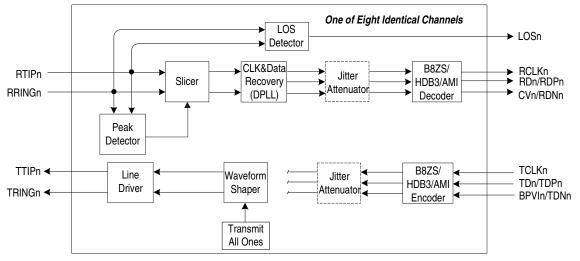



Figure-18 TAOS Data Path

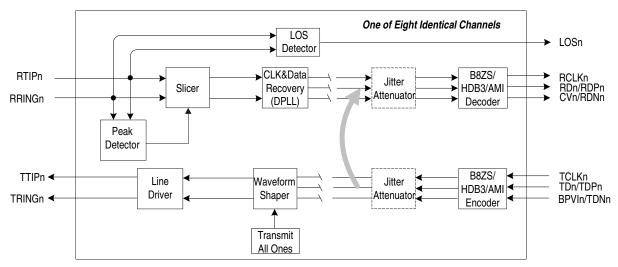



Figure-19 TAOS with Digital Loopback

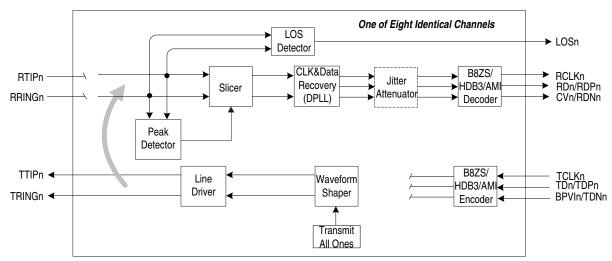



Figure-20 TAOS with Analog Loopback

#### 2.17.6 INBAND LOOPBACK

Inband Loopback is a function that facilitates the system remote diagnosis. When this function is enabled, the chip will detect or generate the Inband Loopback Code. There are two kinds of Inband Loopback Code: Activate Code and Deactivate Code. If the Activate Code is received from the far end in a continuous 5.1 second, the chip will automatically go into Remote Loopback Mode (shown in Figure-16). If the Deactivate Code is received from the far end in a continuous 5.1 second, the chip quits from the Remote Loopback mode. The chip can send the Activate Code and Deactivate Code to the far end. Two function blocks: IBLC Detector (Inband Loopback Code Detector) and IBLC Generator (Inband Loopback Code Generator), realize the Inband Loopback.

The detection of Inband Loopback Code is enabled by bit LBDE in register **e-LBCF**. If bit ALBE in register **e-LBCF** is set to '1', the chip will automatically go into or quit from the Remote Loopback mode based on the receipt of Inband Loopback Code. The length of the Activate Code is defined in bits LBAL[1:0] in register **e-LBCF**; and the length of the Deactivate Code is defined in bits LBDL[1:0] in register **e-LBCF**. The pattern

of the Activate Code is defined in register **e-LBAC**, and the pattern of the Deactivate Code is defined in register **e-LBDC**. The above settings are globally effective for all the eight channels. The presence of Inband Loopback Code in each channel is reflected timely in register **e-LBS**. Any transition of each bit in register **e-LBM** will be reflected in register **e-LBI**, and if enabled in register **e-LBM**, will generate an interrupt. The required sequence of programming the Inband Loopback Code detection is: First, set registers **e-LBAC** and **e-LBDC**, followed by register **e-LBM**. Finally, to activate Inband Loopback detection, set register **e-LBCF**.

The Inband Loopback Code Generator use the same registers as the Inband Loopback Detector to define the length and pattern of Activate Code and Deactivate Code. The length and pattern of the generated Activate Code and Deactivate Code can be different from the detected Activate Code and Deactivate Code. Register e-LBGS determines sending Activate Code or Deactivate Code, and register e-LBGE acts as a switch to start or stop the sending of Inband Loopback Code to the selected channels. Before sending Inband Loopback Code, users should be sure that registers e-LBCF, e-LBAC, e-LBDC and e-LBSG

are configured properly. The required sequence for configuring the Inband Loopback Generator is: First, set registers **e-LBAC** and **e-LBDC**, followed by register **e-LBCF**. Then, to select the Inband Loopback generator set registers **e-LBGS** and then **e-LBGE**.

The Inband Loopback Detection and the Inband Loopback Generation can not be used simultaneously.

Example: 5-bit Loop-up/Loop-down Detection (w/o interrupts):

(see note in register description for e-LBAC)

Loop-up code: 11000 Loop-down code: 11100

Set (in this order)

e-LBAC (0x09) = 0xC6 (11000110) e-LBDC (0x0A) = 0xE7 (11100111)

e-LBCF (0x08) = 0x30

Example: 5-bit Loop-up/Loop-down Activation on Channel 1 (w/o interrupts):

Loop-up code: 11000 Loop-down code: 11100

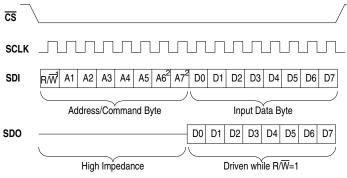
Set (in this order)

e-LBAC(0x09) = 0xC6(11000110)

e-LBDC (0x0A) = 0xE7 (11100111) e-LBCF (0x08) = 0x00 e-LBGS (0x0E) = 0x00

e-LBGE (0x0F) = 0x02

#### 2.18 HOST INTERFACE


The host interface provides access to read and write the registers in the device. The interface consists of serial host interface and parallel host interface. By pulling pin MODE2 to VDDIO/2 or high, the device can be set to work in serial mode and in parallel mode respectively.

#### 2.18.1 PARALLEL HOST INTERFACE

The interface is compatible with Motorola and Intel host. Pins MODE1 and MODE0 are used to select the operating mode of the parallel host interface. When pin MODE1 is pulled low, the host uses separate address bus and data bus. When high, multiplexed address/data bus is used. When pin MODE0 is pulled low, the parallel host interface is configured for Motorola compatible hosts. When pin MODE0 is pulled high, the parallel host interface is configured for Intel compatible hosts. See Table-1 Pin Description for more details. The host interface pins in each operation mode is tabulated in Table-14:

**Table-14 Parallel Host Interface Pins** 

| MODE[2:0] | Host Interface                     | Generic Control, Data and Output Pin                                                                                                                                   |
|-----------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100       | Non-multiplexed Motorola interface | $\overline{\text{CS}}$ , $\overline{\text{ACK}}$ , $\overline{\text{DS}}$ , $\overline{\text{R/W}}$ , $\overline{\text{AS}}$ , A[4:0], D[7:0], $\overline{\text{INT}}$ |
| 101       | Non-multiplexed Intel interface    | CS, RDY, WR, RD, ALE, A[4:0], D[7:0], INT                                                                                                                              |
| 110       | Multiplexed Motorola interface     | CS, ACK, DS, R/W, AS, AD[7:0], INT                                                                                                                                     |
| 111       | Multiplexed Intel interface        | CS, RDY, WR, RD, ALE, AD[7:0], INT                                                                                                                                     |



- 1. While R/W=1, read from IDT82V2048S; While R/W=0, write to IDT82V2048S.
- 2. Ignored.

Figure-21 Serial Host Mode Timing

#### 2.18.2 SERIAL HOST INTERFACE

By pulling pin MODE2 to VDDIO/2, the device operates in the serial host Mode. In this mode, the registers are accessible through a 16-bit word which contains an 8-bit command/address byte (bit  $R/\overline{W}$  and 5-address-bit A1~A5, A6 and A7 bits are ignored) and a subsequent 8-bit

data byte (D7~D0), as shown in Figure-21. When bit R/ $\overline{W}$  is set to '1', data is read out from pin SDO. When bit R/ $\overline{W}$  is set to '0', data on pin SDI is written into the register whose address is indicated by address bits A5~A1. See Figure-21 Serial Host Mode Timing.