

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

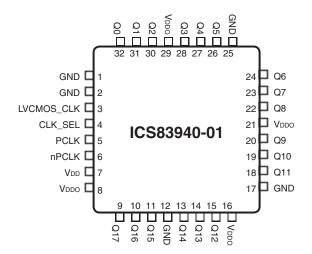
DATASHEET

GENERAL DESCRIPTION

The ICS83940-01 is a low skew, 1-to-18 LVPECL-to-LVCMOS/LVTTL Fanout Buffer. The ICS83940-01 has two selectable clock inputs. The PCLK, nPCLK pair can accept LVPECL, CML or SSTL input levels. The single ended clock input accepts LVCMOS or LVTTL input levels. The low impedance LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased from 18 to 36 by utilizing the ability of the outputs to drive two series terminated lines.

The ICS83940-01 is characterized at full 3.3V, full 2.5V and mixed 3.3V input and 2.5V output operating supply modes. Guaranteed output and part-to-part skew characteristics make the ICS83940-01 ideal for those clock distribution applications demanding well defined performance and repeatability.

FEATURES


- Eighteen LVCMOS/LVTTL outputs, 23Ω typical output impedance
- Selectable LVCMOS_CLK or LVPECL clock inputs
- LVCMOS_CLK supports the following input types: LVCMOS or LVTTL
- PCLK, nPCLK supports the following input types: LVPECL, CML, SSTL
- · Maximum output frequency: 250MHz
- Output skew: 85ps (maximum)
- Part-to-part skew: 750ps (maximum)
- Full 3.3V, 2.5V or mixed 3.3V, 2.5V supply modes
- 0°C to 70°C ambient operating temperature
- Available in lead-free RoHS compliant package

BLOCK DIAGRAM

CLK_SEL -LVCMOS_CLK -

PIN ASSIGNMENT

1

32-Lead LQFP Y Pacakge 7mm x 7mm x 1.4mm package body Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Т	уре	Description
1, 2, 12, 17, 25	GND	Power		Power supply ground.
3	LVCMOS_CLK	Input	Pulldown	Clock input. LVCMOS / LVTTL interface levels.
4	CLK_SEL	Input	Pulldown	Clock select input. Selects LVCMOS / LVTTL clock input when HIGH. Selects PCLK, nPCLK inputs when LOW. LVCMOS / LVTTL interface levels.
5	PCLK	Input	Pulldown	Non-inverting differential LVPECL clock input.
6	nPCLK	Input		Inverting differential LVPECL clock input. V _{DD} /2 default when left floating.
7	$V_{_{ m DD}}$	Power		Power supply pin.
8, 16, 21, 29	$V_{ m DDO}$	Power		Output supply pins.
9, 10, 11, 13, 14, 15, 18, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31, 32	Q17, Q16, Q15, Q14, Q13, Q12, Q11, Q10, Q9, Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0	Output		Clock outputs. LVCMOS / LVTTL interface levels.

NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance (per output)			6		pF
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{out}	Output Impedance		18		28	Ω

TABLE 3A. CLOCK SELECT FUNCTION TABLE

Control Input	Clock				
CLK_SEL	PCLK, nPCLK	LVCMOS_CLK			
0	Selected	De-selected			
1	De-selected	Selected			

TABLE 3B. CLOCK INPUT FUNCTION TABLE

	Inp	outs		Outputs	Innut to Output Made	Dolovity
CLK_SEL	LVCMOS_CLK	PCLK	nPCLK	Q0:Q17	Input to Output Mode	Polarity
0	_	0	1	LOW	Differential to Single Ended	Non Inverting
0	_	1	0	HIGH	Differential to Single Ended	Non Inverting
0	_	0	Biased; NOTE 1	LOW	Single Ended to Single Ended	Non Inverting
0	_	1	Biased; NOTE 1	HIGH	Single Ended to Single Ended	Non Inverting
0	_	Biased; NOTE 1	0	HIGH	Single Ended to Single Ended	Inverting
0	_	Biased; NOTE 1	1	LOW	Single Ended to Single Ended	Inverting
1	0	_	_	LOW	Single Ended to Single Ended	Non Inverting
1	1	_	_	HIGH	Single Ended to Single Ended	Non Inverting

NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 3.6V

Inputs, V_I -0.3V to V_{DD} + 0.3V

Outputs, V_{O} -0.3V to V_{DDO} + 0.3V

Input Current, I_{IN} ±20mA

Storage Temperature, T_{STG} -40°C to 125°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, Ta = 0° to 70°

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	LVCMOS_CLK		2.4		$V_{_{\mathrm{DD}}}$	V
V _{IL}	Input Low Voltage	LVCMOS_CLK				0.8	V
V _{PP}	Peak-to-Peak Input Voltage	PCLK, nPCLK		500		1000	mV
V _{CMR}	Input Common Mode Voltage; NOTE 1, 2	PCLK, nPCLK		V _{DD} - 1.4		V _{DD} - 0.6	V
I _{IN}	Input Current					±200	μA
V _{OH}	Output High Voltage		I _{OH} = -20mA	2.4			V
V _{OL}	Output Low Voltage		I _{OL} = 20mA			0.5	V
I _{DD}	Power Supply Current					25	mA

NOTE 1: For single ended applications, the maximum input voltage for PCLK, nPCLK is V_{DD} + 0.3V.

NOTE 2: Common mode voltage is defined as $V_{_{\rm IH}}$.

Table 4B. DC Characteristics, $V_{DD} = 3.3V \pm 5\%, V_{DDO} = 2.5V \pm 5\%, Ta = 0^{\circ}$ to 70°

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	LVCMOS_CLK		2.4		$V_{_{\mathrm{DD}}}$	V
V _{IL}	Input Low Voltage	LVCMOS_CLK				0.8	V
V _{PP}	Peak-to-Peak Input Voltage	PCLK, nPCLK		300		1000	mV
V _{CMR}	Input Common Mode Voltage; NOTE 1, 2	PCLK, nPCLK		V _{DD} - 1.4		V _{DD} - 0.6	V
I _{IN}	Input Current					±200	μA
V _{OH}	Output High Voltage		I _{OH} = -20mA	1.8			V
V _{OL}	Output Low Voltage		I _{OL} = 20mA			0.5	V
I _{DD}	Power Supply Current					25	mA

NOTE 1: For single ended applications, the maximum input voltage for PCLK, nPCLK is $V_{\rm np}$ + 0.3V.

NOTE 2: Common mode voltage is defined as $V_{_{\mathrm{IH}}}$.

Table 4C. DC Characteristics, $V_{DD} = V_{DDO} = 2.5 V \pm 5\%$, Ta = 0° to 70°

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	LVCMOS_CLK		2		V _{DD}	V
V _{IL}	Input Low Voltage	LVCMOS_CLK				0.8	V
V _{PP}	Peak-to-Peak Input Voltage	PCLK, nPCLK		300		1000	mV
V _{CMR}	Input Common Mode Voltage; NOTE 1, 2	PCLK, nPCLK		V _{DD} - 1.4		V _{DD} - 0.6	V
I _{IN}	Input Current					±200	μΑ
V _{OH}	Output High Voltage		I _{OH} = -12mA	1.8			V
V _{OL}	Output Low Voltage		I _{OL} = 12mA			0.5	V
I _{DD}	Power Supply Current					25	mA

NOTE 1: For single ended applications, the maximum input voltage for PCLK, nPCLK is $V_{\rm pp}$ + 0.3V.

NOTE 2: Common mode voltage is defined as $V_{_{\rm IH}}$.

Table 5A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, Ta = 0° to 70°

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					250	MHz
	Propagation Delay	PCLK, nPCLK; NOTE 1, 5	f 150MHz	1.6		3.0	ns
t _{pLH}	Fropagation Delay	LVCMOS_CLK; NOTE 2, 5	f 150MHz	1.8		3.0	ns
	Propagation Delay	PCLK, nPCLK; NOTE 1, 5	f > 150MHz	1.6		3.3	ns
t _{pLH}	Fropagation Delay	LVCMOS_CLK; NOTE 2, 5	f > 150MHz	1.8		3.2	ns
tsk(o)	Output Skew;	PCLK, nPCLK	Measured on			85	ps
isk(0)	NOTE 3, 5	LVCMOS_CLK	rising edge @V _{DDO} /2			85	ps
tok(nn)	Part-to-Part Skew;	PCLK, nPCLK	f 150MHz			1.4	ns
tsk(pp)	NOTE 6	LVCMOS_CLK	f 150MHz			1.2	ns
tal(nn)	Part-to-Part Skew;	PCLK, nPCLK	f > 150MHz			1.7	ns
tsk(pp)	NOTE 6	LVCMOS_CLK	f > 150MHz			1.4	ns
tal(/pp)	Part-to-Part Skew;	PCLK, nPCLK	Measured on			850	ps
tsk(pp)	NOTE 4, 5	LVCMOS_CLK	rising edge @V _{DDO} /2			750	ps
t_R, t_F	Output Rise/Fall Tim	е	20% to 80%	400		800	ps
odc	Output Duty Cycle		f 150MHz	45		55	%
Ouc	Output Duty Cycle		150MHz < f 250MHz	40		60	%

All parameters measured at 200MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the output V_{ppo}/2.

NOTE 2: Measured from $V_{DD}/2$ to $V_{DDO}/2$.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDQ}/2.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages, same temperature,

and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_{ppo}/2.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{\rm DDO}/2$.

Table 5B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, Ta = 0° to 70°

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					250	MHz
+	Propagation Delay	PCLK, nPCLK; NOTE 1, 5	f 150MHz	1.7		3.2	ns
t _{pLH}	Fropagation Delay	LVCMOS_CLK; NOTE 2, 5	f 150MHz	1.7		3.0	ns
+	Propagation Delay	PCLK, nPCLK; NOTE 1, 5	f > 150MHz	1.6		3.4	ns
t _{pLH}	Fropagation Delay	LVCMOS_CLK; NOTE 2, 5	f > 150MHz	1.8		3.3	ns
tsk(o)	Output Skew;	PCLK, nPCLK	Measured on			150	ps
isk(U)	NOTE 3, 5	LVCMOS_CLK	rising edge @V _{DDO} /2			150	ps
tol(nn)	Part-to-Part Skew;	PCLK, nPCLK	f 150MHz			1.5	ns
tsk(pp)	NOTE 6	LVCMOS_CLK	f 150MHz			1.3	ns
+=1:/:=:=\	Part-to-Part Skew;	PCLK, nPCLK	f > 150MHz			1.8	ns
tsk(pp)	NOTE 6	LVCMOS_CLK	f > 150MHz			1.5	ns
4-1-()	Part-to-Part Skew;	PCLK, nPCLK	Measured on			850	ps
tsk(pp)	NOTE 4, 5	LVCMOS_CLK	rising edge @V _{DDO} /2			750	ps
t _R , t _F	Output Rise/Fall Tim	ie	20% to 80%	400		800	ps
odc	Output Duty Cycle		f < 134MHz	45		55	%
ouc	Output Duty Cycle		134MHz f < 250MHz	40		60	%

All parameters measured at 200MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the output $V_{ppo}/2$.

NOTE 2: Measured from $V_{DD}/2$ to $V_{DDO}/2$. NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages, same temperature, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_{DDO}/2.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{\rm DDO}/2$.

Table 5C. AC Characteristics, $V_{DD} = V_{DDO} = 2.5 V \pm 5\%$, Ta = 0° to 70°

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					200	MHz
	Propagation Delay;	PCLK, nPCLK; NOTE 1, 5	f 150MHz	1.2		3.8	ns
t _{pLH}	Fropagation Delay,	LVCMOS_CLK; NOTE 2, 5	f 150MHz	1.5		3.2	ns
+	Propagation Delay;	PCLK, nPCLK; NOTE 1, 5	f > 150MHz	1.5		3.7	ns
t _{pLH}	Fropagation Delay,	LVCMOS_CLK; NOTE 2, 5	f > 150MHz	2		3.6	ns
tsk(o)	Output Skew;	PCLK, nPCLK	Measured on			150	ps
isk(0)	NOTE 3, 5	LVCMOS_CLK	rising edge @V _{DDO} /2			150	ps
tol(nn)	Part-to-Part Skew;	PCLK, nPCLK	f 150MHz			2.6	ns
tsk(pp)	NOTE 6	LVCMOS_CLK	f 150MHz			1.7	ns
+=1:/:=:=\	Part-to-Part Skew;	PCLK, nPCLK	f > 150MHz			2.2	ns
tsk(pp)	NOTE 6	LVCMOS_CLK	f > 150MHz			1.7	ns
4-1-()	Part-to-Part Skew;	PCLK, nPCLK	Measured on			1.2	ns
tsk(pp)	NOTE 4, 5	LVCMOS_CLK	rising edge @V _{DDO} /2			1.0	ns
t_R, t_F	Output Rise/Fall Tim	е	20% to 80%	400		800	ps
odc	Output Duty Cycle		f < 134MHz	45		55	%
ouc	Output Daty Cycle		134MHz f 200MHz	40		60	%

All parameters measured at 200MHz unless noted otherwise.

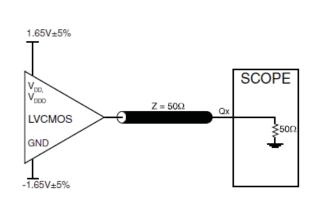
NOTE 1: Measured from the differential input crossing point to the output $V_{\rm DDO}/2$.

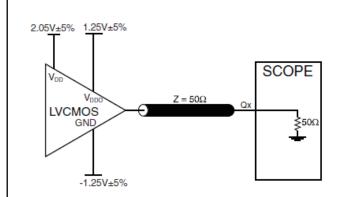
NOTE 2: Measured from $V_{\rm DD}/2$ to $V_{\rm DDO}/2$.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

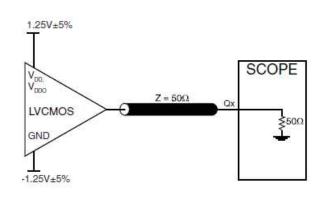
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages, same temperature,

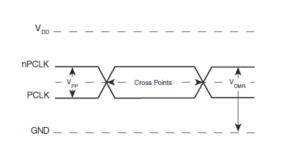
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{\text{pno}}/2$.


NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

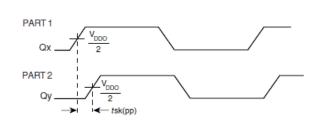

NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges,

and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{\scriptscriptstyle DDO}/2$.


PARAMETER MEASUREMENT INFORMATION



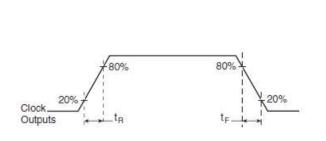
3.3V OUTPUT LOAD AC TEST CIRCUIT

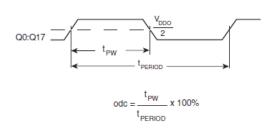

3.3V/2.5V OUTPUT LOAD AC TEST CIRCUIT



2.5V OUTPUT LOAD AC TEST CIRCUIT

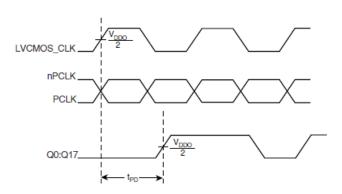
DIFFERENTIAL INPUT LEVEL





PART-TO-PART SKEW

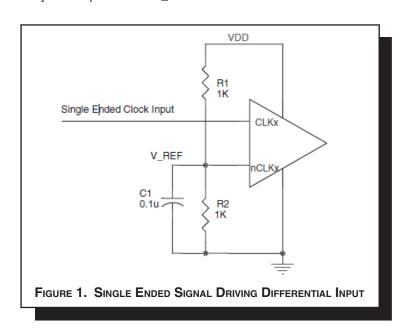
OUTPUT SKEW



OUTPUT RISE/FALL TIME

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

PROPAGATION DELAY



APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF

in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{\rm DD}\!=\!3.3$ V, V_REF should be 1.25V and R2/R1 = 0.609.

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS: OUTPUTS:

CLK INPUT:

For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground.

PCLK/nPCLK INPUT:

For applications not requiring the use of a differential input, both the PCLK and nPCLK pins can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from PCLK to ground.

LVCMOS CONTROL PINS:

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

LVCMOS OUTPUT:

All unused LVCMOS output can be left floating. We recommend that there is no trace attached.

LVPECL CLOCK INPUT INTERFACE

The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both Vswing and Voh must meet the VPP and VcmR input requirements. *Figures 2A to 2E* show interface examples for the PCLK/nPCLK input driven by the most common driver types. The input interfaces

suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

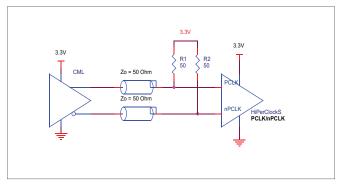


FIGURE 2A. PCLK/nPCLK INPUT DRIVEN
BY AN OPEN COLLECTOR CML DRIVER

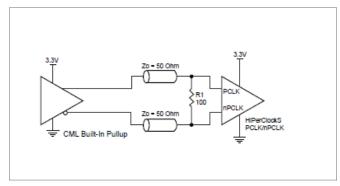


FIGURE 2B. PCLK/nPCLK INPUT DRIVEN
BY A BUILT-IN PULLUP CML DRIVER

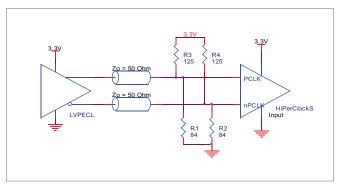


FIGURE 2C. PCLK/nPCLK INPUT DRIVEN
BY A 3.3V LVPECL DRIVER

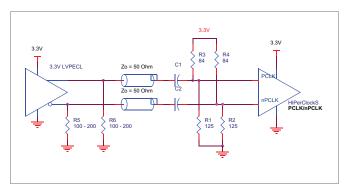


FIGURE 2D. PCLK/nPCLK INPUT DRIVEN
BY A 3.3V LVPECL DRIVER WITH AC COUPLE

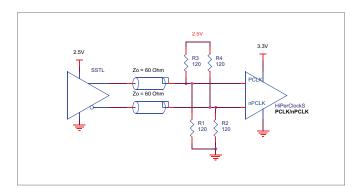


FIGURE 2E. PCLK/nPCLK INPUT DRIVEN BY AN SSTL DRIVER

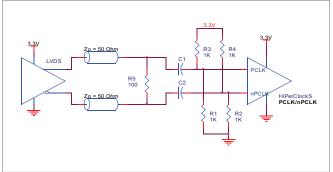


FIGURE 2F. PCLK/nPCLK INPUT DRIVEN
BY A 3.3V LVDS DRIVER

RELIABILITY INFORMATION

Table 6. $\theta_{\text{JA}} \text{vs. Air Flow Table for 32 Lead LQFP}$

θ_{JA} by Velocity (Linear Feet per Minute)

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for ICS83940-01 is: 819

PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP

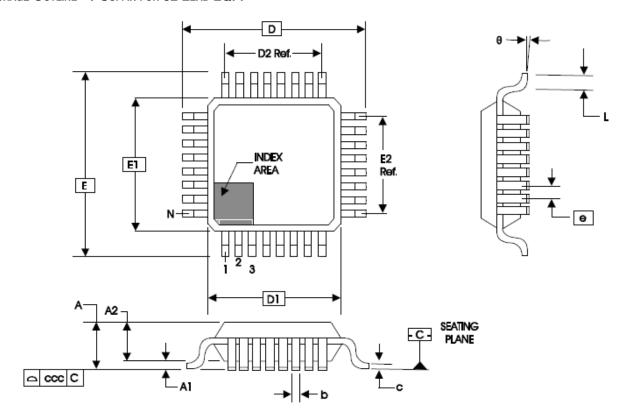


TABLE 7. PACKAGE DIMENSIONS

	JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS						
CVMDOL		BBA					
SYMBOL	MINIMUM	NOMINAL	MAXIMUM				
N		32					
Α			1.60				
A1	0.05		0.15				
A2	1.35	1.40	1.45				
b	0.30	0.37	0.45				
С	0.09		0.20				
D		9.00 BASIC					
D1		7.00 BASIC					
D2		5.60 Ref.					
E		9.00 BASIC					
E1		7.00 BASIC					
E2		5.60 Ref.					
е		0.80 BASIC					
L	0.45	0.45 0.60 0.75					
θ	0°	0° 7°					
ccc			0.10				

Reference Document: JEDEC Publication 95, MS-026

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
83940DY-01LF	ICS83940D01L	32 Lead "Lead-Free" LQFP	tray	0°C to 70°C
83940DY-01LFT	ICS83940D01L	32 Lead "Lead-Free" LQFP	reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS complaint.

REVISION HISTORY SHEET						
Rev	Table	Page	Description of Change	Date		
А		1	Added Lead-Free bullet.			
	T8	9	Added Recommendations for Unused Input and Output Pins.	11/18/05		
		10	Updated LVPECL Clock Input Interface section.	11/16/05		
		13	Added Lead-Free part number, marking and note.			
А			Updated datasheet's header/footer with IDT from ICS.			
	T8	13	Removed ICS prefix from Part/Order Number column.	8/4/10		
		15	Added Contact Page.			
А	Т	13	Removed Leaded devices	11/4/14		
			Updated Datasheet format	11/4/14		

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, California 95138 Sales

800-345-7015 or +408-284-8200 Fax: 408-284-2775 www.IDT.com Technical Support email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2014. All rights reserved.