imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

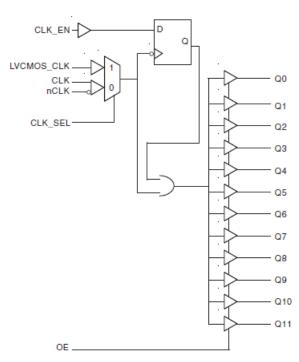
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

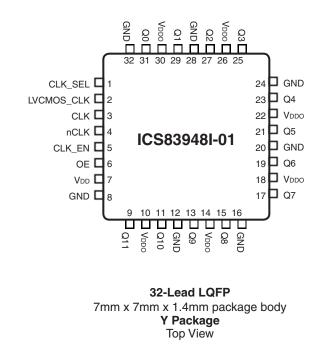
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GENERAL DESCRIPTION


The 83948I-01 is a low skew, 1-to-12 Differentialto-LVCMOS Fanout Buffer. The 83948I-01 has two selectable clock inputs. The CLK, nCLK pair can accept most standard differential input levels. The LVCMOS_CLK can accept LVCMOS or LVTTL input levels. The low impedance LVCMOS outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased from 12 to 24 by utilizing the ability of the outputs to drive two series terminated lines.

The 83948I-01 is characterized at 3.3V core/3.3V output. Guaranteed output and part-to-part skew characteristics make the 83948I-01 ideal for those clock distribution applications demanding well defined performance and repeatability.


FEATURES

- Twelve LVCMOS outputs
- Selectable LVCMOS clock or differential CLK, nCLK inputs
- CLK, nCLK pair can accept the following differential input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL
- LVCMOS_CLK accepts the following input levels: LVCMOS or LVTTL
- Maximum output frequency: 150MHz
- Output skew: 350ps (maximum)
- Part to part skew: 1.5ns (maximum)
- 3.3V core, 3.3V output
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

BLOCK DIAGRAM

PIN ASSIGNMENT

TABLE 1. PIN DESCRIPTIONS

Number	Name	Т	уре	Description
1	CLK_SEL	Input	Pullup	Clock select input. Selects LVCMOS clock input when HIGH. Selects CLK, nCLK inputs when LOW. LVCMOS / LVTTL interface levels.
2	LVCMOS_CLK	Input	Pullup	Clock input. LVCMOS / LVTTL interface levels.
3	CLK	Input	Pullup	Non-inverting differential clock input.
4	nCLK	Input	Pulldown	Inverting differential clock input.
5	CLK_EN	Input	Pullup	Clock enable. LVCMOS / LVTTL interface levels.
6	OE	Input	Pullup	Output enable. LVCMOS / LVTTL interface levels.
7	V _{DD}	Power		Core supply pin.
8, 12, 16, 20, 24, 28, 32	GND	Power		Power supply ground.
9, 11, 13, 15, 17, 19, 21, 23 25, 27, 29, 31	Q11, Q10, Q9, Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0	Output		Clock outputs. LVCMOS / LVTTL interface levels.
10, 14, 18, 22, 26, 30	V _{DDO}	Power		Output supply pins.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance				4	pF
C _{PD}	Power Dissipation Capacitance (per output)			25		pF
R _{PULLUP}	Input Pullup Resistor			51		KΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		KΩ
R _{out}	Output Impedance			7		Ω

TABLE 3A. CLOCK SELECT FUNCTION TABLE

Control Input	Clo	ock
CLK_SEL	CLK, nCLK	LVCMOS_CLK
0	Selected	De-selected
1	De-selected	Selected

TABLE 3B. CLOCK INPUT FUNCTION TABLE

		Inputs		Outputs	Insuit to Outsuit Mode	Delerity
CLK_SEL	LVCMOS_CLK	CLK	nCLK	Q0:Q12	Input to Output Mode	Polarity
0	—	0	1	LOW	Differential to Single Ended	Non Inverting
0	—	1	0	HIGH	Differential to Single Ended	Non Inverting
0	—	0	Biased; NOTE 1	LOW	Single Ended to Single Ended	Non Inverting
0	—	1	Biased; NOTE 1	HIGH	Single Ended to Single Ended	Non Inverting
0	—	Biased; NOTE 1	0	HIGH	Single Ended to Single Ended	Inverting
0	—	Biased; NOTE 1	1	LOW	Single Ended to Single Ended	Inverting
1	0		—	LOW	Single Ended to Single Ended	Non Inverting
1	1	_	—	HIGH	Single Ended to Single Ended	Non Inverting

NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".

Absolute Maximum Ratings

Supply Voltage, V _{DD}	4.6V
Inputs, V	-0.5V to V_{DD} + 0.5 V
Outputs, V _o	-0.5V to $V_{DDO} + 0.5V$
Package Thermal Impedance, θJA	47.9°C/W (0 lfpm)
Storage Temperature, Tstg	-65°C to 150°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Input Supply Voltage		3.0	3.3	3.6	V
V _{DDO}	Output Supply Voltage		3.0	3.3	3.6	V
I _{DD}	Quiescent Supply Current				55	mA

Table 4A. Power Supply Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 0.3V$, Ta = -40° to 85°

Table 4B. DC Characteristics, $V_{\text{dd}} = V_{\text{ddo}} = 3.3V \pm 0.3V$, Ta = -40° to 85°

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	LVCMOS/LVTTL		2		3.6	V
V _{IL}	Input Low Voltage	LVCMOS/LVTTL				0.8	V
V _{PP}	Peak-to-Peak Input Voltage	CLK, nCLK		0.15		1.3	V
V _{CMR}	Input Common Mode Voltage; NOTE 1, 2	CLK, nCLK		GND + 0.5		V _{DD} - 0.85	V
I _{IN}	Input Current					±100	μA
V _{OH}	Output High Voltage		I _{он} = -20mA	2.5			V
V _{ol}	Output Low Voltage		I _{oL} = 20mA			0.4	V

NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is V_{DD} + 0.3V.

NOTE 2: Common mode voltage is defined as $\rm V_{_{IH}}.$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Maximum Output Fr	requency		150			MHz
_	Propagation Delay	CLK, nCLK; NOTE 1A		2.5		6.5	ns
t _{PD}	Propagation Delay	LVCMOS_CLK; NOTE 1B		3			ns
tsk(o)	Output Skew; NOTE	2,6	Measured on rising edge @V _{DDO} /2			350	ps
tok(nn)	Part-to-Part Skew;	CLK, nCLK	Measured on			1.5	ns
tsk(pp)	NOTE 3, 6	LVCMOS_CLK	rising edge @V _{DDO} /2			2	ns
t _R	Output Rise Time		0.8V to 2V	0.2		1.0	ns
t _F	Output Fall Time		0.8V to 2V	0.2		1.0	ns
t _{PW}	Output Pulse Width			tPeriod/2 - 800		tPeriod/2 + 800	ps
t _{PZL} , t _{PZH}	Output Disable Time	e; NOTE 4				11	ns
t _{PLZ} , t _{PHZ}	Output Enable Time	; NOTE 4				11	ns
	Clock Enable	CLK_EN to CLK		1			ns
t _s	Setup Time; NOTE 5	CLK_EN to LVC- MOS_CLK		0			ns
+	Clock Enable	CLK to CLK_EN		0			ns
t _H	Hold Time; NOTE 5	LVCMOS_CLK to CLK_EN		1			ns

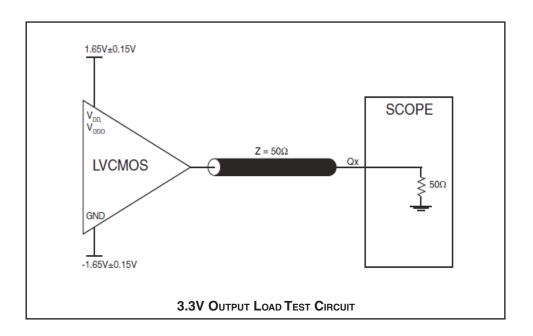
TABLE 5. AC CHARACTERISTICS, $V_{DD} = V_{DDO} = 3.3V \pm 0.3V$, TA = -40° to 85°

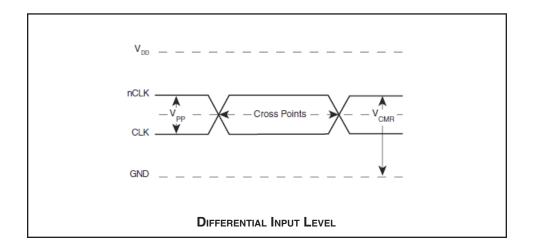
NOTE 1A: Measured from the differential input crossing point to $V_{\text{DDO}}/2$ of the output.

NOTE 1B: Measured from the $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

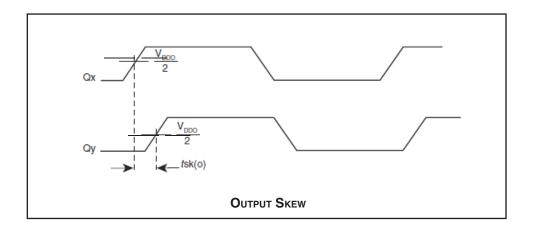
Measured at V_{DDO}/2.

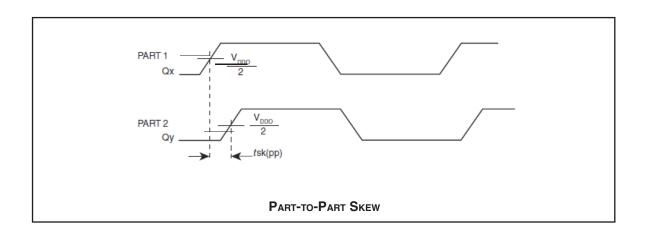
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with

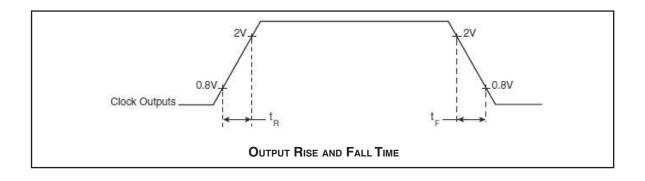

equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_DDO/2.

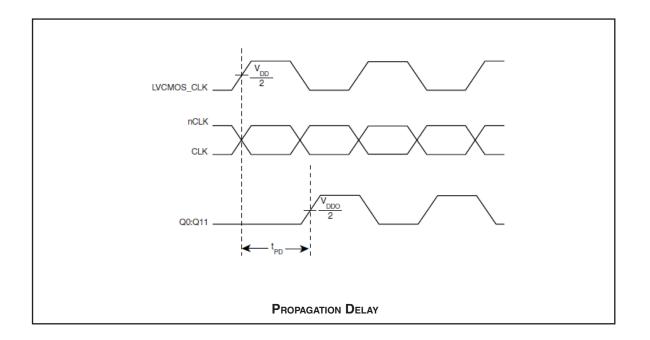

NOTE 4: These parameters are guaranteed by characterization. Not tested in production.

NOTE 5: Setup and Hold times are relative to the falling edge of the input clock.

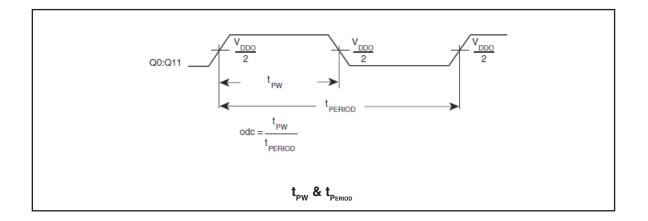

NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.

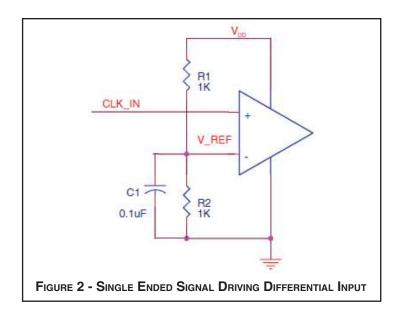






PARAMETER MEASUREMENT INFORMATION, CONTINUED



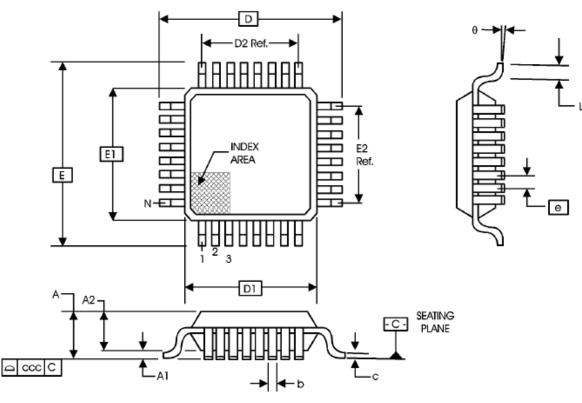

PARAMETER MEASUREMENT INFORMATION, CONTINUED

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_REF should be 1.25V and R2/R1 = 0.609.

RELIABILITY INFORMATION


TABLE 6. $\boldsymbol{\theta}_{JA} \text{vs.}$ Air Flow Table

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W

TRANSISTOR COUNT

The transistor count for 83948I-01 is: 1040

PACKAGE OUTLINE - Y SUFFIX

TABLE 7. PACKAGE DIMENSIONS

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS						
0/4/00/		BBA				
SYMBOL	MINIMUM	NOMINAL	MAXIMUM			
Ν		32				
Α			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
b	0.30	0.37	0.45			
с	0.09		0.20			
D	9.00 BASIC					
D1		7.00 BASIC				
D2		5.60 Ref.				
E		9.00 BASIC				
E1		7.00 BASIC				
E2		5.60 Ref.				
е		0.80 BASIC				
L	0.45	0.60	0.75			
θ	0°		7°			
ccc			0.10			

REFERENCE DOCUMENT: JEDEC PUBLICATION 95, MS-026

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Count	Temperature
83948AYI-01LF	ICS3948AI01L	Lead-Free, 32 Lead LQFP	Tray	-40°C to 85°C
83948AYI-01LFT	ICS3948AI01L	Lead-Free, 32 Lead LQFP	Tape & Reel	-40°C to 85°C

			REVISION HISTORY SHEET	
Rev	Table	Page	Description of Change	Date
A	Т8	11 13	Updated datasheet's header/footer with IDT from ICS. Ordering Information Table - removed ICS prefix from Part/Order Number col- umn. Added lead-free marking. Added Contact Page.	9/6/11
Α	Т8	11	Ordering Information - removed leaded devices. Updated data sheet format.	3/27/15
А	Т8	11	Ordering Information - Deleted LF note below table. Updated header and footer.	3/18/16

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales

Tech Support www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners.

For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary.