imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ICS85214

LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-HSTL FANOUT BUFFER **PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES MAY 6, 2017 General Description** Features

The ICS85214 is a low skew, high performance 1-to-5 Differential-to-HSTL Fanout Buffer and a member of the HiPerClockS[™] family of High Performance Clock Solutions from IDT. The CLK0, CLK0 pair can accept most standard differential

input levels. The single ended CLK1 input accepts LVCMOS or LVTTL input levels. Guaranteed output and part-to-part skew characteristics make the ICS85214 ideal for those clock distribution applications demanding well defined performance and repeatability.

- Five differential HSTL compatible outputs
- Selectable differential CLK0, CLK0 or LVCMOS/LVTTL clock ٠ inputs
- CLK0, CLK0 pair can accept the following differential input levels: LVPECL, LVDS, HSTL, HCSL, SSTL
- CLK1 can accept the following input levels: LVCMOS or LVTTL
- Output frequency up to: 700MHz
- Translates any single-ended input signal to HSTL levels with • resistor bias on CLK0 input
- Output skew: 30ps (maximum)
- Part-to-part skew: 250ps (maximum)
- Propagation delay: 1.8ns (maximum)
- 3.3V core, 1.8V output operating supply
- 0°C to 85°C ambient operating temperature
- Industrial temperature information available upon request
- Available in lead-free (RoHS 6) package
- For functional replacement part use 8523

Block Diagram

Pin Assignment

Q0 🗆	1	20	
	2	19	CLK_EN
Q1 🗌	3	18	
Q1	4	17	nc
Q2	5	16	CLK1
Q2□	6	15	CLK0
Q3[]	7	14	CLKO
Q3□	8	13	□nc
Q4 🗌	9	12	CLK_SEL
$\overline{Q4}$	10	11	GND

ICS85214 20-Lead TSSOP 6.5mm x 4.4mm x 0.925mm package body G Package **Top View**

Q4

Table	1.	Pin	Descr	iptions
-------	----	-----	-------	---------

Number	Name	Т	уре	Description
1, 2	Q0, <u>Q0</u>	Output		Differential output pair. HSTL interface levels.
3, 4	Q1, <u>Q1</u>	Output		Differential output pair. HSTL interface levels.
5, 6	Q2, <u>Q2</u>	Output		Differential output pair. HSTL interface levels.
7, 8	Q3, <u>Q3</u>	Output		Differential output pair. HSTL interface levels.
9, 10	Q4, Q4	Output		Differential output pair. HSTL interface levels.
11	GND	Power		Power supply ground.
12	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects differential CLK1input. When LOW, selects CLK0, CLK0 inputs. LVCMOS/LVTTL interface levels.
13, 17	nc	Unused		No connect.
14	CLK0	Input	Pullup	Inverting differential clock input.
15	CLK0	Input	Pulldown	Non-inverting differential LVPECL clock input.
16	CLK1	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
18	V _{DD}	Power		Positive supply pin.
19	CLK_EN	Input	Pulldown	Synchronizing clock enable. When LOW, clock outputs follow clock input. When HIGH, Qx outputs are forced low, \overline{Qx} outputs are forced high. LVTTL/LVCMOS interface levels.
20	V _{DDO}	Power		Output supply pin.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Function Tables

Table 3A. Control Input Function Table

Inputs	Outputs				
CLK_EN	Q0:Q4	Q0:Q4			
0	Enabled	Enabled			
1	Disabled; LOW	Disabled; HIGH			

After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1. In the active mode, the state of the outputs are a function of the CLK0, CLK0 inputs as described in Table 3B.

Figure 1. CLK_EN Timing Diagram

Inputs		Outputs			
CLK0 or CLK1	CLK0	Q[0:4] Q[0:4]		Input to Output Mode	Polarity
0	1	LOW	HIGH	Differential to Differential	Non-Inverting
1	0	HIGH	LOW	Differential to Differential	Non-Inverting
0	Biased; NOTE 1	LOW	HIGH	Single-Ended to Differential	Non-Inverting
1	Biased; NOTE 1	HIGH	LOW	Single-Ended to Differential	Non-Inverting
Biased; NOTE 1	0	HIGH	LOW	Single-Ended to Differential	Inverting
Biased; NOTE 1	1	LOW	HIGH	Single-Ended to Differential	Inverting

Table 3B. Clock Input Function Table

NOTE 1: Please refer to the Application Information section, Wiring the Differential Input to Accept Single-Ended Levels.

3

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, V _{DDO}	-0.5V to V _{DD} + 0.5V
Package Thermal Impedance, θ_{JA}	73.2°C/W (0 lfpm)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
I _{DD}	Power Supply Current				80	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, V_{DD} = 3.3V ± 5%, V_{DDO} = 1.8V ±0.2V, T_A = 0°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage			-0.3		0.8	V
I _{IH}	Input High Current	CLK1, CLK_EN, CLK_SEL	$V_{DD} = V_{IN} = 3.465 V$			150	μA
IIL	Input Low Current	CLK1, CLK_EN, CLK_SEL	V _{DD} = 3.465V, V _{IN} = 0V	-5			μA

Table 4C. Differential DC Characteristics, V_{DD} = 3.3V ± 5%, V_{DDO} = 1.8V ±0.2V, T_A = 0°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
IIH	Input High Current	CLK	$V_{DD} = V_{IN} = 3.465V$			5	μA
		CLK	$V_{DD} = V_{IN} = 3.465V$			150	μA
	Input Low Current	CLK	V _{DD} = 3.465V, V _{IN} = 0V	-150			μA
١L		CLK	V _{DD} = 3.465V, V _{IN} = 0V	-5			μA
V _{PP}	Peak-to-Peak Voltage; NOTE 1			0.15		1.3	V
V _{CMR}	Common Mode Input Voltage; NOTE 1, 2			0.5		V _{DD} – 0.85	V

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common mode input voltage is defined as V_{IH} .

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Current; NOTE 1		1.0		1.4	V
V _{OL}	Output Low Current; NOTE 1		0		0.4	V
V _{OX}	Output Crossover Voltage		38% x (V _{OH} – V _{OL}) + V _{OL}		60% x (V _{OH} – V _{OL}) + V _{OL}	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.1	V

Table 4D. HSTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^{\circ}C$ to $85^{\circ}C$

NOTE 1: Outputs termination with 50Ω to ground.

AC Electrical Characteristics

Table 5. AC Characteristics, V_{DD} = 3.3V ± 5%, V_{DDO} = 1.8V ±0.2V, T_A = 0°C to 85°C

Parameter	Symbol		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}		CLK0, CLK0				700	MHz
	Output i requency	CLK1				300	MHz
t _{PD}	Propagation Delay	NOTE 1	<i>f</i> ≤ 700MHz	1.0		1.8	ns
<i>t</i> sk(o)	Output Skew; NOTE 2, 4					30	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 3, 4					250	ps
t _R / t _F	Output Rise/Fall Ti	me	20% to 80%	200		700	ps
odc		CLK0, CLK0		46		54	%
		CLK1		45		55	%

All parameters measured at $_{\mbox{fMAX}}$ unless noted otherwise.

The cycle to cycle jitter on the input will equal the jitter on the output. The part does not add jitter.

NOTE 1: Measured from either the differential input crossing point or VDD/2 to the differential output crossing point.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at output differential cross points.

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.Parameter Measurement Information

3.3V/1.8V Output Load AC Test Circuit

Part-to-Part Skew

Output Duty Cycle/Pulse Width/Period

Output Skew

Propagation Delay

Parameter Measurement Information, continued

Output Rise/Fall Time

Application Information

Wiring the Differential Input to Accept Single Ended Levels

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{DD} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

Figure 2. Single-Ended Signal Driving Differential Input

Differential Clock Input Interface

The CLK/CLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 3A to 3F* show interface examples for the HiPerClockS CLK/CLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver

Figure 3C. HiPerClockS CLK/CLK Input Driven by a 3.3V LVPECL Driver

component to confirm the driver termination requirements. For example, in Figure 3A, the input termination applies for IDT HiPerClockS open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

Figure 3B. HiPerClockS CLK/CLK Input Driven by a 3.3V LVPECL Driver

Figure 3D. HiPerClockS CLK/CLK Input Driven by a 3.3V LVDS Driver

Figure 3F. HiPerClockS CLK/CLK Input Driven by a 2.5V SSTL Driver

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

CLK/CLK INPUTS

For applications not requiring the use of the differential input, both CLK and CLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK0 to ground.

CLK INPUT

For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground.

Schematic Example

Figure 4 shows a schematic example of the ICS85214. In this example, the input is driven by an IDT HiPerClockS HSTL driver. The decoupling capacitors should be physically located near the

HSTL Outputs

All unused HSTL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

power pin. For ICS85214, the unused clock outputs can be left floating.

Figure 4. ICS85214 HSTL Buffer Schematic Example

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS85214. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS85214 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{DD_MAX} * I_{DD_MAX} = 3.465V * 850mA = 227.2mW
- Power (outputs)_{MAX} = 32.8mW/Loaded Output pair If all outputs are loaded, the total power is 5 x 32.8mW = 164mW

Total Power_MAX (3.465V, with all outputs switching) = 227.2mW + 144mW = 391.2mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}C + 0.391W * 66.6^{\circ}C/W = 111^{\circ}C$. This is well below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 6. Thermal Resitance θ_{JA} for 20 Lead TSSOP, Forced Convection

θ _{JA} by Velocity				
Linear Feet per Minute	0	200	500	
Single-Layer PCB, JEDEC Standard Test Boards	114.5°C/W	98.0°C/W	88.0°C/W	
Multi-Layer PCB, JEDEC Standard Test Boards	73.2°C/W	66.6°C/W	63.5°C/W	

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

HSTL output driver circuit and termination are shown in Figure 6.

Figure 6. HSTL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load.

Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low.

 $Pd_H = (V_{OH_MAX}/R_{\iota}) * (V_{DDO_MAX} - V_{OH_MAX})$ $Pd_L = (V_{OL_MAX}/R_{\iota}) * (V_{DDO_MAX} - V_{OL_MAX})$

$$\begin{split} \label{eq:Pd_H} \mathsf{Pd}_{-}\mathsf{H} &= (1.0\mathsf{V}/50\Omega) * (2\mathsf{V} - 1.0\mathsf{V}) = \textbf{20mW} \\ \mathsf{Pd}_{-}\mathsf{L} &= (0.4\mathsf{V}/50\Omega) * (2\mathsf{V} - 0.4\mathsf{V}) = \textbf{12.8mW} \end{split}$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 32.8mW

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 20 Lead TSSOP

θ _{JA} by Velocity				
Linear Feet per Minute	0	200	500	
Single-Layer PCB, JEDEC Standard Test Boards	114.5°C/W	98.0°C/W	88.0°C/W	
Multi-Layer PCB, JEDEC Standard Test Boards	73.2°C/W	66.6°C/W	63.5°C/W	

Transistor Count

The transistor count for ICS85214 is: 674

Package Outline and Package Dimension

Table 8. Package Dimensions

All Dimensions in Millimeters			
Symbol	Minimum	Maximum	
N	20		
Α		1.20	
A1	0.05	0.15	
A2	0.80	1.05	
b	0.19	0.30	
С	0.09	0.20	
D	6.40	6.60	
E	6.40 Basic		
E1	4.30	4.50	
е	0.65 Basic		
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
85214AGLF	ICS85214AGLF	"Lead-Free" 20 Lead TSSOP	Tube	0°C to 85°C
85214AGLFT	ICS85214AGLF	"Lead-Free" 20 Lead TSSOP	2500 Tape & Reel	0°C to 85°C

NOTE: "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
А	T2	2	Changed LVHSTL to HSTL throughout the datasheet. Pin Characteristics Table - changed C _{IN} 4pF max. to 4pF typical	7/17/03
A	Т9	1 9 13	Features Section - added Lead-Free Bullet. Added <i>Recommendation of Unused Input and Output Pins.</i> Ordering Information Table - added Lead-Free part number, marking, and note. Changed format throughout the datasheet.	3/13/07
В	ТЗВ	3 8	Clock Input Function Table - corrected CLK0 column from 0 (1st row) to 1 and 1 (2nd row) to 0. Updated <i>Differential Clock Input Interface section</i> .	2/25/08
В	Т9	13	Removed leaded orderable parts from Ordering Information table	11/15/12
В			Product Discontinuation Notice - Last time buy expires May 6, 2017. PDN CQ-16-01	6/3/16

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

clocks@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

. _ .

Asia

Integrated Device Technology IDT (S) Pte. Ltd. 1 Kallang Sector, #07-01/06 Kolam Ayer Industrial Park Singapore 349276 +65 67443356 Fax: +65 67441764

Japan

NIPPON IDT KK Sanbancho Tokyu, Bld. 7F, 8-1 Sanbancho Chiyoda-ku, Tokyo 102-0075 +81 3 3221 9822 Fax: +81 3 3221 9824

Europe

IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 37885 idteurope@idt.com

© 2016 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA