# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



## IDT8T39S10I

### DATASHEET

### **General Description**

The IDT8T39S10I is a high-performance clock fanout buffer. The input clock can be selected from two differential inputs or one crystal input. The internal oscillator circuit is automatically disabled if the crystal input is not selected. The crystal pin can be driven by single-ended clock when crystal is bypassed. The selected signal is distributed to ten differential outputs which can be configured as LVPECL, LVDS or HSCL outputs. In addition, an LVCMOS output is provided. All outputs can be disabled into a high-impedance state. The device is designed for signal fanout of high-frequency, low phase-noise clock and data signal. The outputs are at a defined level when inputs are open circuit or tied to ground. It is designed to operate from a 3.3V or 2.5V core power supply, and either a 3.3V or 2.5V output operating supply.

### **Features**

Crystal or Differential to Differential

**Clock Fanout Buffer** 

- Two differential reference clock input pairs
- Differential input pairs can accept the following differential input levels: LVPECL, LVDS, HCSL
- · Crystal Oscillator Interface
- Crystal input frequency range: 10MHz to 40MHz
- Maximum Output Frequency LVPECL - 2GHz LVDS - 2GHz HCSL - 250MHz LVCMOS - 250MHz
- Two banks, each has five differential output pairs that can be configured as LVPECL or LVDS or HCSL
- One single-ended reference output with synchronous enable to avoid clock glitch
- Output skew: (Bank A and Bank B at the same output level) 70ps (max)
- Part-to-part skew: 250ps (max)
- Additive RMS phase jitter: 0.153ps (typical)
- Supply voltage modes: V<sub>DD</sub>/V<sub>DDO</sub> 3.3V/3.3V
  - 3.3V/2.5V 2.5V/2.5V
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) packaging

### **Block Diagram**



### Pin Description and Pin Characteristic Tables

### Table 1. Pin Descriptions

| Number                    | Name                  | Ţ      | уре                 | Description                                                                                                                                            |
|---------------------------|-----------------------|--------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 2                      | QA0, nQA0             | Output |                     | Differential Bank A clock output pair. LVPECL, LVDS or HCSL interface levels.                                                                          |
| 3, 4                      | QA1, nQA1             | Output |                     | Differential Bank A clock output pair. LVPECL, LVDS or HCSL interface levels.                                                                          |
| 5, 8, 29, 32, 45          | V <sub>DDO</sub>      | Power  |                     | Output supply pins.                                                                                                                                    |
| 6, 7                      | QA2, nQA2             | Output |                     | Differential Bank A clock output pair. LVPECL, LVDS or HCSL interface levels.                                                                          |
| 9, 10                     | QA3, nQA3             | Output |                     | Differential Bank A clock output pair. LVPECL, LVDS or HCSL interface levels.                                                                          |
| 11, 12                    | QA4, nQA4             | Output |                     | Differential Bank A clock output pair. LVPECL, LVDS or HCSL interface levels.                                                                          |
| 13, 18, 24,<br>37, 43, 48 | GND                   | Power  |                     | Power supply ground.                                                                                                                                   |
| 14, 47                    | SMODEA0,<br>SMODEA1   | Input  | Pulldown            | Output driver select for Bank A outputs. See Table 3D for function.<br>LVCMOS/LVTTL interface levels.                                                  |
| 15, 42                    | V <sub>DD</sub>       | Power  |                     | Power supply pins.                                                                                                                                     |
| 16,<br>17                 | XTAL_IN,<br>XTAL_OUT  | Input  |                     | Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.                                                                            |
| 19,<br>22                 | REF_SEL0,<br>REF_SEL1 | Input  | Pulldown            | Input clock selection. LVCMOS/LVTTL interface levels.<br>See Table 3A for function.                                                                    |
| 20                        | CLK0                  | Input  | Pulldown            | Non-inverting differential clock.                                                                                                                      |
| 21                        | nCLK0                 | Input  | Pullup/<br>Pulldown | Inverting differential clock. Internal resistor bias to $V_{DD}/2$ .                                                                                   |
| 23, 39                    | SMODEB0,<br>SMODEB1   | Input  | Pulldown            | Output driver select for Bank B outputs. See Table 3D for function.<br>LVCMOS/LVTTL interface levels.                                                  |
| 25, 26                    | nQB4, QB4             | Output |                     | Differential Bank B clock output pair. LVPECL, LVDS or HCSL interface levels.                                                                          |
| 27, 28                    | nQB3, QB3             | Output |                     | Differential Bank B clock output pair. LVPECL, LVDS or HCSL interface levels.                                                                          |
| 30, 31                    | nQB2, QB2             | Output |                     | Differential Bank B clock output pair. LVPECL, LVDS or HCSL interface levels.                                                                          |
| 33, 34                    | nQB1, QB1             | Output |                     | Differential Bank B clock output pair. LVPECL, LVDS or HCSL interface levels.                                                                          |
| 35, 36                    | nQB0, QB0             | Output |                     | Differential Bank B clock output pair. LVPECL, LVDS or HCSL interface levels.                                                                          |
| 38                        | IREF                  | Input  |                     | An external fixed precision resistor (475 $\Omega$ ) from this pin to ground provides a reference current used for HCSL mode. QXx, nQXx clock outputs. |
| 40                        | nCLK1                 | Input  | Pullup/<br>Pulldown | Inverting differential clock. Internal resistor bias to $V_{DD}/2$ .                                                                                   |
| 41                        | CLK1                  | Input  | Pulldown            | Non-inverting differential clock.                                                                                                                      |
| 44                        | REFOUT                | Output |                     | Single-ended reference clock output. LVCMOS/LVTTL interface levels                                                                                     |
| 46                        | OE_SE                 | Input  | Pulldown            | Output enable. LVCMOS/LVTTL interface levels. See Table 3B.                                                                                            |

NOTE: Pulldown and Pullup refer to an internal input resistors. See Table 2, Pin Characteristics, for typical values.

| Symbol                | Parameter                                    |         | Test Conditions                          | Minimum | Typical | Maximum | Units |
|-----------------------|----------------------------------------------|---------|------------------------------------------|---------|---------|---------|-------|
| C <sub>IN</sub>       | Input Capacitance<br>Input Pulldown Resistor |         | SMODEx[0:1],<br>REF_SEL[0:1], OE_SE pins |         | 4       |         | pF    |
| R <sub>PULLDOWN</sub> |                                              |         |                                          |         | 51      |         | kΩ    |
| R <sub>PULLUP</sub>   | Input Pullup Re                              | esistor |                                          |         | 51      |         | kΩ    |
| C <sub>PD</sub>       | Power<br>Dissipation<br>Capacitance          | Qx, nQx | V <sub>DDO</sub> = 3.3V                  |         | 3.5     |         | pF    |
| C                     | Power Dissipation Capacitance                |         | $V_{DDO} = 3.3V$                         |         | 8       |         | pF    |
| C <sub>PD</sub>       | REFOUT                                       |         | $V_{DDO} = 2.5V$                         |         | 7       |         | pF    |
| D                     | Output                                       | REFOUT  | $V_{DDO} = 3.3V$                         |         | 15      |         | Ω     |
| R <sub>OUT</sub>      | Impedance REFOUT                             |         | $V_{DDO} = 2.5V$                         |         | 20      |         | Ω     |

#### **Table 2. Pin Characteristics**

### **Function Tables**

#### Table 3A. REF\_SELx Function Table

| Control Input | Selected Input Reference Clock |
|---------------|--------------------------------|
| REF_SEL[1:0]  |                                |
| 00 (default)  | CLK0, nCLK0                    |
| 01            | CLK1, nCLK1                    |
| 10            | XTAL                           |
| 11            | XTAL                           |

#### Table 3B. OE\_SE Function Table

| OE_SE       | REFOUT         |
|-------------|----------------|
| 0 (default) | High-Impedance |
| 1           | Enabled        |

NOTE: Synchronous output enable to avoid clock glitch.

### Table 3C. Input/Output Operation Table, OE\_SE

| Input Status   |               |                                      | Output State              |
|----------------|---------------|--------------------------------------|---------------------------|
| OE_SE          | REF_SEL [1:0] | CLKx and nCLKx                       | REFOUT                    |
| 0 (default)    | Don't care    | Don't Care                           | High Impedance            |
| 1              | 10 or 11      | Don't Care                           | Fanout crystal oscillator |
|                |               | CLK0 and nCLK0 are both open circuit | Logic low                 |
|                |               | CLK0 and nCLK0 are tied to ground    | Logic low                 |
| 1              | oo (default)  | CLK0 is high, nCLK0 is low           | Logic High                |
| 1 00 (default) |               | CLK0 is low, nCLK0 is high           | Logic Low                 |
|                |               | CLK1 and nCLK1 are both open circuit | Logic low                 |
| 1              | 01            | CLK1 and nCLK1 are tied to ground    | Logic low                 |
|                | 01            | CLK1 is high, nCLK1 is low           | Logic High                |
|                |               | CLK1 is low, nCLK1 is high           | Logic Low                 |

| Input Status        |                |                                      | Output State                     |
|---------------------|----------------|--------------------------------------|----------------------------------|
| SMODEA[1:0]         | REF_SEL[1:0]   | CLKx and nCLKx                       | QA[4:0], nQA[4:0]                |
| 11                  | Don't care     | Don't Care                           | High Impedance                   |
| 00, 01 or 10        | 10 or 11       | Don't Care                           | Fanout crystal oscillator        |
| 00, 01 or 10 00 (de |                | CLK0 and nCLK0 are both open circuit | QA[4:0] = Low<br>nQA4:0] = High  |
|                     |                | CLK0 and nCLK0 are tied to ground    | QA[4:0] = Low<br>nQA[4:0] = High |
| 00, 01 or 10        | 0 00 (default) | CLK0 is high, nCLK0 is low           | QA[4:0] = High<br>nQA[4:0] = Low |
|                     |                | CLK0 is low, nCLK0 is high           | QA[4:0] = Low<br>nQA[4:0] = High |
|                     |                | CLK1 and nCLK1 are both open circuit | QA[4:0] = Low<br>nQA4:0] = High  |
| 00.01 or 10         | 01             | CLK1 and CLK1 are tied to ground.    | QA[4:0] = Low<br>nQA[4:0] = High |
| 00, 01 or 10        | 01             | CLK1 is high, nCLK1 is low           | QA[4:0] = High<br>nQA[4:0] = Low |
|                     |                | CLK1 is low, nCLK1 is high           | QA[4:0] = Low<br>nQA4:0]=High    |

### Table 3D. Input/Output Operation Table, SMODEA

### Table 3E. Input/Output Operation Table, SMODEB

| Input Status |                                   |                                       | Output State                     |
|--------------|-----------------------------------|---------------------------------------|----------------------------------|
| SMODEB[1:0]  | REF_SEL[1:0]                      | CLKx and nCLKx                        | QB[4:0], nQB[4:0]                |
| 11           | Don't care                        | Don't Care                            | High Impedance                   |
| 00, 01 or 10 | 10 or 11                          | Don't Care                            | Fanout crystal oscillator        |
|              |                                   | CLK0 and nCLK0 are both open circuit  | QB[4:0] = Low<br>nQB4:0] = High  |
| 00.01.01.10  | CLK0 and nCLK0 are tied to ground | CLK0 and nCLK0 are tied to ground     | QB[4:0] = Low<br>nQB[4:0] = High |
| 00, 01 or 10 | 00 (default)                      | · · · · · · · · · · · · · · · · · · · | QB[4:0] = High<br>nQB[4:0] = Low |
|              |                                   | CLK0 is low, nCLK0 is high            | QB[4:0] = Low<br>nQB[4:0] = High |
|              |                                   | CLK1 and nCLK1 are both open circuit  | QB[4:0] = Low<br>nQB[4:0] = High |
| 00.01.01.10  | 01                                | CLK1 and nCLK1 are tied to ground     | QB[4:0] = Low<br>nQB[4:0] = High |
| 00, 01 or 10 | 01                                | CLK1 is high, nCLK1 is low            | QB[4:0] = High<br>nQB[4:0] = Low |
|              |                                   | CLK1 is low, nCLK1 is high            | QB[4:0] = Low<br>nQB[4:0] = High |

### Table 3F. Output Level Selection Table, QA[0:4], nQA[0:4]

| SMODEA1 | SMODEA0 | Output Type      |
|---------|---------|------------------|
| 0       | 0       | LVPECL (default) |
| 0       | 1       | LVDS             |
| 1       | 0       | HCSL             |
| 1       | 1       | High-impedance   |

#### Table 3G. Output Level Selection Table, QB[0:4], nQB[0:4]

| SMODEB1 | SMODEB0 | Output Type      |
|---------|---------|------------------|
| 0       | 0       | LVPECL (default) |
| 0       | 1       | LVDS             |
| 1       | 0       | HCSL             |
| 1       | 1       | High-impedance   |

### **Absolute Maximum Ratings**

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of the product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

| Item                                       | Rating                           |  |
|--------------------------------------------|----------------------------------|--|
| Supply Voltage, V <sub>DD</sub>            | 4.6V                             |  |
| Inputs, V <sub>I</sub>                     |                                  |  |
| XTAL_IN                                    | 0V to 2V                         |  |
| Other Inputs                               | -0.5V to V <sub>DD</sub> + 0.5V  |  |
| Outputs, V <sub>O</sub> , (HCSL, LVCMOS)   | -0.5V to V <sub>DDO</sub> + 0.5V |  |
| Outputs, I <sub>O</sub> , (LVPECL)         |                                  |  |
| Continuous Current                         | 50mA                             |  |
| Surge Current                              | 100mA                            |  |
| Outputs, I <sub>O</sub> , (LVDS)           |                                  |  |
| Continuous Current                         | 10mA                             |  |
| Surge Current                              | 15mA                             |  |
| Package Thermal Impedance, q <sub>JA</sub> | 30.5°C/W (0 mps)                 |  |
| Storage Temperature, T <sub>STG</sub>      | -65°C to 150°C                   |  |

### **DC Electrical Characteristics**

### Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$ , GND = 0V, $T_A = -40^{\circ}$ C to $85^{\circ}$ C

| Symbol           | Parameter             | Test Conditions              | Minimum | Typical | Maximum | Units |
|------------------|-----------------------|------------------------------|---------|---------|---------|-------|
| V <sub>DD</sub>  | Power Supply Voltage  |                              | 3.135   | 3.3     | 3.465   | V     |
| V <sub>DDO</sub> | Output Supply Voltage |                              | 3.135   | 3.3     | 3.465   | V     |
| I <sub>DD</sub>  | Power Supply Current  | SMODEA/B[1:0] = 01           |         | 61      | 75      | mA    |
| I <sub>DDO</sub> | Output Supply Current | SMODEA/B[1:0] = 01           |         | 211     | 255     | mA    |
| I <sub>EE</sub>  | Power Supply Current  | SMODEA/B[1:0] = 00 (default) |         | 151     | 184     | mA    |
| I <sub>DD</sub>  | Power Supply Current  | SMODEA/B[1:0] = 10           |         | 43      | 55      | mA    |
| I <sub>DDO</sub> | Power Supply Current  | SMODEA/B[1:0] = 10           |         | 25      | 35      | mA    |

NOTE: Characterized with all outputs unloaded. I<sub>DDO</sub> includes REFOUT.

### Table 4B. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ , $V_{DDO} = 2.5V \pm 5\%$ , GND = 0V, $T_A = -40^{\circ}C$ to $85^{\circ}C$

| Symbol           | Parameter             | Test Conditions              | Minimum | Typical | Maximum | Units |
|------------------|-----------------------|------------------------------|---------|---------|---------|-------|
| V <sub>DD</sub>  | Power Supply Voltage  |                              | 3.135   | 3.3     | 3.465   | V     |
| V <sub>DDO</sub> | Output Supply Voltage |                              | 2.375   | 2.5     | 2.625   | V     |
| I <sub>DD</sub>  | Power Supply Current  | SMODEA/B[1:0] = 01           |         | 61      | 75      | mA    |
| I <sub>DDO</sub> | Output Supply Current | SMODEA/B[1:0] = 01           |         | 210     | 255     | mA    |
| I <sub>EE</sub>  | Power Supply Current  | SMODEA/B[1:0] = 00 (default) |         | 147     | 184     | mA    |
| I <sub>DD</sub>  | Power Supply Current  | SMODEA/B[1:0] = 10           |         | 43      | 55      | mA    |
| I <sub>DDO</sub> | Power Supply Current  | SMODEA/B[1:0] = 10           |         | 25      | 35      | mA    |

NOTE: Characterized with all outputs unloaded. I<sub>DDO</sub> includes REFOUT.

|                  |                       | -                            |         |         |         |       |
|------------------|-----------------------|------------------------------|---------|---------|---------|-------|
| Symbol           | Parameter             | Test Conditions              | Minimum | Typical | Maximum | Units |
| V <sub>DD</sub>  | Power Supply Voltage  |                              | 2.375   | 2.5     | 2.625   | V     |
| V <sub>DDO</sub> | Output Supply Voltage |                              | 2.375   | 2.5     | 2.625   | V     |
| I <sub>DD</sub>  | Power Supply Current  | SMODEA/B[1:0] = 01           |         | 56      | 69      | mA    |
| I <sub>DDO</sub> | Output Supply Current | SMODEA/B[1:0] = 01           |         | 202     | 245     | mA    |
| I <sub>EE</sub>  | Power Supply Current  | SMODEA/B[1:0] = 00 (default) |         | 141     | 173     | mA    |
| I <sub>DD</sub>  | Power Supply Current  | SMODEA/B[1:0] = 10           |         | 40      | 50      | mA    |
| I <sub>DDO</sub> | Power Supply Current  | SMODEA/B[1:0] = 10           |         | 24      | 32      | mA    |

### Table 4C. Power Supply DC Characteristics, $V_{DD}$ = 2.5V±5%, $V_{DDO}$ = 2.5V±5%, GND = 0V, T<sub>A</sub> = -40°C to 85°C

NOTE: Characterized with all outputs unloaded.  $\mathsf{I}_{\mathsf{DDO}}$  includes REFOUT.

#### Table 4D. LVCMOS/LVTTL DC Characteristics,

 $V_{DD} = 3.3V \pm 5\%$ , 2.5V ±5%,  $V_{DDO} = 3.3V \pm 5\%$  or 2.5V ±5%, GND = 0V,  $T_A = -40^{\circ}C$  to 85°C

| Symbol          | Parameter                     |                                         | Test Conditions                                                       | Minimum | Typical | Maximum               | Units |
|-----------------|-------------------------------|-----------------------------------------|-----------------------------------------------------------------------|---------|---------|-----------------------|-------|
| M               | Input Ligh Voltog             |                                         | $V_{DD} = 3.3V \pm 5\%$                                               | 2       |         | V <sub>DD</sub> + 0.3 | V     |
| V <sub>IH</sub> | Input High Voltage            | e                                       | $V_{DD} = 2.5V \pm 5\%$                                               | 1.7     |         | V <sub>DD</sub> + 0.3 | V     |
| M               | Input Low Voltage             |                                         | V <sub>DD</sub> = 3.3V±5%                                             | -0.3    |         | 0.8                   | V     |
| V <sub>IL</sub> | Input Low Voltage             | ;                                       | $V_{DD} = 2.5V \pm 5\%$                                               | -0.3    |         | 0.7                   | V     |
| IIH             | Input High<br>Current         | REF_SEL,<br>SMODEA,<br>SMODEB,<br>OE_SE | V <sub>DD</sub> = V <sub>IN</sub> = 3.465V or 2.625V                  |         |         | 150                   | μA    |
| IIL             | Input Low<br>Current          | OE_SE                                   | $V_{DD} = 3.465 V \text{ or } 2.625 V, V_{IN} = 0 V$                  | -5      |         |                       | μA    |
| V.              | Output High                   | REFOUT                                  | V <sub>DDO</sub> = 3.3V±5%: I <sub>OH</sub> = -8mA                    | 2.6     |         |                       | V     |
| V <sub>OH</sub> | Voltage; NOTE 1               | REFOUT                                  | V <sub>DDO</sub> = 2.5V±5%: I <sub>OH</sub> = -8mA                    | 1.8     |         |                       | V     |
| V <sub>OL</sub> | Output Low<br>Voltage; NOTE 1 | REFOUT                                  | $V_{DDO} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$ :<br>I <sub>OL</sub> = 8mA |         |         | 0.5                   | V     |

### Table 4E. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or 2.625V T<sub>A</sub> = -40°C to 85°C

| Symbol           | Parameter                    |                        | Test Conditions                                        | Minimum   | Typical | Maximum                | Units |
|------------------|------------------------------|------------------------|--------------------------------------------------------|-----------|---------|------------------------|-------|
| IIH              | Input High<br>Current        | CLK[0:1],<br>nCLK[0:1] | $V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$        |           |         | 150                    | μΑ    |
|                  | Input Low                    | CLK[0:1]               | $V_{DD} = 3.465V \text{ or } 2.625V,$<br>$V_{IN} = 0V$ | -5        |         |                        | μA    |
| ΊL               | Current                      | nCLK[0:1]              | $V_{DD} = 3.465V \text{ or } 2.625V,$<br>$V_{IN} = 0V$ | -150      |         |                        | μA    |
| V <sub>PP</sub>  | Peak-to-Peak In<br>NOTE 1    | put Voltage;           |                                                        | 0.240     |         | 1.3                    | V     |
| V <sub>CMR</sub> | Common Mode<br>Voltage; NOTE | •                      |                                                        | GND + 0.5 |         | V <sub>DD</sub> – 0.85 | V     |

NOTE 1:  $V_{\rm IL}$  should not be less than -0.3V. NOTE 2. Common mode voltage is defined as the crosspoint.

| Symbol             | Parameter                            | Test Conditions | Minimum                | Typical | Maximum                | Units |
|--------------------|--------------------------------------|-----------------|------------------------|---------|------------------------|-------|
| V <sub>OH</sub>    | Output High Voltage; NOTE 1          |                 | V <sub>DDO</sub> - 1.4 |         | V <sub>DDO</sub> - 0.9 | V     |
| V <sub>OL</sub>    | Output Low Voltage; NOTE 1           |                 | V <sub>DDO</sub> - 2.0 |         | V <sub>DDO</sub> – 1.7 | V     |
| V <sub>SWING</sub> | Peak-to-Peak Output<br>Voltage Swing |                 | 0.6                    |         | 1.0                    | V     |

#### Table 4F. LVPECL DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$ , GND = 0V, $T_A = -40^{\circ}C$ to $85^{\circ}C$

NOTE 1: Outputs terminated with 50  $\Omega$  to V\_{DDO} – 2V.

### Table 4G. LVPECL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or 2.625V, $V_{DDO} = 2.5V \pm 5\%$ , GND = 0V, $T_A = -40^{\circ}C$ to $85^{\circ}C$

| Symbol             | Parameter                            | Test Conditions | Minimum                | Typical | Maximum                | Units |
|--------------------|--------------------------------------|-----------------|------------------------|---------|------------------------|-------|
| V <sub>OH</sub>    | Output High Voltage; NOTE 1          |                 | V <sub>DDO</sub> - 1.4 |         | V <sub>DDO</sub> - 0.9 | V     |
| V <sub>OL</sub>    | Output Low Voltage; NOTE 1           |                 | V <sub>DDO</sub> - 2.0 |         | V <sub>DDO</sub> – 1.7 | V     |
| V <sub>SWING</sub> | Peak-to-Peak Output<br>Voltage Swing |                 | 0.4                    |         | 1.0                    | V     |

NOTE 1: Outputs terminated with 50  $\Omega$  to V\_{DDO} – 2V.

### Table 4H. LVDS DC Characteristics, $V_{DD}$ = 3.3V±5% or 2.625V, $V_{DDO}$ = 2.5V±5%, GND = 0V, T<sub>A</sub> = -40°C to 85°C

| Symbol          | Parameter                        | Test Conditions | Minimum | Typical | Maximum | Units |
|-----------------|----------------------------------|-----------------|---------|---------|---------|-------|
| V <sub>OD</sub> | Differential Output Voltage      |                 | 247     | 400     | 462     | mV    |
| $\Delta V_{OD}$ | V <sub>OD</sub> Magnitude Change |                 |         |         | 50      | mV    |
| V <sub>OS</sub> | Offset Voltage                   |                 | 1.00    | 1.16    | 1.25    | V     |
| $\Delta V_{OS}$ | V <sub>OS</sub> Magnitude Change |                 |         |         | 50      | mV    |

### Table 4I. LVDS DC Characteristics, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$ , GND = 0V, $T_A = -40^{\circ}$ C to $85^{\circ}$ C

| Symbol          | Parameter                        | Test Conditions | Minimum | Typical | Maximum | Units |  |  |  |  |  |  |
|-----------------|----------------------------------|-----------------|---------|---------|---------|-------|--|--|--|--|--|--|
| V <sub>OD</sub> | Differential Output Voltage      |                 | 247     | 400     | 462     | mV    |  |  |  |  |  |  |
| $\Delta V_{OD}$ | V <sub>OD</sub> Magnitude Change |                 |         |         | 50      | mV    |  |  |  |  |  |  |
| V <sub>OS</sub> | Offset Voltage                   |                 | 1.00    | 1.12    | 1.21    | V     |  |  |  |  |  |  |
| $\Delta V_{OS}$ | V <sub>OS</sub> Magnitude Change |                 |         |         | 50      | mV    |  |  |  |  |  |  |

#### **Table 5. Crystal Characteristics**

| Parameter                          | Test Conditions | Minimum | Typical     | Maximum | Units |
|------------------------------------|-----------------|---------|-------------|---------|-------|
| Mode of Oscillation                |                 |         | Fundamental |         |       |
| Frequency                          |                 | 10      |             | 40      | MHz   |
| Equivalent Series Resistance (ESR) |                 |         |             | 50      | Ω     |
| Shunt Capacitance                  |                 |         |             | 7       | pF    |
| Capacitive Loading (CL)            |                 |         | 12          | 18      | pF    |

### **AC Electrical Characteristics**

| <b>Table 6A. AC Characteristics</b> | $V_{DD} = V_{D}$ | $_{DO} = 3.3V \pm 5\%$ | $T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$ |
|-------------------------------------|------------------|------------------------|------------------------------------------------|
|-------------------------------------|------------------|------------------------|------------------------------------------------|

| Symbol                          | Parameter                                                                     |                         | Test Conditions                     | Minimum | Typical | Maximum | Units |
|---------------------------------|-------------------------------------------------------------------------------|-------------------------|-------------------------------------|---------|---------|---------|-------|
|                                 |                                                                               |                         | Using External Crystal              | 10      |         | 40      | MHz   |
| f <sub>out</sub>                | Output Frequency                                                              | LVDS, LVPECL<br>Outputs |                                     |         |         | 2000    | MHz   |
| 001                             |                                                                               | HCSL Outputs            |                                     |         |         | 250     | MHz   |
|                                 |                                                                               | LVCMOS Output           |                                     |         |         | 250     | MHz   |
|                                 | Buffer Additive Phase                                                         |                         | SMODEA/B[1:0] = 00                  |         | 0.153   | 0.200   | ps    |
| t <sub>jit</sub>                | 156.25MHz Integratio<br>12kHz - 20MHz                                         | n Range                 | SMODEA/B[1:0] = 01                  |         | 0.163   | 0.200   | ps    |
|                                 | REF_SEL[1:0] = 00 o                                                           | r 01                    | SMODEA/B[1:0] = 10                  |         | 0.198   | 0.250   | ps    |
| tjit(Ø)                         | RMS Phase Jitter; 25<br>Integration Range: 10                                 |                         | REF_SEL[1:0] = 10 or 11             |         | 0.250   | 0.525   | ps    |
|                                 | Propagation Delay; C                                                          | K0. nCLK0 or            | SMODEA/B[1:0] = 00                  | 0.65    |         | 1.10    | ns    |
| t <sub>PD</sub>                 | CLK1, nCLK1 to any                                                            |                         | SMODEA/B[1:0] = 01                  | 0.59    |         | 1.15    | ns    |
|                                 | NOTE 1                                                                        |                         | SMODEA/B[1:0] = 10                  | 1.70    |         | 2.65    | ns    |
| <i>t</i> sk(o)                  | Output Skew; NOTE                                                             | 2, 3                    |                                     |         |         | 70      | ps    |
| <i>t</i> sk(pp)                 | Part-to-Part Skew; NO                                                         | DTE 3, 4                |                                     |         |         | 250     | ps    |
| V <sub>RB</sub>                 | Ring-back Voltage<br>Margin; NOTE 5, 6                                        | HCSL Outputs            |                                     | -100    |         | 100     | mV    |
| V <sub>MAX</sub>                | Voltage High;<br>NOTE 7, 8                                                    | HCSL Outputs            | HCSL Outputs                        |         |         | 920     | mV    |
| V <sub>MIN</sub>                | Voltage Low;<br>NOTE 7, 9                                                     | HCSL Outputs            | HCSL Outputs                        | -150    |         | +150    | mV    |
| V <sub>CROSS</sub>              | Absolute Crossing<br>Voltage;<br>NOTE 7, 10, 11                               | HCSL Outputs            | HCSL Outputs                        | 250     |         | 520     | mV    |
| $\Delta V_{CROSS}$              | Total Variation of<br>V <sub>CROSS</sub> over all<br>edges;<br>NOTE 7, 10, 12 | HCSL Outputs            | HCSL Outputs                        |         |         | 140     | mV    |
|                                 | Rise/Fall Edge Rate;<br>NOTE 13                                               | HCSL Outputs            | Measured between<br>150mV to +150mV | 0.6     |         | 4.0     | V/ns  |
| . /.                            |                                                                               | 1                       | SMODEA/B[1:0] = 00;<br>20% to 80%   | 60      | 200     | 310     | ps    |
| t <sub>R</sub> / t <sub>F</sub> | Output Rise/Fall Time                                                         |                         | SMODEA/B[1:0] = 01;<br>20% to 80%   | 40      | 170     | 300     | ps    |
| MUX_ISOLATION                   | MUX Isolation                                                                 |                         | 156.25MHz                           |         | 70      |         | dB    |

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All LVDS and LVPECL parameters characterized up to 1.5GHz. HCSL parameters characterized up to 250MHz.

NOTE 1: Measured from the differential input crosspoint to the differential output crosspoint.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential crosspoint. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential crosspoint. NOTE 5: Measurement taken from differential waveform.

Notes continued on next page.

NOTE 6:  $T_{STABLE}$  is the time the differential clock must maintain a minimum ± 150mV differential voltage after rising/falling edges before it is allowed to drop back into the V<sub>RB</sub> ±100mV differential range.

NOTE 7: Measurement taken from single-ended waveform.

NOTE 8: Defined as the maximum instantaneous voltage including overshoot. See Parameter Measurement Information Section.

NOTE 9: Defined as the minimum instantaneous voltage including undershoot. See Parameter Measurement Information Section.

NOTE 10: Measured at crosspoint where the instantaneous voltage value of the rising edge of Qx equals the falling edge of nQx.

NOTE 11: Refers to the total variation from the lowest crosspoint to the highest, regardless of which edge is crossing. Refers to all crosspoint for this measurement.

NOTE 12: Defined as the total variation of all crossing voltages of rising Qx and falling nQx, This is the maximum allowed variance in Vcross for any particular system.

NOTE 13: Measured from -150mV to +150mV on the differential waveform (Qx minus nQx). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.

#### Table 6B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$ , $V_{DDO} = 2.5V \pm 5\%$ , $T_A = -40^{\circ}C$ to $85^{\circ}C$

| Symbol                          | Parameter                                                            |                         | Test Conditions                     | Minimum | Typical | Maximum | Units |
|---------------------------------|----------------------------------------------------------------------|-------------------------|-------------------------------------|---------|---------|---------|-------|
|                                 |                                                                      |                         | Using External Crystal              | 10      |         | 40      | MHz   |
| fout                            | Output Frequency                                                     | LVDS, LVPECL<br>Outputs |                                     |         |         | 2000    | MHz   |
|                                 |                                                                      | HCSL Outputs            |                                     |         |         | 250     | MHz   |
|                                 |                                                                      | LVCMOS Output           |                                     |         |         | 250     | MHz   |
|                                 | Additive Phase Jitter: 15                                            | 56.25MHz                | SMODEA/B[1:0] = 00                  |         | 0.181   | 0.235   | ps    |
| t <sub>jit</sub>                | Integration Range: 12kl                                              | Hz - 20MHz              | SMODEA/B[1:0] = 01                  |         | 0.181   | 0.235   | ps    |
|                                 | REF_SEL[1:0] = 00 or 1                                               | 0                       | SMODEA/B[1:0] = 10                  |         | 0.200   | 0.250   | ps    |
| tjit(Ø)                         | RMS Phase Jitter; 25MI<br>Integration Range: 100F                    |                         | REF_SEL[1:0] = 10 or 11             |         | 0.258   | 0.525   | ps    |
|                                 | Propagation Delay; CLk                                               | (0. nCLK0 or            | SMODEA/B[1:0] = 00                  | 0.40    |         | 1.60    | ns    |
| t <sub>PD</sub>                 | CLK1, nCLK1 to any Q>                                                |                         | SMODEA/B[1:0] = 01                  | 0.57    |         | 1.10    | ns    |
|                                 | NOTE 1                                                               |                         | SMODEA/B[1:0] = 10                  | 1.75    |         | 2.85    | ns    |
| <i>t</i> sk(o)                  | Output Skew; NOTE 2,                                                 | 3                       |                                     |         |         | 70      | ps    |
| <i>t</i> sk(pp)                 | Part-to-Part Skew; NOT                                               | E 3, 4                  |                                     |         |         | 250     | ps    |
| V <sub>RB</sub>                 | Ring-back Voltage<br>Margin; NOTE 5, 6                               | HCSL Outputs            |                                     | -100    |         | 100     | mV    |
| V <sub>MAX</sub>                | Voltage High;<br>NOTE 7, 8                                           | HCSL Outputs            |                                     |         |         | 920     | mV    |
| V <sub>MIN</sub>                | Voltage Low;<br>NOTE 7, 9                                            | HCSL Outputs            |                                     | -150    |         | +150    | mV    |
| V <sub>CROSS</sub>              | Absolute Crossing<br>Voltage;<br>NOTE 7, 10, 11                      | HCSL Outputs            |                                     | 250     |         | 520     | mV    |
| $\Delta V_{CROSS}$              | Total Variation of V <sub>CROSS</sub> over all edges; NOTE 7, 10, 12 | HCSL Outputs            |                                     |         |         | 140     | mV    |
|                                 | Rise/Fall Edge Rate;<br>NOTE 13                                      | HCSL Outputs            | Measured between<br>150mV to +150mV | 0.6     |         | 4.0     | V/ns  |
| + /+                            | Output Diss/Fall Time                                                |                         | SMODEA/B[1:0] = 00;<br>20% to 80%   | 60      | 200     | 310     | ps    |
| t <sub>R</sub> / t <sub>F</sub> | Output Rise/Fall Time                                                |                         | SMODEA/B[1:0] = 01;<br>20% to 80%   | 40      | 170     | 300     | ps    |
| MUX_ISOLATION                   | MUX Isolation                                                        |                         | 156.25MHz                           |         | 70      |         | dB    |

Notes continued on next page.

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All LVDS and LVPECL parameters characterized up to 1.5GHz. HCSL parameters characterized up to 250MHz.

NOTE 1: Measured from the differential input crosspoint to the differential output crosspoint.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential crosspoint. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential crosspoint. NOTE 5: Measurement taken from differential waveform.

NOTE 6:  $T_{STABLE}$  is the time the differential clock must maintain a minimum ± 150mV differential voltage after rising/falling edges before it is allowed to drop back into the V<sub>RB</sub> ±100mV differential range.

NOTE 7: Measurement taken from single-ended waveform.

NOTE 8: Defined as the maximum instantaneous voltage including overshoot. See Parameter Measurement Information Section.

NOTE 9: Defined as the minimum instantaneous voltage including undershoot. See Parameter Measurement Information Section.

NOTE 10: Measured at crosspoint where the instantaneous voltage value of the rising edge of Qx equals the falling edge of nQx.

NOTE 11: Refers to the total variation from the lowest crosspoint to the highest, regardless of which edge is crossing. Refers to all crosspoint for this measurement.

NOTE 12: Defined as the total variation of all crossing voltages of rising Qx and falling nQx, This is the maximum allowed variance in Vcross for any particular system.

NOTE 13: Measured from -150mV to +150mV on the differential waveform (Qx minus nQx). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.

| Symbol                          | Parameter                                                            |                         | Test Conditions                     | Minimum | Typical                                                                                                                                                                                                                                                                                                                                                | Maximum                                                                                                                                      | Units |
|---------------------------------|----------------------------------------------------------------------|-------------------------|-------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                 |                                                                      |                         | Using External Crystal              | 10      |                                                                                                                                                                                                                                                                                                                                                        | 40                                                                                                                                           | MHz   |
| f <sub>out</sub>                | Output Frequency                                                     | LVDS, LVPECL<br>Outputs |                                     |         |                                                                                                                                                                                                                                                                                                                                                        | 2000                                                                                                                                         | MHz   |
|                                 |                                                                      | HCSL Outputs            |                                     |         |                                                                                                                                                                                                                                                                                                                                                        | 250                                                                                                                                          | MHz   |
|                                 |                                                                      | LVCMOS Output           |                                     |         |                                                                                                                                                                                                                                                                                                                                                        | 250                                                                                                                                          | MHz   |
|                                 | Additive Phase Jitter:15                                             | 6.25MHz                 | SMODEA/B[1:0] = 00                  |         | 0.159                                                                                                                                                                                                                                                                                                                                                  | 40<br>2000<br>250                                                                                                                            | ps    |
| t <sub>jit</sub>                | Integration Range 12kH                                               |                         | SMODEA/B[1:0] = 01                  |         | 0.173                                                                                                                                                                                                                                                                                                                                                  | 40<br>2000<br>250<br>250<br>0.205<br>0.215<br>0.250<br>0.510<br>1.15<br>1.15<br>2.90<br>70<br>250<br>100<br>920<br>+150<br>520<br>140<br>4.0 | ps    |
|                                 | REF_SEL[1:0] = 00 or 0                                               |                         |                                     |         | 0.211                                                                                                                                                                                                                                                                                                                                                  | 0.250                                                                                                                                        | ps    |
| tjit(Ø)                         | RMS Phase Jitter; 25M<br>Range: 100Hz - 1MHz                         | Hz Integration          | REF_SEL[1:0] = 10 or 11             |         | 0.254                                                                                                                                                                                                                                                                                                                                                  | 0.510                                                                                                                                        | ps    |
|                                 | Propagation Delay; CL                                                | (0. nCLK0 or            | SMODEA/B[1:0] = 00                  | 0.68    |                                                                                                                                                                                                                                                                                                                                                        | 1.15                                                                                                                                         | ns    |
| t <sub>PD</sub>                 | CLK1, nCLK1 to any Q                                                 |                         | SMODEA/B[1:0] = 01                  | 0.56    |                                                                                                                                                                                                                                                                                                                                                        | 1.15                                                                                                                                         | ns    |
|                                 | NOTE 1                                                               |                         | SMODEA/B[1:0] = 10                  | 1.79    | 40           2000           250           250           250           0.159           0.159           0.205           0.173           0.211           0.254           0.510           1.15           1.15           2.90           70           250           100           920           +150           520           140           200           310 | ns                                                                                                                                           |       |
| <i>t</i> sk(o)                  | Output Skew; NOTE 2,                                                 | 3                       |                                     |         |                                                                                                                                                                                                                                                                                                                                                        | 70                                                                                                                                           | ps    |
| <i>t</i> sk(pp)                 | Part-to-Part Skew; NOT                                               | E 3, 4                  |                                     |         |                                                                                                                                                                                                                                                                                                                                                        | 250                                                                                                                                          | ps    |
| V <sub>RB</sub>                 | Ring-back Voltage<br>Margin; NOTE 5, 6                               | HCSL Outputs            |                                     | -100    |                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                          | mV    |
| V <sub>MAX</sub>                | Voltage High;<br>NOTE 7, 8                                           | HCSL Outputs            |                                     |         |                                                                                                                                                                                                                                                                                                                                                        | 920                                                                                                                                          | mV    |
| V <sub>MIN</sub>                | Voltage Low;<br>NOTE 7, 9                                            | HCSL Outputs            |                                     | -150    |                                                                                                                                                                                                                                                                                                                                                        | +150                                                                                                                                         | mV    |
| V <sub>CROSS</sub>              | Absolute Crossing<br>Voltage;<br>NOTE 7, 10, 11                      | HCSL Outputs            |                                     | 250     |                                                                                                                                                                                                                                                                                                                                                        | 520                                                                                                                                          | mV    |
| $\Delta V_{CROSS}$              | Total Variation of V <sub>CROSS</sub> over all edges; NOTE 7, 10, 12 | HCSL Outputs            |                                     |         |                                                                                                                                                                                                                                                                                                                                                        | 140                                                                                                                                          | mV    |
|                                 | Rise/Fall Edge Rate;<br>NOTE 13                                      | HCSL Outputs            | Measured between<br>150mV to +150mV | 0.6     |                                                                                                                                                                                                                                                                                                                                                        | 4.0                                                                                                                                          | V/ns  |
| + /+                            |                                                                      | 1                       | SMODEA/B[1:0] = 00;<br>20% to 80%   | 60      | 200                                                                                                                                                                                                                                                                                                                                                    | 310                                                                                                                                          | ps    |
| t <sub>R</sub> / t <sub>F</sub> | Output Rise/Fall Time                                                |                         | SMODEA/B[1:0] = 01;<br>20% to 80%   | 40      | 170                                                                                                                                                                                                                                                                                                                                                    | 300                                                                                                                                          | ps    |
| MUX_ISOLATION                   | MUX Isolation                                                        |                         | 156.25MHz                           |         | 70                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              | dB    |

### **Table 6C. AC Characteristics,** $V_{DD} = V_{DDO} = 2.5V \pm 5\%$ , $T_A = -40^{\circ}C$ to $85^{\circ}C$

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All LVDS and LVPECL parameters characterized up to 1.5GHz. HCSL parameters characterized up to 250MHz.

NOTE 1: Measured from the differential input crosspoint to the differential output crosspoint.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential crosspoint. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential crosspoint. NOTE 5: Measurement taken from differential waveform.

NOTE 6:  $T_{STABLE}$  is the time the differential clock must maintain a minimum ± 150mV differential voltage after rising/falling edges before it is allowed to drop back into the V<sub>RB</sub> ±100mV differential range.

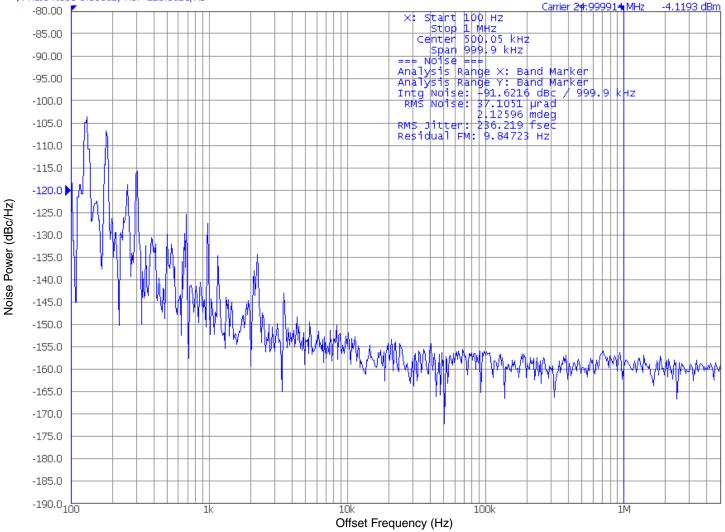
Notes continued on next page.

NOTE 7: Measurement taken from single-ended waveform.

NOTE 8: Defined as the maximum instantaneous voltage including overshoot. See Parameter Measurement Information Section.

NOTE 9: Defined as the minimum instantaneous voltage including undershoot. See Parameter Measurement Information Section.

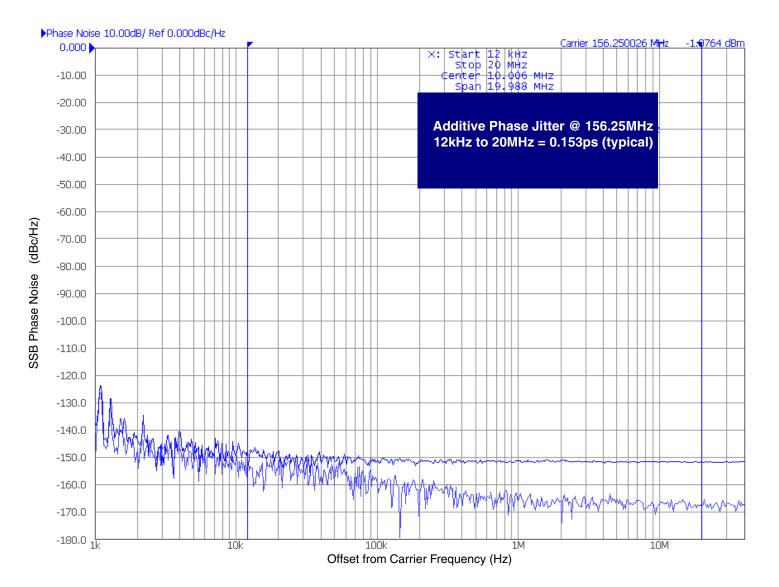
NOTE 10: Measured at crosspoint where the instantaneous voltage value of the rising edge of Qx equals the falling edge of nQx.


NOTE 11: Refers to the total variation from the lowest crosspoint to the highest, regardless of which edge is crossing. Refers to all crosspoint for this measurement.

NOTE 12: Defined as the total variation of all crossing voltages of rising Qx and falling nQx, This is the maximum allowed variance in Vcross for any particular system.

NOTE 13: Measured from -150mV to +150mV on the differential waveform (Qx minus nQx). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing

### Typical Phase Noise at 25MHz

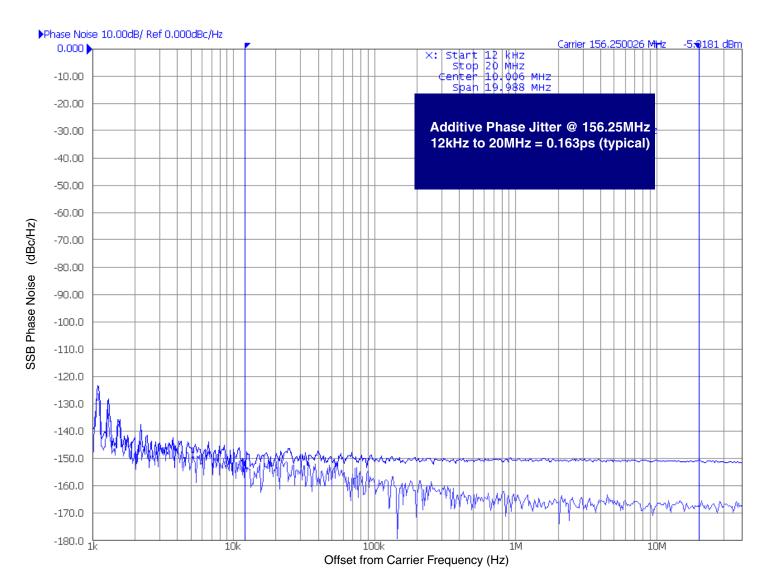

#### ▶Phase Noise 5.000dB/ Ref -120.0dBc/Hz



### Additive Phase Jitter (LVPECL, 3.3V)

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a

ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

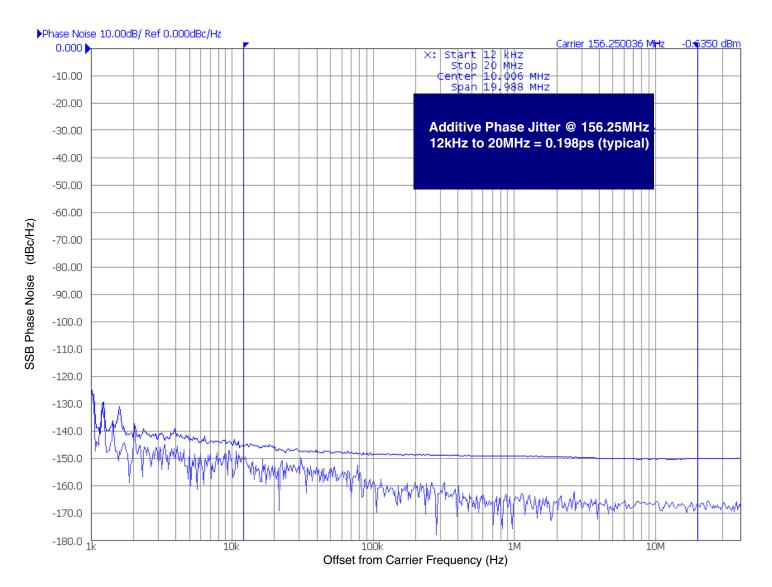



As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. The additive phase jitter is dependent on the input source and measurement equipment. The additive phase jitter for this device was measured using a Wenzel 156.25MHz oscillator as the input source and an Agilent E5052 Signal Source Analyzer.

### Additive Phase Jitter (LVDS, 3.3V)

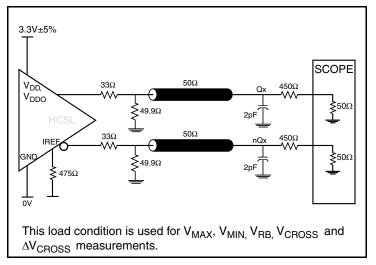
The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a

ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

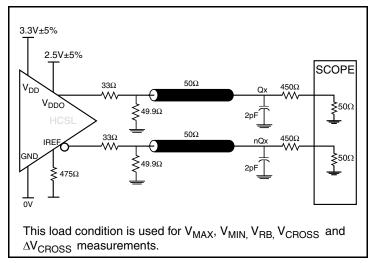



As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. The additive phase jitter is dependent on the input source and measurement equipment. The additive phase jitter for this device was measured using a Wenzel 156.25MHz oscillator as the input source and an Agilent E5052 Signal Source Analyzer.

### Additive Phase Jitter (HCSL, 3.3V)

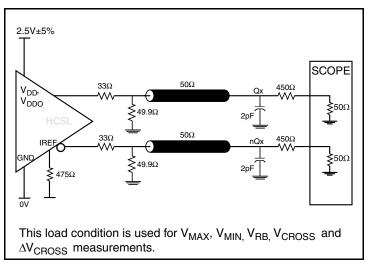

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a

ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

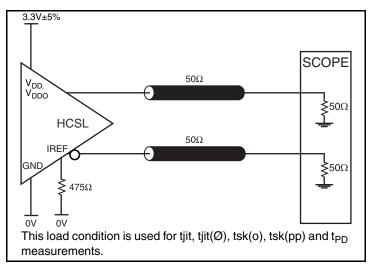




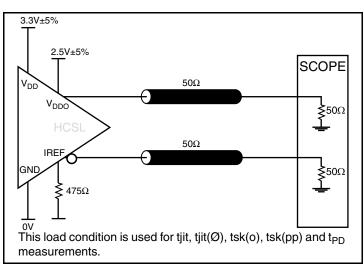
As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. The additive phase jitter is dependent on the input source and measurement equipment. The additive phase jitter for this device was measured using a Wenzel 156.25MHz oscillator as the input source and an Agilent E5052 Signal Source Analyzer.


### Parameter Measurement Information

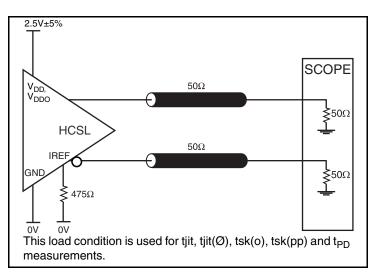



### 3.3V Core/3.3V HCSL Output Load Test Circuit



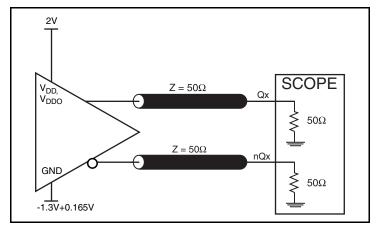




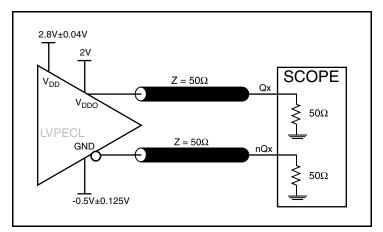


### 2.5V Core/2.5V HCSL Output Load Test Circuit



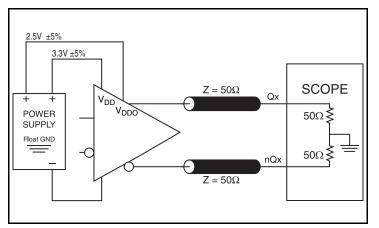
### 3.3V Core/3.3V HCSL Output Load Test Circuit



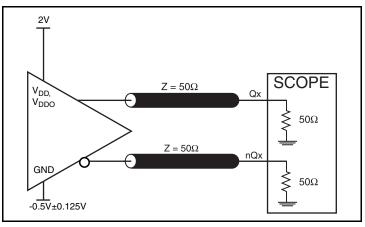

### 3.3V Core/2.5V HCSL Output Load Test Circuit



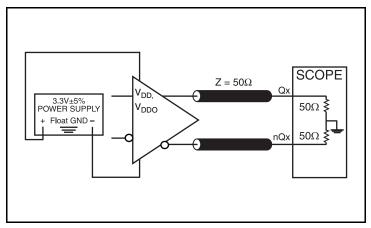

### 3.3V Core/2.5V HCSL Output Load Test Circuit


IDT8T39S10NLGI REVISION A MARCH 18. 2014

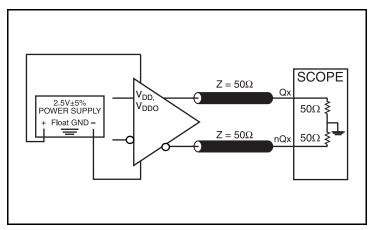



3.3V Core/3.3V LVPECL Output Load Test Circuit

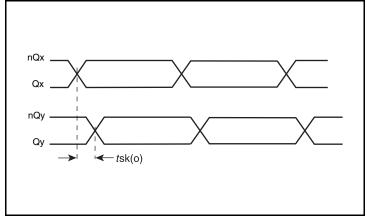



3.3V Core/2.5V LVPECL Output Load Test Circuit

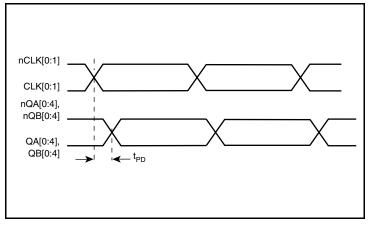


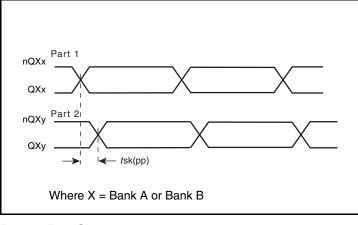

3.3V Core/2.5V LVDS Output Load Test Circuit



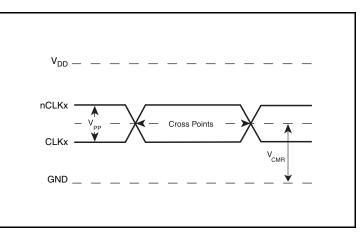

2.5V Core/2.5V LVPECL Output Load Test Circuit



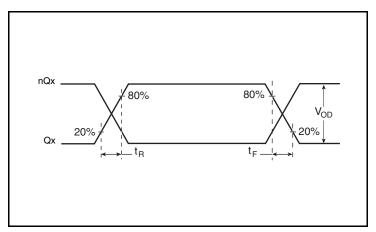

3.3V Core/3.3V LVDS Output Load Test Circuit




2.5V Core/2.5V LVDS Output Load Test Circuit

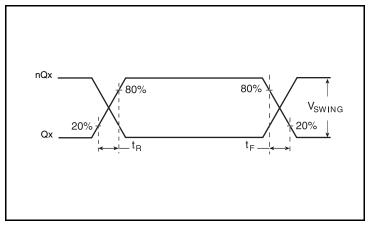



### Output Skew

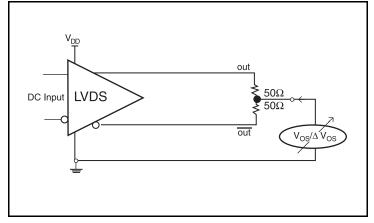




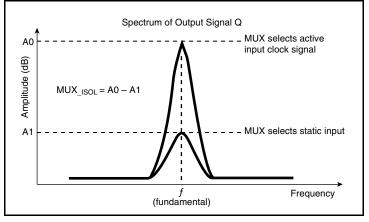


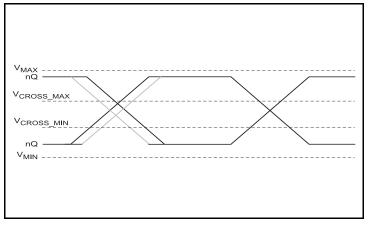

### Propagation Delay



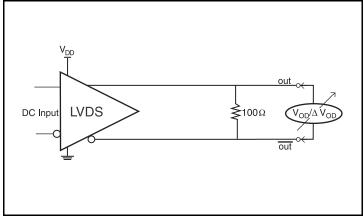

LVDS Output Rise/Fall Time


**Differential Input Levels** 

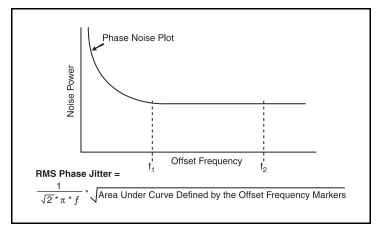


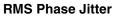

### LVPECL Output Rise/Fall Time

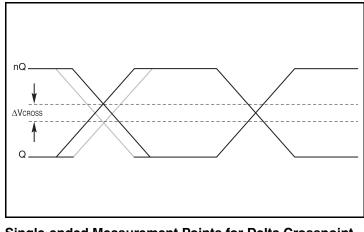



### **Offset Voltage Setup**

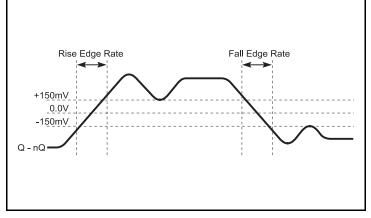



**MUX** Isolation

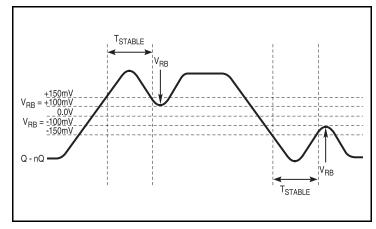




Single-ended Measurement Points for Absolute Crosspoint/Swing




**Differential Output Voltage Setup** 








Single-ended Measurement Points for Delta Crosspoint



Differential Measurement Points for Rise/Fall Edge Rate



**Differential Measurement Points for Ringback** 

### **Applications Information**

### **Recommendations for Unused Input and Output Pins**

### Inputs:

#### CLK/nCLK Inputs

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a  $1k\Omega$  resistor can be tied from CLK to ground.

#### **Crystal Inputs**

For applications not requiring the use of the crystal oscillator input, both XTAL\_IN and XTAL\_OUT can be left floating. Though not required, but for additional protection, a  $1k\Omega$  resistor can be tied from XTAL\_IN to ground.

### **LVCMOS Control Pins**

All control pins have internal pulldowns; additional resistance is not required but can be added for additional protection. A  $1k\Omega$  resistor can be used.

### Outputs:

#### LVCMOS Outputs

All unused LVCMOS output can be left floating We recommend that there is no trace attached.

#### **Differential Outputs**

All unused differential outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

#### **LVPECL** Outputs

All unused LVPECL output pairs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

#### **LVDS Outputs**

All unused LVDS output pairs can be either left floating or terminated with 100 $\Omega$  across. If they are left floating, we recommend that there is no trace attached.

### **Crystal Input Interface**

The IDT8T39S10I has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 1* below were determined using an 18pF parallel resonant crystal and were chosen to minimize the ppm error. In addition, the recommended 12pF parallel resonant crystal tuning is shown in Figure 2.The optimum C1 and C2 values can be slightly adjusted for different board layouts.

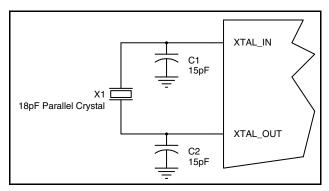



Figure 1. Crystal Input Interface

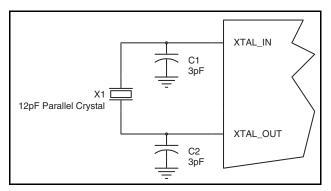



Figure 2. Crystal Input Interface

### **Overdriving the XTAL Interface**

The XTAL\_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL\_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/ns. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. *Figure 3A* shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This

can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most  $50\Omega$  applications, R1 and R2 can be  $100\Omega$ . This can also be accomplished by removing R1 and changing R2 to  $50\Omega$ . The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver. *Figure 3B* shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL\_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

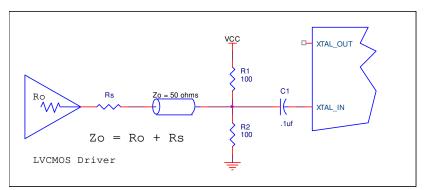



Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface

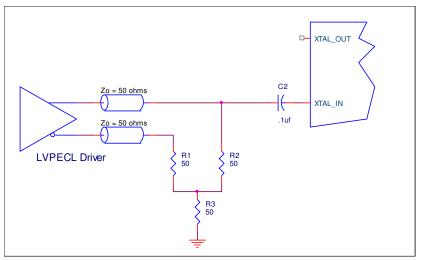



Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface