

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







### **Features**

- · Complete Touchscreen Module:
  - Projected Capacitive Multi Touch Controller
  - 7in LCD
  - 4 Capacitive "Navigation" Keys
  - 200 bytes non-volatile serial EEPROM
- · Touch:
  - Atmel maXTouch™ mXT768E Touch Controller
  - Supports up to 10 touches
- Display:
  - 800x480 resolution
  - ≤30 ms response time
  - White LED backlight
  - 18-bit RGB
- Navigation Keys:
  - Atmel AT42QT1070 QTouch™ Button Sensor IC
- Cover Panel:
  - 1.1mm Soda Lime Glass



# PDA TM7000: 7in PCAP Touch Module





Visit <a href="http://www.pdaatl.com/tm7000">http://www.pdaatl.com/tm7000</a> for the latest information on the TM7000



1404-3-5



# **Contents**

| 1 | Modu  | ule Overview                               | 4  |
|---|-------|--------------------------------------------|----|
|   | 1.1   | PCB Connections                            | 4  |
|   | 1.2   | Debug Connector J1                         | 5  |
|   | 1.3   | LCD Backlight Power J2                     | 5  |
|   | 1.4   | Host Connector J4                          | 6  |
|   | 1.5   | Host Connector J5                          | 7  |
|   | 1.6   | Host Interface (Combined) J6               | 8  |
|   | 1.7   | Display Flex Connector J8                  | 9  |
|   | 1.8   | Touch Sensor Flex Connector J7             | 10 |
| 2 | Over  | view of the 7in PCAP Touch Module          | 11 |
|   | 2.1   | Introduction                               | 11 |
|   | 2.2   | Understanding Unfamiliar Concepts          | 12 |
|   | 2.3   | LCD Panel                                  | 12 |
|   | 2.3.1 | Scan Direction Selection                   | 12 |
|   | 2.3.2 | RGB Signal Routing                         | 13 |
|   | 2.4   | maXTouch Capacitive Touchscreen Controller | 14 |
|   | 2.4.1 | maXTouch Controller Interface              | 15 |
|   | 2.5   | QTouch Capacitive Button Controller        | 15 |
|   | 2.5.1 | QTouch Controller Interface                | 15 |
|   | 2.6   | Serial EEPROM                              | 15 |
| 3 | Getti | ng Started                                 | 16 |
|   | 3.1   | Hardware Connections                       | 16 |
|   | 3.2   | Software                                   | 16 |
|   | 3.3   | Using the Touch Module                     | 16 |
|   | 3.3.1 | Navigation Keys                            | 16 |
|   | 3.3.2 | Evaluating the Touch Module                | 17 |
| 4 | Spec  | ifications                                 | 18 |
|   | 4.1   | Mechanical Specifications                  | 18 |
|   | 4.2   | Absolute Maximum Specifications            | 20 |
|   | 4.3   | Recommended Operating Conditions           | 20 |
|   | 4.4   | DC Specifications                          | 20 |
|   | 4.5   | I2C-compatible Bus Specifications          | 21 |
|   | 4.6   | Power Consumption                          | 21 |
|   | 4.7   | Part Number                                | 21 |
| 5 | I2C E | Basics (I2C-compatible Operation)          | 22 |

### PDA TM7000: 7in PCAP Touch Module

|   | 5.1  | Interface Bus                                        | 22 |
|---|------|------------------------------------------------------|----|
|   | 5.2  | Transferring Data Bits                               | 22 |
|   | 5.3  | START and STOP Conditions                            | 22 |
|   | 5.4  | Address Byte Format                                  | 23 |
|   | 5.5  | Data Byte Format                                     | 23 |
|   | 5.6  | Combining Address and Data Bytes into a Transmission | 24 |
| 6 | Revi | sion History                                         | 25 |
| 7 | Note | S                                                    | 26 |





### 1 Module Overview

### 1.1 PCB Connections

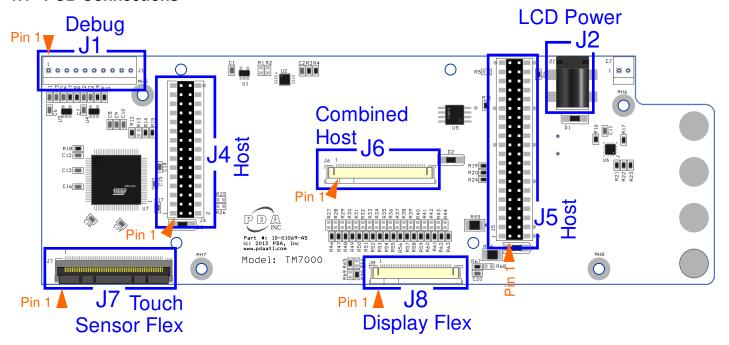



Figure 1 - PCB Connectors

NOTE: Insert flex in Connector J6 with contacts facing DOWN.

The following notations are used for pin descriptions:

| I   | Input only             | OD  | Open drain output        |
|-----|------------------------|-----|--------------------------|
| 0   | Output only, push-pull | Р   | Ground or power          |
| MXT | maXTouch touchscreen   | QT  | QTouch Button Controller |
| EE  | Serial EEPROM          | LCD | LCD Panel                |

NOTE: Inputs and output are defined from the standpoint of the Touch Module.

### 1.2 Debug Connector J1

Connector J1 carries signals used to debug the MaXTouch Touch Controller and QTouch Button Controller.

| Pin | Туре | Description          | MXT | αт |
|-----|------|----------------------|-----|----|
| 1   | Р    | +5Vdc                |     |    |
| 2   | 0    | ~QT_CHG              |     | •  |
| 3   | 0    | ~MXT_CHG             | •   |    |
| 4   | -    | N/C                  |     |    |
| 5   | 1    | I <sup>2</sup> C SDA | •   | •  |

| Pin | Туре | Description          | MXT | QT |
|-----|------|----------------------|-----|----|
| 6   | 1/0  | I <sup>2</sup> C SCL | •   | •  |
| 7   | -    | N/C                  |     |    |
| 8   | Р    | GND                  |     |    |
| 9   | 0    | DBG DATA             | •   |    |
| 10  | 0    | DBG CLK              | •   |    |

### 1.3 LCD Backlight Power J2

Connector J2 is used to provide +5Vdc system and LCD backlight power to the touch module when the <u>Connector J6</u> host interface is being used. The host interface on connector <u>J6</u> only provides +3.3Vdc system power. By contrast, when the TM7000 is connected to the host via connectors <u>J4</u> and <u>J5</u>, system power and LCD backlight power is provided through those interfaces.



NOTE: J2 should NOT be used when J4 and J5 are in use.

The mating connector for J2 is a 2.1mm I.D x 5.5mm O.D barrel connector (center positive). A +5Vdc supply rated for 1A minimum should connected to J2.

Suggested power supplies:

- Phihong PSC12R-050, (+5Vdc, 2A)
- Phihong PSAC05R-050(P), (+5Vdc, 1A)





### 1.4 Host Connector J4

Connector J4 connects to the host and carries signals between the host and (1) the MaXTouch Touch Controller, (2) the QTouch Button Controller and (3) LCD Panel.



NOTE: J4 (and J5) should not be used when J6 is in use.

J2 should not be used when J4 (and J5) are in use.

| Pin | Туре | Description          | MXT | ГСБ | αт | H |
|-----|------|----------------------|-----|-----|----|---|
| 1   | Р    | +3.3Vdc              |     |     |    |   |
| 2   | Р    | GND                  | •   |     |    |   |
| 3   | Р    | +3.3Vdc              |     |     |    |   |
| 4   | Р    | GND                  |     |     |    |   |
| 5   | 0    | ~MXT_CHG             | •   |     |    |   |
| 6   | 0    | ~QT_CHG              |     |     | •  |   |
| 7   | I    | I <sup>2</sup> C SCL | •   |     | •  |   |
| 8   | I/O  | I <sup>2</sup> C SDA | •   |     | •  |   |
| 9   | Р    | GND                  |     |     |    |   |
| 10  | I    | LCD_DATA_15          |     | •   |    |   |
| 11  | Р    | GND                  |     |     |    |   |
| 12  | I    | LCD_DATA_13          |     | •   |    |   |
| 13  | Р    | GND                  |     |     |    |   |
| 14  | I    | LCD_DATA_14          |     | •   |    |   |
| 15  | Р    | GND                  |     |     |    |   |

| Pin | Туре | Description | MXT | TCD | QT | EE |
|-----|------|-------------|-----|-----|----|----|
| 16  | ı    | LCD_DATA_12 |     | •   |    |    |
| 17  | Р    | GND         |     |     |    |    |
| 18  | I    | LCD_DATA_0  |     | •   |    |    |
| 19  | ı    | LCD_DATA_1  |     | •   |    |    |
| 20  | I    | LCD_DATA_2  |     | •   |    |    |
| 21  | ı    | LCD_DATA_3  |     | •   |    |    |
| 22  | I    | LCD_DATA_4  |     | •   |    |    |
| 23  | ı    | LCD_DATA_5  |     | •   |    |    |
| 24  | I    | LCD_DATA_6  |     | •   |    |    |
| 25  | I    | LCD_DATA_7  |     | •   |    |    |
| 26  | I    | LCD_DATA_8  |     | •   |    |    |
| 27  | ı    | LCD_DATA_9  |     | •   |    |    |
| 28  | I    | LCD_DATA_10 |     | •   |    |    |
| 29  | ı    | LCD_DATA_11 |     | •   |    |    |
| 30  | Р    | GND         |     |     |    |    |

### 1.5 Host Connector J5

Connector J5 connects to the host and carries signals between the host and (1) the LCD Panel and (2) serial EEPROM.



NOTE: J5 (and J4) should not be used when J6 is in use.

J2 should not be used when J5 (and J4) are in use.

|     |      | <del></del>           | •   |     | •  |    |
|-----|------|-----------------------|-----|-----|----|----|
| Pin | Туре | Description           | MXT | CCD | αт | 33 |
| 1   | Р    | +5Vdc                 |     |     |    |    |
| 2   | Р    | GND                   |     |     |    |    |
| 3   | Р    | +5Vdc                 |     |     |    |    |
| 4   | Р    | GND                   |     |     |    |    |
| 5   | I    | LCD_DATA_16           |     | •   |    |    |
| 6   | I    | LCD_DATA_17           |     | •   |    |    |
| 7   | I    | LCD_DATA_18           |     | •   |    |    |
| 8   | I    | LCD_DATA_19           |     | •   |    |    |
| 9   | I    | LCD_DATA_20           |     | •   |    |    |
| 10  | I    | LCD_DATA_21           |     | •   |    |    |
| 11  | I    | LCD_DATA_22           |     | •   |    |    |
| 12  | I    | LCD_DATA_23           |     | •   |    |    |
| 13  | Р    | GND                   |     |     |    |    |
| 14  | Р    | GND                   |     |     |    |    |
| 15  | I    | DISP (Display Enable) |     | •   |    |    |
| 16  | I    | Backlight PWM         |     | •   |    |    |
| 17  | I    | VSYNC                 |     | •   |    |    |
| 18  | I    | HSYNC                 |     | •   |    |    |
| 19  | I    | DE                    |     | •   |    |    |
| 20  | I    | PCLK                  |     | •   |    |    |

| Pin | Tyrno | Description                           | MXT | ГСБ | T  | H |
|-----|-------|---------------------------------------|-----|-----|----|---|
|     | Туре  | · · · · · · · · · · · · · · · · · · · | Σ   | 7   | QT | Ξ |
| 21  | Р     | GND                                   |     |     |    |   |
| 22  | Р     | GND                                   |     |     |    |   |
| 23  | -     | N/C                                   |     |     |    |   |
| 24  | -     | N/C                                   |     |     |    |   |
| 25  | -     | N/C                                   |     |     |    |   |
| 26  | -     | N/C                                   |     |     |    |   |
| 27  | -     | N/C                                   |     |     |    |   |
| 28  | I/O   | One-Wire Interface                    |     |     |    | • |
| 29  | Р     | GND                                   |     |     |    |   |
| 30  | Р     | GND                                   |     |     |    |   |
| 31  | -     | N/C                                   |     |     |    |   |
| 32  | -     | N/C                                   |     |     |    |   |
| 33  | -     | N/C                                   |     |     |    |   |
| 34  | -     | N/C                                   |     |     |    |   |
| 35  | -     | N/C                                   |     |     |    |   |
| 36  | 0     | Module Presence Detect                |     |     |    |   |
| 37  | -     | N/C – See Note 1                      |     |     |    |   |
| 38  | -     | N/C                                   |     |     |    |   |
| 39  | Р     | GND                                   |     |     |    |   |
| 40  | Р     | GND                                   |     |     |    |   |

Note 1: by populating R5, the touch module's ~RESET signal is accessible at this pin.





### 1.6 Host Interface (Combined) J6

Connector J6 connects to the host and carries the combined signals of  $\underline{\mathsf{J4}}$  and  $\underline{\mathsf{J5}}$ . It provides an alternate interface between the host and (1) the MaXTouch Touch Controller, (2) the QTouch Button Controller, (3) LCD Panel, and (4) serial EEPROM.

When the host interface on connector J6 is used, +5Vdc system power must be provided using Connector J2. See Section 1.3 for details.

Suggested Flex:

Manufacturer P/N: Wurth Electronics #687 650 100 002 Description: 0.5mm pitch 50 position FFC, Length 100mm

Flex should be inserted Connector J6 with contacts facing DOWN.

NOTE: J6 should not be used when J4 and J5 are in use.

| Pin | Туре | Description        | MXT | ГСБ | αт | 33 |
|-----|------|--------------------|-----|-----|----|----|
| 1   | I/O  | One-Wire Interface |     |     |    | •  |
| 2   | Р    | GND                |     |     |    |    |
| 3   | I    | LCD_DATA_0         |     | •   |    |    |
| 4   | I    | LCD_DATA_1         |     | •   |    |    |
| 5   | I    | LCD_DATA_2         |     | •   |    |    |
| 6   | ı    | LCD_DATA_3         |     | •   |    |    |
| 7   | Р    | GND                |     |     |    |    |
| 8   | ı    | LCD_DATA_4         |     | •   |    |    |
| 9   | I    | LCD_DATA_5         |     | •   |    |    |
| 10  | ı    | LCD_DATA_6         |     | •   |    |    |
| 11  | I    | LCD_DATA_7         |     | •   |    |    |
| 12  | Р    | GND                |     |     |    |    |
| 13  | I    | LCD_DATA_8         |     | •   |    |    |
| 14  | I    | LCD_DATA_9         |     | •   |    |    |
| 15  | I    | LCD_DATA_10        |     | •   |    |    |
| 16  | ı    | LCD_DATA_11        |     | •   |    |    |
| 17  | Р    | GND                |     |     |    |    |
| 18  | I    | LCD_DATA_12        |     | •   |    |    |
| 19  | I    | LCD_DATA_13        |     | •   |    |    |
| 20  | I    | LCD_DATA_14        |     | •   |    |    |
| 21  | I    | LCD_DATA_15        |     | •   |    |    |
| 22  | Р    | GND                |     |     |    |    |
| 23  | I    | LCD_DATA_16        |     | •   |    |    |
| 24  | I    | LCD_DATA_17        |     | •   |    |    |
| 25  | I    | LCD_DATA_18        |     | •   |    |    |

| Pin | Туре | Description          | MXT | TCD | αт | 33 |
|-----|------|----------------------|-----|-----|----|----|
| 26  | I    | LCD_DATA_19          |     | •   |    |    |
| 27  | Р    | GND                  |     |     |    |    |
| 28  | I    | LCD_DATA_20          |     | •   |    |    |
| 29  | I    | LCD_DATA_21          |     | •   |    |    |
| 30  | I    | LCD_DATA_22          |     | •   |    |    |
| 31  | I    | LCD_DATA_23          |     | •   |    |    |
| 32  | Р    | GND                  |     |     |    |    |
| 33  |      | PCLK                 |     | •   |    |    |
| 34  | I    | VSYNC                |     | •   |    |    |
| 35  | I    | HSYNC                |     | •   |    |    |
| 36  | I    | DE                   |     | •   |    |    |
| 37  | -    | N/C                  |     |     |    |    |
| 38  | -    | N/C                  |     |     |    |    |
| 39  | -    | N/C                  |     |     |    |    |
| 40  | -    | N/C                  |     |     |    |    |
| 41  |      | DISP                 |     | •   |    |    |
| 42  | I    | I <sup>2</sup> C SDA | •   |     | •  |    |
| 43  | I/O  | I <sup>2</sup> C SCL | •   |     | •  |    |
| 44  | 0    | ~MXT_CHG             | •   |     |    |    |
| 45  | 0    | ~QT_CHG              |     |     | •  |    |
| 46  | I    | LCD_PWM              |     | •   |    |    |
| 47  | I    | ~RESET               | •   |     | •  |    |
| 48  | Р    | +3.3Vdc              |     |     |    |    |
| 49  | Р    | +3.3Vdc              |     |     |    |    |
| 50  | Р    | GND                  |     |     |    |    |

# 1.7 Display Flex Connector J8

Connector J8 connects to the LCD panel flex and carries signals between the host and the LCD Panel.

| Pin | Туре | Description |
|-----|------|-------------|
| 1   | 0    | U/D         |
| 2   | 0    | L/R         |
| 3   | Р    | GND         |
| 4   | 0    | PCLK        |
| 5   | Р    | GND         |
| 6   | 0    | R0          |
| 7   | 0    | R1          |
| 8   | 0    | R2          |
| 9   | Р    | GND         |
| 10  | 0    | R3          |
| 11  | 0    | R4          |
| 12  | 0    | R5          |
| 13  | Р    | GND         |
| 14  | 0    | G0          |
| 15  | 0    | G1          |
| 16  | 0    | G2          |
| 17  | Р    | GND         |
| 18  | 0    | G3          |
| 19  | 0    | G4          |
| 20  | 0    | G5          |

| Pin | Туре | Description |
|-----|------|-------------|
| 21  | Р    | GND         |
| 22  | 0    | B0          |
| 23  | 0    | B1          |
| 24  | 0    | B2          |
| 25  | Р    | GND         |
| 26  | 0    | B3          |
| 27  | 0    | B4          |
| 28  | 0    | B5          |
| 29  | Р    | GND         |
| 30  | 0    | HSYNC       |
| 31  | 0    | VSYNC       |
| 32  | 0    | DE          |
| 33  | 0    | MODE        |
| 34  | Р    | +3.3Vdc     |
| 35  | Р    | +3.3Vdc     |
| 36  | Р    | LED-        |
| 37  | Р    | LED-        |
| 38  | 0    | LCD_PWM     |
| 39  | Р    | LED+        |
| 40  | Р    | LED+        |





### 1.8 Touch Sensor Flex Connector J7

Connector J7 connects to the touch sensor flex and carries signals used by the maXTouch controller to detect user input on the touch sensor.

| Pin | Туре | Description |
|-----|------|-------------|
| 1   | Р    | GND         |
| 2   | I/O  | X0          |
| 3   | I/O  | X1          |
| 4   | I/O  | X2          |
| 5   | I/O  | X3          |
| 6   | I/O  | X4          |
| 7   | I/O  | X5          |
| 8   | I/O  | X6          |
| 9   | I/O  | X7          |
| 10  | I/O  | X8          |
| 11  | I/O  | X9          |
| 12  | I/O  | X10         |
| 13  | I/O  | X11         |
| 14  | I/O  | X12         |
| 15  | I/O  | X13         |
| 16  | I/O  | X14         |
| 17  | I/O  | X15         |
| 18  | I/O  | X16         |
| 19  | I/O  | X17         |
| 20  | I/O  | X18         |
| 21  | Р    | GND         |
| 22  | I/O  | Y0          |
| 23  | I/O  | Y1          |
| 24  | I/O  | Y2          |
| 25  | I/O  | Y3          |
| 26  | I/O  | Y4          |
| 27  | I/O  | Y5          |
| 28  | I/O  | Y6          |

| Pin | Туре | Description |
|-----|------|-------------|
| 29  | I/O  | Y7          |
| 30  | I/O  | Y8          |
| 31  | I/O  | Y9          |
| 32  | I/O  | Y10         |
| 33  | I/O  | Y11         |
| 34  | I/O  | Y12         |
| 35  | I/O  | Y13         |
| 36  | I/O  | Y14         |
| 37  | I/O  | Y15         |
| 38  | I/O  | Y16         |
| 39  | I/O  | Y17         |
| 40  | I/O  | Y18         |
| 41  | I/O  | Y19         |
| 42  | I/O  | Y20         |
| 43  | I/O  | Y21         |
| 44  | I/O  | Y22         |
| 45  | I/O  | Y23         |
| 46  | I/O  | Y24         |
| 47  | I/O  | Y25         |
| 48  | I/O  | Y26         |
| 49  | I/O  | Y27         |
| 50  | I/O  | Y28         |
| 51  | I/O  | Y29         |
| 52  | I/O  | Y30         |
| 53  | I/O  | Y31         |
| 54  | Р    | GND         |
| 55  | Р    | GND         |

### 2 Overview of the 7in PCAP Touch Module

#### 2.1 Introduction

The 7in PCAP Touch Module is a touchscreen module offering best-in-class projected capacitance multi-touch functionality combined with a 7in LCD panel. The module is configured for development and evaluation with several Atmel ARM-based EK solutions as well as development and integration with a custom host system.

For convenience, this module features host interface connectors ( $\underline{\mathsf{J4}}$  and  $\underline{\mathsf{J5}}$ ) positioned for direct installation on Atmel ARM-based EK boards.

As shown in Figure 2 below, the module provides host access to several sub-system components to maximize effective integration.

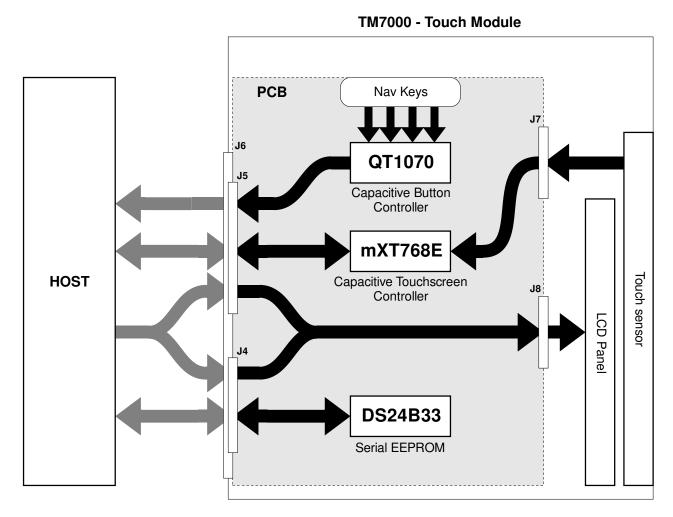



Figure 2 - Functional Block Diagram



### 2.2 Understanding Unfamiliar Concepts

Throughout this document, the functionality of the module sub-system will be outlined and summarized. However, the user is encouraged to refer to the resources and documents below in order to gain a more thorough understanding of each sub-system.

- For a basic overview of I<sup>2</sup>C communication, refer to <u>Section</u> 5 of this document
- Atmel maXTouch mXT768E Datasheet (<u>www.atmel.com</u>)
- Atmel QTouch QT1070 Datasheet (www.atmel.com)
- Maxim DS24B33 Datasheet (<u>www.maximintegrated.com</u>)

In addition, when developing or evaluating with the Atmel ARM-based EK's, it is recommended that the user visit <a href="https://www.at91.com">www.at91.com</a> which contains a broad range of resources for the EK's and the ARM devices they feature.

#### 2.3 LCD Panel

The module provides the host with a direct connection from the host (<u>Connector J6</u> or <u>Connectors J4</u> and <u>J5</u>) to the LCD panel interface (<u>Connector J8</u>). Aside from generating supply voltages for the LED backlight and providing backlight control to the host, no display panel control is performed by the module.

#### 2.3.1 Scan Direction Selection

The touch module provides a means for configuring the scan direction of the LCD by populating resistors indicated in Figure 3 below.

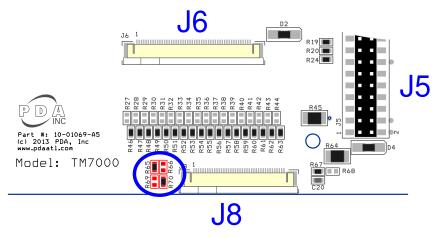



Figure 3 - LCD Scan Direction Configuration Resistors

The LCD panel Up/Down scanning direction is configured by populating R69 and R65 as shown in Table 2-1 below. The LCD panel Left/Right scanning direction is configured by populating R70 and R69 as shown in Table 2-2 below.

Table 2-1 - LCD Up/Down Scanning Selection

| R69 | R65 | Direction |
|-----|-----|-----------|
| 0 Ω | DNP | Up        |
| DNP | 0 Ω | Down      |

Note: Factory setting is scanning "Down"

Table 2-2 - LCD Left/Right Scanning Selection

| R70 | R66 | Direction |
|-----|-----|-----------|
| 0 Ω | DNP | Right     |
| DNP | 0 Ω | Left      |

Note: Factory setting is scanning "Right"

### 2.3.2 RGB Signal Routing

To support use with multiple host EK options, the touch module provides a means for selecting the routing of LCD\_DAT\_xx signals to the LCD RGB data signals by populating one of the two groups of resistors indicated in Figure 4 below.

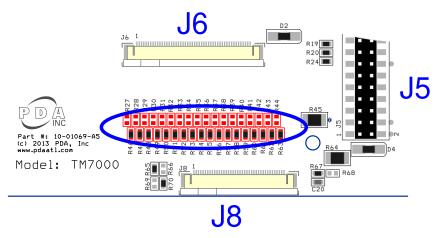



Figure 4 - RGB Signal Routing Configuration Resistors

Populating resistors R46-R63 selects the Atmel "Series-5 / A5D3x" routing scheme. Populating resistors R27-R44 selects the Atmel "Islero" routing scheme. The PCB ships with R46-R63 populated – selecting the "Series-5 / A5D3x" scheme by default.

Details of each scheme are shown in Table 2-3 below.



Table 2-3 - RGB Signal Routing Selection

| Series 5/A5D3x<br>(R46 – R63) | Islero<br>(R27 - R44) | LCM |
|-------------------------------|-----------------------|-----|
| LCD_DAT_17                    | LCD_DAT_23            | R5  |
| LCD_DAT_16                    | LCD_DAT_22            | R4  |
| LCD_DAT_15                    | LCD_DAT_21            | R3  |
| LCD_DAT_14                    | LCD_DAT_20            | R2  |
| LCD_DAT_13                    | LCD_DAT_19            | R1  |
| LCD_DAT_12                    | LCD_DAT_18            | R0  |
| LCD_DAT_11                    | LCD_DAT_15            | G5  |
| LCD_DAT_10                    | LCD_DAT_14            | G4  |
| LCD_DAT_9                     | LCD_DAT_13            | G3  |
| LCD_DAT_8                     | LCD_DAT_12            | G2  |
| LCD_DAT_7                     | LCD_DAT_11            | G1  |
| LCD_DAT_6                     | LCD_DAT_10            | G0  |
| LCD_DAT_5                     | LCD_DAT_7             | B5  |
| LCD_DAT_4                     | LCD_DAT_6             | B4  |
| LCD_DAT_3                     | LCD_DAT_5             | B3  |
| LCD_DAT_2                     | LCD_DAT_4             | B2  |
| LCD_DAT_1                     | LCD_DAT_3             | B1  |
| LCD_DAT_0                     | LCD_DAT_2             | B0  |

Note: Factory setting is "Series 5/A5D3x"

### 2.4 maXTouch Capacitive Touchscreen Controller

The module touch screen interface is based on the Atmel maXTouch mXT768E Touch Controller and operates using the touch sensor at <u>connector J7</u>.

The touch controller scans the touch sensor and will signal the host with an active low interrupt signal ( $\sim$ MXT\_CHG on J4 or J6) when new touch data is available. Data communication with the maXTouch controller is performed over a shared I<sup>2</sup>C interface (I<sup>2</sup>C SCL and I<sup>2</sup>C SDA on J4 or J6). The I<sup>2</sup>C address of the touch controller can be configured by populating R12 or R13 (shown below in Figure 5) according to Table 2-4 below. The PCB ships with R12 populated – thus the I<sup>2</sup>C address is set to 0x4C by default.

NOTE: The TM7000 does not have pull-up resistors on the  $I^2C$  SCL and SDA lines. A pull-up resistor for the maXTouch ~CHG interrupt signal is located at R14.

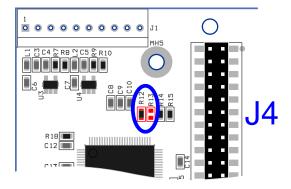



Figure 5 - Touch Controller I<sup>2</sup>C Address Selection

Table 2-4 - Touch Controller I<sup>2</sup>C Address Selection

| R12 | R13 | I <sup>2</sup> C Address |
|-----|-----|--------------------------|
| 0 Ω | DNP | 0x4C                     |
| DNP | 0 Ω | 0x4D                     |

Note: 0x4C is the default I<sup>2</sup>C address

#### 2.4.1 maXTouch Controller Interface

Details of the maXTouch communication protocol are beyond the scope of this document. However information is provided in Section 3.2 below to facilitate evaluation and initial development.



This module is pre-loaded with a configuration already optimized for this touch sensor and panel, so the developer need only focus on interfacing with the device. When developing the maXTouch controller interface during evaluation and host development, care should be taken to avoid changing the maXTouch configuration or committing changes to NV storage on the maXTouch controller.

To get started with host interface development, the user is *strongly* encouraged to leverage existing code available from the resources outlined in Sections 3.2.

### 2.5 QTouch Capacitive Button Controller

The module's "nav key" interface is based on the Atmel QT1070 7-Channel Capacitive Sensor Driver.

The button controller scans the 4 capacitive nav keys (K1, K2, K3 and K4) and will signal the host with an active low interrupt signal ( $\sim$ QT\_CHG on Connector J4 or J6) when a touch event has occurred. Data communication with the QT1070 controller is performed over a shared I<sup>2</sup>C interface (I<sup>2</sup>C SCL and I<sup>2</sup>C SDA on J4 or J6). The I<sup>2</sup>C address of the button controller is 0x1B and cannot be changed.

NOTE: The TM7000 does not have pull-up resistors on the I<sup>2</sup>C SCL and SDA lines. A pull-up resistor for the QTouch ~CHG interrupt signal is located at R16.

#### 2.5.1 QTouch Controller Interface

Details of the QTouch communication protocol are beyond the scope of this document. The user is encouraged to review the QT1070 Datasheet (<a href="https://www.atmel.com">www.atmel.com</a>).

#### 2.6 Serial EEPROM

The module includes a DS24B33 Serial EEPROM providing 512 bytes of non-volatile storage. Data communication with the EEPROM is performed over a One-Wire Interface. The EEPROM is not used by another subsystem on the touch module and can be freely used by the host system for any purpose. For example, Atmel ARM-based EK's running Linux or Android operating systems use the pre-programmed contents of the EEPROM to identify this module type.



NOTE: The user should take care if choosing to overwrite the pre-programmed EEPROM contents. As noted above, certain builds of Linux or Android targeted for the Atmel ARM-based EKs use the EEPROM contents to identify the module and may no longer recognize the module. The user is advised to backup the EEPROM contents before overwriting.

The serial EEPROM communicates via a one-wire interface (One-wire Interface on <u>J5</u> or <u>J6</u>). Refer to the DS24B33 Datasheet (www.maximintegrated.com) for details.





# 3 Getting Started

This module was designed to install on a variety of Atmel ARM-based EK's including the SAM9X5-EK, SAM9N12-EK, SAMA5D3x-EK and the SAMA5D3 Xplained. This provides the fastest way to evaluate the performance of the touchscreen and display using a familiar, full-featured OS.

The following sections provide basic information related to using and evaluating the Touch Module. Visit Precision Design Associates website ( <a href="www.pdaatl.com">www.pdaatl.com</a> ) or Atmel's AT91 Community website ( <a href="www.at91.com">www.at91.com</a> ) for more information related to this touch module or guidance appropriate for your specific EK.

### 3.1 Hardware Connections

The module interfaces with the EK board via one of two methods depending on the EK:

- the two large dual-row headers, J4 and J5
- the flex connector, <u>J6</u>

Refer to the specific EK documentation to determine which method is appropriate.

#### 3.2 Software

Several options exist when developing for the touch module whether targeting a custom host or an Atmel EK.

#### 3.2.1.1 Atmel Software Framework

The Atmel Software Framework (<u>asf.atmel.com</u>) contains examples of code for interfacing with devices in the maXTouch family of touch controllers. The capabilities of various maXTouch devices may differ, but the basic communication protocol is common and can be applied to this module.

#### 3.2.1.2 Linux Kernel / Android

The Linux Kernel (<u>www.kernel.org</u>) has included basic support for maXTouch touch devices since version 2.6.36. The mainline driver has undergone considerable evolution since then.

Atmel hosts the AT91 community website with resources dedicated to developing their EKs for Android (www.at91.com/android4sam/) and Linux (www.at91.com/linux4sam/)

In addition, Atmel maintains patches (<a href="www.github.com/atmel-maxtouch/linux">www.github.com/atmel-maxtouch/linux</a>) which provide numerous out-of-cycle improvements to the mainline Linux Kernel driver.

### 3.3 Using the Touch Module

#### 3.3.1 Navigation Keys

When using this module with one of the standard Atmel Android demo builds, the navigation keys function as shown in Table 3-1 below:

Table 3-1 - Navigation Key Function (Android)

| Key | Navigation Function |  |  |
|-----|---------------------|--|--|
| K1  | ← Back              |  |  |
| K2  | ☐ Menu              |  |  |
| K3  |                     |  |  |
| K4  | Dower / Sleep       |  |  |

#### 3.3.2 Evaluating the Touch Module

For effective evaluation of the module – the touch sensor and the LCD panel in particular – the user is encouraged to try the following applications and tools depending on the host OS.

#### 3.3.2.1 Android

The following Android apps available from Google Play:

**TouchTest** by Moonblink

**Dotty** by Gerry Steele

Multitouch Visible Test by Battery Powered Games

Screen Test by Amberfog

#### 3.3.2.2 Linux

The user can perform simple touch / drawing test using the ts\_test utility that is part of tslib.



# 4 Specifications

For complete specifications, refer to the datasheets listed in section 2.2 for the various sub-system components outlined in sections 2.3 through 2.6.

### 4.1 Mechanical Specifications

Drawings and CAD models available upon request.

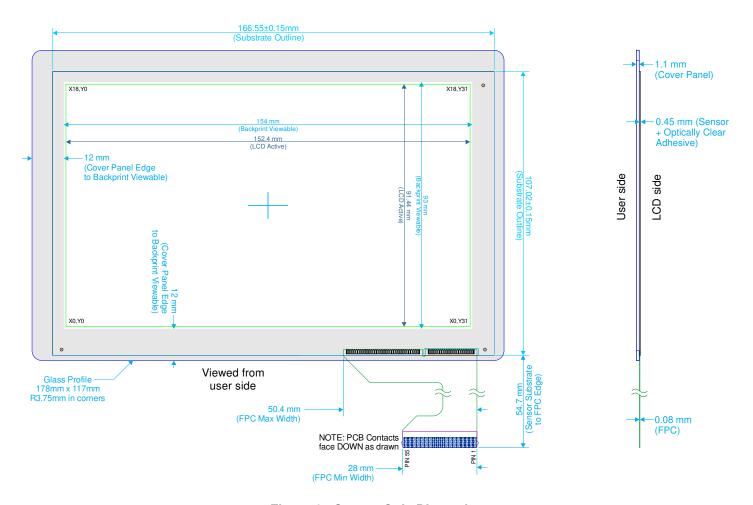



Figure 6 - Sensor Only Dimensions

Sensor Assy (P/N: 90-00020-A0) may be purchased individually. Minimum order quantities apply. Contact PDA for details.

### PDA TM7000: 7in PCAP Touch Module

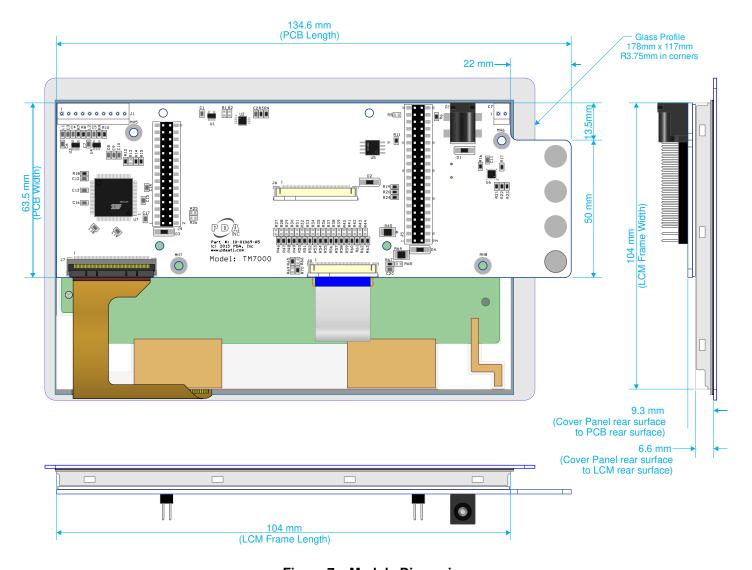



Figure 7 - Module Dimensions



### 4.2 Absolute Maximum Specifications

| Parameter                                            | Value                      |
|------------------------------------------------------|----------------------------|
| Operating temp                                       | 0°C to + 70°C              |
| Storage temp                                         | -40°C to + 85°C            |
| Vdd                                                  | -0.5 to +6V                |
| Max continuous pin current, any control or drive pin | ±40 mA                     |
| Voltage forced onto any pin                          | -0.5V to (Vdd + 0.5) Volts |



**CAUTION:** Stresses beyond those listed under *Absolute Maximum Specifications* may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum specification conditions for extended periods may affect device reliability.

### 4.3 Recommended Operating Conditions

| Parameter             | Value           |
|-----------------------|-----------------|
| Vin                   | 5.0V ±5 percent |
| Supply ripple + noise | ±20 mV          |

## 4.4 DC Specifications

Vin = 5.0V, Vdd=3.3Vdc, Ta = recommended range, unless otherwise noted

| Parameter       | Description            | Min     | Тур | Max       | Units | Notes                            |
|-----------------|------------------------|---------|-----|-----------|-------|----------------------------------|
| V <sub>IL</sub> | Low input logic level  | - 0.5   | _   | 0.3 Vdd   | ٧     | 1.8V <vdd <3.3v<="" td=""></vdd> |
| $V_{HL}$        | High input logic level | 0.7 Vdd | _   | Vdd + 0.5 | ٧     | 1.8V <vdd <3.3v<="" td=""></vdd> |
| V <sub>OL</sub> | Low output voltage     | _       | _   | 0.2Vdd    | ٧     |                                  |
| V <sub>OH</sub> | High output voltage    | 0.8Vdd  | _   | _         | V     |                                  |
| I <sub>IL</sub> | Input leakage current  | _       | _   | 1         | μΑ    |                                  |

# 4.5 I2C-compatible Bus Specifications

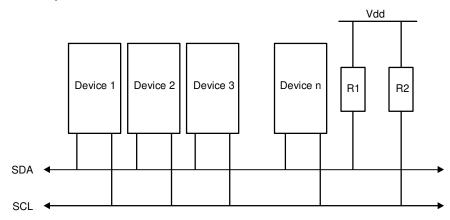
| Parameter                         | Operation                |
|-----------------------------------|--------------------------|
| Touchscreen Controller Address    | Selectable: 0x4C or 0x4D |
| Navigation Key Controller Address | 0x1B                     |
| Maximum bus speed (SCL)           | 400 kHz                  |
| I2C Specification                 | Version 2.1              |

# 4.6 Power Consumption

| Vdd (V) | Mode                                                    | ldd (mA) |
|---------|---------------------------------------------------------|----------|
| +3.3Vdc | mXT768E in Free Run, LCD backlight on maximum intensity | 300 max  |
| +5Vdc   |                                                         | 650      |

### 4.7 Part Number

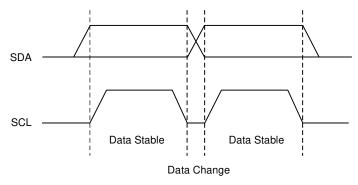
| Part Number | Description                   |
|-------------|-------------------------------|
| 90-00036-A0 | TM7000: 7in PCAP Touch Module |




## 5 I2C Basics (I2C-compatible Operation)

#### 5.1 Interface Bus

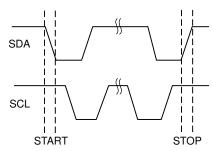
The device communicates with the host over an I<sup>2</sup>C-compatible bus, in accordance with version 2.1 of the I<sup>2</sup>C specification. The following sections give an overview of the bus; more detailed information is available from www.i2C-bus.org. Devices are connected to the I<sup>2</sup>C-compatible bus as shown in Figure 8 both bus lines are connected to Vdd via pull-up resistors. The bus drivers of all I<sup>2</sup>C-compatible devices must be open-drain type. This implements a wired "AND" function that allows any and all devices to drive the bus, one at a time. A low level on the bus is generated when a device outputs a zero.


Figure 8. I<sup>2</sup>C-compatible Interface Bus



### 5.2 Transferring Data Bits

Each data bit transferred on the bus is accompanied by a pulse on the clock line. The level of the data line must be stable when the clock line is high; the only exception to this rule is for generating START and STOP conditions.

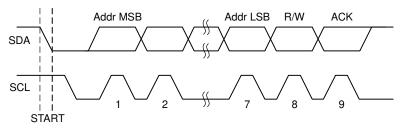

Figure 9. Data Transfer



### 5.3 START and STOP Conditions

The host initiates and terminates a data transmission. The transmission is initiated when the host issues a START condition on the bus, and is terminated when the host issues a STOP condition. Between the START and STOP conditions, the bus is considered busy. As shown in Figure 10 START and STOP conditions are signaled by changing the level of the SDA line when the SCL line is high.

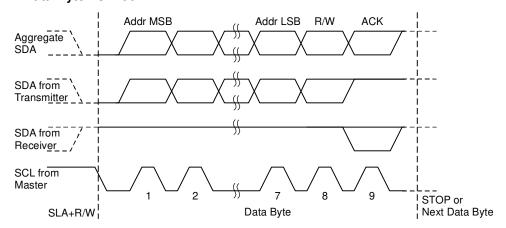
Figure 10. START and STOP Conditions




### 5.4 Address Byte Format

All address bytes are 9 bits long. They consist of 7 address bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read operation is performed. Otherwise a write operation is performed. An address byte consisting of a slave address and a READ or a WRITE bit is called SLA+R or SLA+W, respectively. When the device recognizes that it is being addressed, it acknowledges by pulling SDA low in the ninth SCL (ACK) cycle.

The most significant bit of the address byte is transmitted first.


Figure 11. Address Byte Format

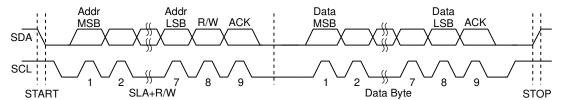


### 5.5 Data Byte Format

All data bytes are 9 bits long, consisting of 8 data bits and an acknowledge bit. During a data transfer, the host generates the clock and the START and STOP conditions. The slave device is responsible for acknowledging the reception. An acknowledge (ACK) is signaled by the slave device pulling the SDA line low during the ninth SCL cycle. If the slave device leaves the SDA line high, a NACK is signaled.

Figure 12. Data Byte Format






### 5.6 Combining Address and Data Bytes into a Transmission

A transmission consists of a START condition, an SLA+R or SLA+W, one or more data bytes and a STOP condition. The wired "ANDing" of the SCL line is used to implement handshaking between the host and the device. The device extends the SCL low period by pulling the SCL line low whenever it needs extra time for processing between the data transmissions.

Figure 13 shows a typical data transmission. Note that several data bytes can be transmitted between the SLA+R or SLA+W and the STOP.

Figure 13. Byte Transmission



# **6 Revision History**

| Revision No.                              | History                               |
|-------------------------------------------|---------------------------------------|
| Rev1403-1-1                               | Initial Draft (unreleased)            |
| Rev1403-1-2<br>Rev1403-1-3<br>Rev1403-2-4 | Preliminary Release (limited release) |
| Rev1404-3-5                               | Initial Release                       |