

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

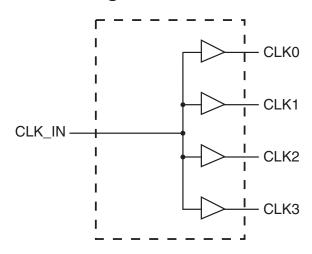
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

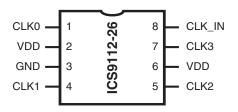
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low Skew Output Buffer

General Description


The ICS9112-26 is a high performance, low skew, low jitter clock driver. It is designed to distribute high speed clocks in PC systems operating at speeds from 0 to 133 MHz.

The **ICS9112-26** comes in an eight pin 150 mil SOIC package. It has four output clocks.


Features

- Frequency range 0 133 MHz (3.3V)
- Less than 200 ps Jitter between outputs
- Skew controlled outputs
- Skew less than 250 ps between outputs
- Available in 8 pin 150 mil SOIC & 173 mil TSSOP packages.
- $3.3V \pm 10\%$ operation

Block Diagram

Pin Configuration

8 pin SOIC & TSSOP

Pin Descriptions

PIN NUMBER	PIN NAME	ТҮРЕ	DESCRIPTION
1	CLK01	OUT	Buffered clock output
2,6	VDD	PWR	Power Supply (3.3V)
3	GND	PWR	Ground
4	CLK1 ¹	OUT	Buffered clock output
5	CLK2 ¹	OUT	Buffered clock output
7	CLK3 ¹	OUT	Buffered clock output
8	CLK_IN	IN	Input reference frequency.

Notes:

1. Weak pull-down on all outputs

ICS9112-26

Absolute Maximum Ratings

Supply Voltage 7.0 V

Ambient Operating Temperature 0° C to $+70^{\circ}$ C Storage Temperature -65° C to $+150^{\circ}$ C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics at 3.3V

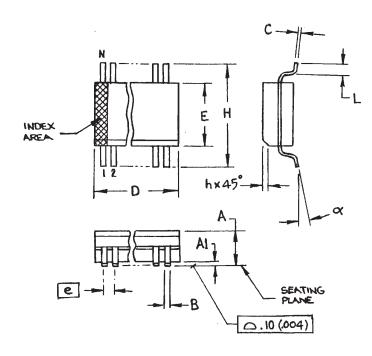
 $T_A = 0 - 70C$; Supply Voltage $V_{DD} = 3.3 \text{ V} + 1.5\%$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
		$V_{\rm DD}$ = min to max, $I_{\rm OH}$ = -1 mA	$V_{\rm DD}$ - 0.2	3.3		V
High-level Output Voltage	V_{OH}	$V_{DD} = 3V$, $I_{OH} = -24 \text{ mA}$	2	2.9		V
		$V_{\rm DD} = 3V, I_{\rm OH} = 12 \text{ mA}$	2.4	3.1		V
		$V_{\rm DD}$ = min to max, $I_{\rm OH}$ = 1 mA		0.0055	0.2	V
Low-level Output Voltage	V_{OL}	$V_{\rm DD} = 3V, I_{\rm OH} = 24 \text{ mA}$		0.28	0.8	V
		$V_{DD} = 3V, I_{OH} = 12 \text{ mA}$		0.14	0.55	V
High lavel Input Cument	I _{OH}	$V_{DD} = 3V, V_{O} = 1V$		-61	-50	
High-level Input Current		$V_{DD} = 3.3V, V_{O} = 1.65V$		-77		
Lavi laval Innut Cumant	т	$V_{DD} = 3V, V_{O} = 2V$	60	103		
Low-level Input Current	I_{OL}	$V_{DD} = 3.3 V, V_{O} = 1.65 V$		111		
Input Current	I_{I}	$V = V_O \text{ or } V_{DD}$	-5		5	μΑ
Input Capacitance ¹	$C_{\rm I}$	$V_{DD} = 3.3V, V_{I} = 0V \text{ or } 3.3V$		3		pF
Output Capacitance ¹	CO	$V_{DD} = 3.3V, V_{I} = 0V \text{ or } 3.3V$		3.2		pF
Supply current	I_{DD}	REF = 0 MHz		22	50	μА
Supply cultent	*DD	Unloaded outputs at 66.67 MHz		25	40	mA

^{1.} Guaranteed by design, not 100% tested in production.

Switching Characteristics at 3.3V

 $T_A = 0 - 70C$; Supply Voltage $V_{DD} = 3.3 \text{ V} + /-5\%$ (unless otherwise stated)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Low-to-high Propagation Delay ¹	t_{PLH}	$V_O = V_{DD}/2$	4	5.6	7	ns	
High-to-low Propagation Delay ¹	t_{PHL}	$V_O = V_{DD}/2$	4	5.2	7	ns	
Output Skew Window ¹	$T_{sk}(O)$	$V_O = V_{DD}/2$		50	100	ps	
Process Skew ¹	$T_{sk}(PR)$	$V_O = V_{DD}/2$			0.5	ps	
CLVIN High Time ¹	T_{high}	66 MHz	6			ns	
CLKIN High Time ¹		133 MHz	3			115	
CLKIN Low Time ¹	T_{low}	66 MHz	6			ne	
CLKIN LOW Time		133 MHz	3			ns	
Output Rise Slew Rate ¹	$T_{\rm r}$	0.3 to 0.6 V _{DD}	2	3.6	5	V/ns	
Output Rise Slew Rate ¹	T_{f}	0.3 to $0.6~\mathrm{V_{DD}}$	2	3.2	5	V/ns	

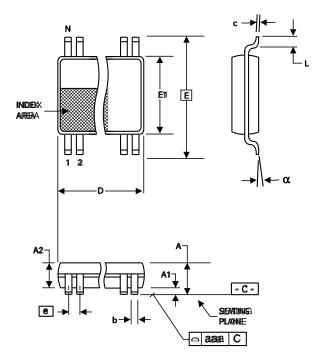
^{1.} Guaranteed by design, not 100% tested in production.

Notes:

- 1. Guaranteed by design and characterization. Not subject to 100% test.
- 2. CLK_IN input has a threshold voltage of 1.4V
- 3. All parameters expected with loaded outputs

SYMBOL	In Millimeters COMMON DIMENSIONS		In Inches COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α	1.35	1.75	.0532	.0688	
A1	0.10	0.25	.0040	.0098	
В	0.33	0.51	.013 .020		
С	0.19	0.25	.0075 .0098		
D	SEE VARIATIONS		SEE VARIATIONS		
Е	3.80	4.0	.1497 .1574		
е	1.27 E	BASIC	0.050 BASIC		
Н	5.80	6.20	.2284	.2440	
h	0.25	0.50	.010	.020	
L	0.40	1.27	.016	.050	
N	SEE VARIATIONS		SEE VAF	RIATIONS	
α	0°	8°	0° 8°		

VARIATIONS


N	D mm.		D (inch)		
	MIN	MAX	MIN	MAX	
8	4.80	5.00	.1890	.1968	

150 mil (Narrow Body) SOIC

Ordering Information

9112yM-26LFT

4.40 mm. Body, 0.65 mm. pitch TSSOP (173 mil) (0.0256 mil)

SYMBOL	In Millin COMMON D		In Inches COMMON DIMENSIONS		
	MIN MAX		MIN	MAX	
Α	-	1.20	-	.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007 .012		
С	0.09	0.20	.0035 .008		
D	SEE VARIATIONS		SEE VARIATIONS		
Е	6.40 E	BASIC	0.252	BASIC	
E1	4.30	4.50	.169	.177	
е	0.65	BASIC	0.0256 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAF	RIATIONS	
α	0°	8°	0° 8°		
aaa	-	0.10	004		

VARIATIONS

N	D mm.		D (inch)		
	MIN	MAX	MIN	MAX	
8	2.90	3.10	.114	.122	

MO-153 JEDEC 7/6/00 Rev I Doc.# 10-0038

Ordering Information

9112yG-<u>2</u>6LFT

Example:

XXXX y G - PPP LFT

Designation for tape and reel packaging

Lead Free, RoHS Compliant (Optional)

Pattern Number (2 or 3 digit number for parts with ROM code patterns)

Package Type

G=TSSOP

Revision Designator (will not correlate with datasheet revision)

Device Type

Revision History

Rev.	Issue Date	Description	Page #
С	04/17/07	Added LF to Ordering Information.	-
D	05/14/07	Updated Ordering Information.	3-4