

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

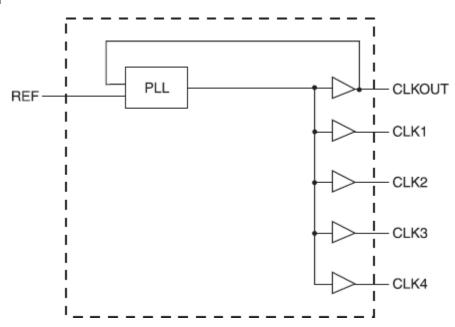
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HIGH PERFORMANCE COMMUNICATION BUFFER

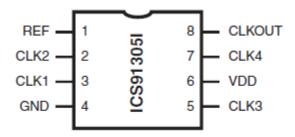
ICS91305I

Description

The ICS91305I is a high performance, low skew, low jitter clock driver. It uses a phase lock loop (PLL) technology to align, in both phase and frequency, the REF input with the CLKOUT signal. It is designed to distribute high speed clocks in communication systems operating at speeds from 10 to 133 MHz.


ICS91305I is a zero delay buffer that provides synchronization between the input and output. The synchronization is established via CLKOUT feed back to the input of the PLL. Since the skew between the input and output is less than +/- 350 pS, the part acts as a zero delay buffer.

The ICS91305I comes in an eight pin 150 mil SOIC package. It has five output clocks. In the absence of REF input, will be in the power down mode. In this mode, the PLL is turned off and the output buffers are pulled low. Power down mode provides the lowest power consumption for a standby condition.


Features

- · Zero input output delay
- Frequency range 10 133 MHz (3.3V)
- 5V tolerant input REF
- High loop filter bandwidth ideal for Spread Spectrum applications
- Less than 200 ps Jitter between outputs
- · Skew controlled outputs
- Skew less than 250 ps between outputs
- Available in 8 pin 150 mil SOIC & 173 mil TSSOP packages
- 3.3V ±10% operation
- Supports industrial temperature range -40°C to 85°C

Block Diagram

Pin Configuration

8 pin SOIC & TSSOP

Pin Descriptions

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION	
1	REF ²	IN	Input reference frequency, 5V tolerant input.	
2	CLK2 ³	OUT	Buffered clock output	
3	CLK1 ³	OUT	Buffered clock output	
4	GND	PWR	Ground	
5	CLK3 ³	OUT	Buffered clock output	
6	VDD	PWR	Power Supply (3.3V)	
7	CLK4 ³	OUT	Buffered clock output	
8	CLKOUT ³	OUT	Buffered clock output. Internal feedback on this pin	

Notes:

- 1. Guaranteed by design and characterization. Not subject to 100% test.
- Weak pull-down
- 3. Weak pull-down on all outputs

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS91305I. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

 Supply Voltage
 7.0 V

 Logic Inputs (Except REF)
 GND –0.5 V to V_{DD} + 0.5 V

 Logic Input REF
 GND –0.5 V to GND + 5.5 V

 Ambient Operating Temperature
 -40 °C to +85 °C

 Storage Temperature
 -65 °C to +150 °C

Electrical Characteristics at 3.3V

DC Characteristics						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Input Low Voltage	V _{IL}				0.8	V
Input High Voltage	V _{IH}		2.0			V
Input Low Current	I _{IL}	V _{IN} =0V		19	100.0	μΑ
Input High Current	I _{IH}	V _{IN} =V _{DD}		0.10	250.0	μΑ
Output Low Voltage ¹	V _{OL}	I _{OL} = 12mA		0.25	0.4	V
Output High Voltage ¹	V _{OH}	I _{OH} = -12mA	2.4	2.9		V
Power Down Supply Current	l _{DD}	REF = 0 MHz		0.3	100.0	μΑ
Supply Current	l _{dd}	Unloaded oututs at 66.66 MHz SEL inputs at V _{DD} or GND		30.0	80.0	mA

Notes:

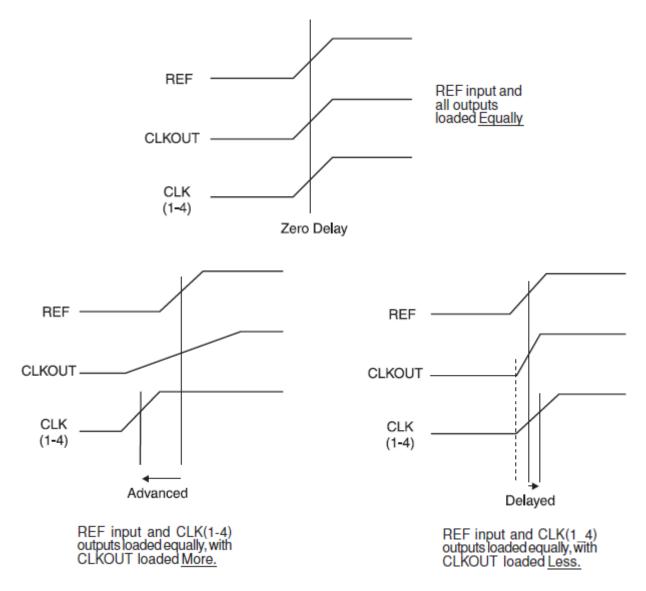
- 1. Guaranteed by design and characterization. Not subject to 100% test.
- 2.All Skew specifications are mesured with a 50Ω transmission line, load teminated with 50Ω to 1.4V.
- 3. Duty cycle measured at 1.4V.
- 4. Skew measured at 1.4V on rising edges. Loading must be equal on outputs.

Switching Characteristics

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Output period	t1	With CL=30pF	100.00 (10)		7.5 (133)	ns (MHz)
Input period	t1	With CL=30pF	100.00 (10)		7.5 (133)	ns (MHz)
Duty Cycle ¹	Dt1	Measured at 1.4V; CL=30pF	40.0	50	60	%
Duty Cycle ¹	Dt2	Measured at VDD/2 Fout <66.6MHz	45	50	55	%
Rise Time ¹	tr1	Measured between 0.8V and 2.0V: CL=30pF		1.2	1.5	ns
Fall Time ¹	tf1	Measured between 2.0V and 0.8V; CL=30pF		1.2	1.5	ns
Delay, REF Rising Edge to CLKOUT Rising Edge ^{1, 2}	Dr1	Measured at 1.4V		0	±350	ps
Output to Output Skew ¹	Tskew	All outputs equally loaded, CL=20pF			250	ps
Device to Device Skew ¹	Tdsk-Tdsk	Measured at VDD/2 on the CLKOUT pins of devices		0	700	ps
Cycle to Cycle Jitter ¹	Tcyc-Tcyc	Measured at 66.66 MHz, loaded outputs			200	ps
PLL Lock Time ¹	t _{LOCK}	Stable power supply, valid clock presented on REF pin			1.0	ms
Jitter; Absolute Jitter ¹	Tjabs	@ 10,000 cycles C _L = 30pF	-200	70	200	ps
Jitter; 1 - Sigma ¹	Tj1s	@ 10,000 cycles C _L = 30pF		14	60	ps

Notes:

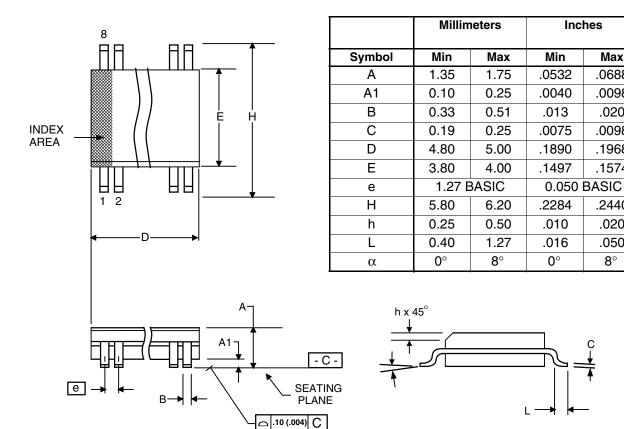
- 1. Guaranteed by design and characterization. Not subject to 100% test.
- 2. REF input has a threshold voltage of 1.4V
- 3. All parameters expected with loaded outputs


Output to Output Skew

The skew between CLKOUT and the CLK(1-4) outputs is not dynamically adjusted by the PLL. Since CLKOUT is one of the inputs to the PLL, zero phase difference is maintained from REF to CLKOUT. If all outputs are equally loaded, zero phase difference will maintained from REF to all outputs.

If applications requiring zero output-output skew, all the outputs must equally loaded.

If the CLK(1-4) outputs are less loaded than CLKOUT, CLK(1-4) outputs will lead it; and if the CLK(1-4) is more loaded than CLKOUT, CLK(1-4) will lag the CLKOUT.


Since the CLKOUT and the CLK(1-4) outputs are identical, they all start at the same time, but different loads cause them to have different rise times and different times crossing the measurement thresholds.

Timing diagrams with different loading configurations

Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95

6

Inches

Max

.0688

.0098

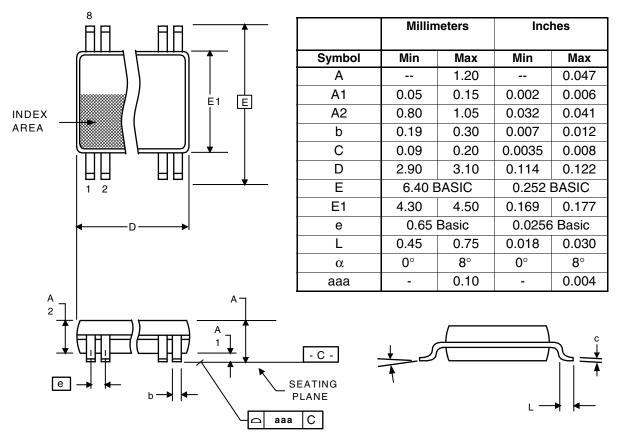
.020

.0098

.1968

.1574

.2440


.020

.050

8°

Package Outline and Package Dimensions (8-pin TSSOP, 4.4 Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
91305AMILF	305AMILF	Tubes	8-pin SOIC	-40 to +85° C
91305AMILFT	305AMILF	Tape and Reel	8-pin SOIC	-40 to +85° C
91305AGILF	305IL	Tubes	8-pin TSSOP	-40 to +85° C
91305AGILFT	305IL	Tape and Reel	8-pin TSSOP	-40 to +85° C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Originator	Date	Description of Change
G	D. Chan	09/06/12	Updated ordering information to inlclude "I" for industrial temp range in ordering scheme. Re-created datasheet in latest template.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 For Tech Support

www.idt.com/go/clockhelp pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

