imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LOW POWER PCIE GEN2/3 & QPI CLOCK FOR INTEL-BASED SERVERS

932SQL420

General Description

The 932SQL420 is a low power version of the CK420BQ synthesizer for Intel-based server platforms. The 932SQL420 is driven with a 25MHz crystal for maximum performance. It generates CPU outputs of 100Mhz. This device has a "low-drift" non-spread SAS/SRC PLL for use in systems that need to communicate across PCIe domains.

Recommended Application

Low Power CK420BQ

Key Specifications

- CPU, SRC, NS_SRC and NS_SAS cycle-cycle jitter <50ps
- Output to output skew <50ps
- Phase jitter: PCIe Gen2 <2.7ps rms
- Phase jitter: QPI <0.3ps rms
- Phase jitter: NS-SAS <1.3ps rms using long period phase jitter method

PIn Configurations

Features/Benefits

- 0.5% down spread capable on CPU, SRC and PCI outputs; reduce EMI
- Additional down spread amounts selectable via SMBus; maximal system flexibility
- 64-pin TSSOP and MLF packages; space savings

Output Features

- 4 Low-Power HCSL-compatible (LP-HCSL) CPU outputs
- 2 LP-HCSL NS_SAS outputs
- 2 LP-HCSL NS_SRC outputs
- 3 LP-HCSL SRC outputs
- 1 LP-HCSL DOT96 output
- 1 3.3V 48M output
- 5 3.3V PCI outputs
- 1 3.3V 14.318M output

64TSSOP Pin Descriptions

PIN #	PIN NAME	TYPE	DESCRIPTION				
1	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant				
2	GND14	PWR	Ground pin for 14MHz output and logic.				
3	AVDD14	PWR	Analog power pin for 14MHz PLL				
4	VDD14	PWR	Power pin for 14MHz output and logic				
5	vREF14_3x/TEST_SEL	I/O	14.318 MHz reference clock. 3X drive strength as default / TEST_SEL latched input to enable test mode. Refer to Test Clarification Table. This pin has a weak (~120Kohm) internal pull down.				
6	GND14	PWR	Ground pin for 14MHz output and logic.				
7	GNDXTAL	PWR	Ground pin for Crystal Oscillator.				
8	X1_25	IN	Crystal input, Nominally 25.00MHz.				
9	X2_25	OUT	vstal output, Nominally 25.00MHz.				
10	VDDXTAL	PWR	V power for the crystal oscillator.				
11	GNDPCI	PWR	Ground pin for PCI outputs and logic.				
12	VDDPCI	PWR	3.3V power for the PCI outputs and logic				
13	PCI4_2x	OUT	3.3V PCI clock output				
14	PCI3_2x	OUT	3.3V PCI clock output				
15	PCI2_2x	OUT	3.3V PCI clock output				
16	PCI1_2x	OUT	3.3V PCI clock output				
17	PCI0 2x	OUT	3.3V PCI clock output				
18	GNDPCI	PWR	Ground pin for PCI outputs and logic.				
19	VDDPCI	PWR	3.3V power for the PCI outputs and logic				
20	VDD48	PWR	3.3V power for the 48MHz output and logic				
21	48M_2x	OUT	3.3V 48MHz output				
22	 GND48	PWR	Ground pin for 48MHz output and logic.				
23	GND96	PWR	Ground pin for DOT96 output and logic.				
24	DOT96_LPT	OUT	True clock of low-power push-pull differential 96MHz output. External series resistors are needed for termination.				
25	DOT96_LPC	OUT	Complementary clock of low-power push-pull differential 96MHz output. External series resistors				
06			are needed for termination.				
26	AVDD96	PWR	3.3V power for the 48/96MHZ PLL and the 96MHZ output and logic				
27	TEST_MODE	IN	mode. Refer to Test Clarification Table.				
28	CKPWRGD#/PD	IN	CKPWRGD# is an active low input used to sample latched inputs and allow the device to Power Up. PD is an asynchronous active high input pin used to put the device into a low power state. The internal clocks and PLLs are stopped.				
29	VDDSRC	PWR	3.3V power for the SRC outputs and logic				
30	SRC0_LPT	OUT	True clock of low-power push-pull differential SRC output. External series resistors are needed for termination.				
31	SRC0_LPC	OUT	Complementary clock of low-power push-pull differential SRC output. External series resistors are needed for termination				
32	GNDSBC	PWB	Ground pin for SBC outputs and logic.				
33	SRC1_LPC	OUT	Complementary clock of low-power push-pull differential SRC output. External series resistors are needed for termination.				
34	SRC1_LPT	OUT	True clock of low-power push-pull differential SRC output. External series resistors are needed for termination.				
35	SRC2_LPC	OUT	Complementary clock of low-power push-pull differential SRC output. External series resistors are needed for termination.				
36	SRC2_LPT	OUT	True clock of low-power push-pull differential SRC output. External series resistors are needed for termination.				
37	VDDSRC	PWR	3.3V power for the SRC outputs and logic				
38	AVDD_SRC	PWR	3.3V power for the SRC PLL analog circuits				
39	GNDSRC	PWR	Ground pin for SRC outputs and logic.				
40	NC	N/A	No Connection.				
11			Complementary clock of low-power push-pull differential non-spreading SRC output. External				
41	NG_3000_LPC		series resistors are needed for termination.				
42	NS_SRC0_LPT	OUT	True clock of low-power push-pull differential non-spreading SRC output. External series resistors are needed for termination.				
40			Complementary clock of low-power push-pull differential non-spreading SRC output. External				
43	NS_SRC1_LPC	001	series resistors are needed for termination.				
44	NS_SRC1_LPT	OUT	True clock of low-power push-pull differential non-spreading SRC output. External series resistors are needed for termination.				
45	VDDNS	PWR	3.3V power for the Non-Spreading differential outputs outputs and logic				
46	GNDNS	PWR	Ground pin for non-spreading differential outputs and logic				

64TSSOP Pin Descriptions (cont.)

PIN #	PIN NAME	TYPE	DESCRIPTION
47	NS SASO LPC	ОПТ	Complementary clock of low-power push-pull differential non-spreading SAS output. External
47			series resistors are needed for termination.
48	NS SASO LET	ОЛТ	True clock of low-power push-pull differential non-spreading SAS output. External series resistors
40	NS_5A50_EI 1	001	are needed for termination.
49	NS SAST LPC	ОЛТ	Complementary clock of low-power push-pull differential non-spreading SAS output. External
43	NS_5A51_EI C	001	series resistors are needed for termination.
50	NG GAGI LET	ОЛТ	True clock of low-power push-pull differential non-spreading SAS output. External series resistors
50	NS_3A31_EF1	001	are needed for termination.
51	AVDD_NS_SAS	PWR	3.3V power for the non-spreading SAS/SRC PLL analog circuits.
52	GNDNS	PWR	Ground pin for non-spreading differential outputs and logic.
53		ОЛТ	Complementary clock of low-power push-pull differential CPU output. External series resistors
55		001	are needed for termination.
54			True clock of low-power push-pull differential CPU output. External series resistors are needed
54	CF00_EF1	001	for termination.
55		ОЛТ	Complementary clock of low-power push-pull differential CPU output. External series resistors
55		001	are needed for termination.
56		ОЛТ	True clock of low-power push-pull differential CPU output. External series resistors are needed
50		001	for termination.
57	VDDCPU	PWR	3.3V power for the CPU outputs and logic
58	GNDCPU	PWR	Ground pin for CPU outputs and logic.
50			Complementary clock of low-power push-pull differential CPU output. External series resistors
33	CPU2_LPC	001	are needed for termination.
60		ОЛТ	True clock of low-power push-pull differential CPU output. External series resistors are needed
00		001	for termination.
61		ОЛТ	Complementary clock of low-power push-pull differential CPU output. External series resistors
01		001	are needed for termination.
62			True clock of low-power push-pull differential CPU output. External series resistors are needed
02		001	for termination.
63	VDDCPU	PWR	3.3V power for the CPU outputs and logic
64	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant

64MLF Pin Descriptions

PIN #	PIN NAME	TYPE	DESCRIPTION		
1	GNDPCI	PWR	Ground pin for PCI outputs and logic.		
2	VDDPCI	PWR	3.3V power for the PCI outputs and logic		
3	PCI4_2x	OUT	3.3V PCI clock output		
4	PCI3_2x	OUT	3.3V PCI clock output		
5	PCI2_2x	OUT	3.3V PCI clock output		
6	PCI1_2x	OUT	3.3V PCI clock output		
7	PCI0_2x	OUT	3.3V PCI clock output		
8	GNDPCI	PWR	Ground pin for PCI outputs and logic.		
9	VDDPCI	PWR	3.3V power for the PCI outputs and logic		
10	VDD48	PWR	3.3V power for the 48MHz output and logic		
11	48M_2x	OUT	3.3V 48MHz output		
12	GND48	PWR	Ground pin for 48MHz output and logic.		
13	GND96	PWR	Ground pin for DOT96 output and logic.		
			True clock of low-power push-pull differential 96MHz output. External series resistors are needed		
14	DO196_LP1	001	for termination.		
	DOTOS L DO		Complementary clock of low-power push-pull differential 96MHz output. External series resistors		
15	DOT96_LPC	001	are needed for termination.		
16	AVDD96	PWR	3.3V power for the 48/96MHz PLL and the 96MHz output and logic		
			TEST MODE is a real time input to select between Hi-Z and REF/N divider mode while in test		
1/	TEST_MODE	IN	mode. Refer to Test Clarification Table.		
			CKPWRGD# is an active low input used to sample latched inputs and allow the device to Power		
18	CKPWRGD#/PD	IN	Up. PD is an asynchronous active high input pin used to put the device into a low power state.		
			The internal clocks and PLLs are stopped.		
19	VDDSRC	PWR	3.3V power for the SRC outputs and logic		
			True clock of low-power push-pull differential SBC output. External series resistors are needed		
20	SRC0_LPT	OUT	for termination.		
		<u></u>	Complementary clock of low-power push-pull differential SRC output. External series resistors		
21	SRC0_LPC	001	are needed for termination.		
22	GNDSRC	PWR	Ground pin for SRC outputs and logic.		
	0001100		Complementary clock of low-power push-pull differential SRC output. External series resistors		
23	SRC1_LPC	001	are needed for termination.		
			True clock of low-power push-pull differential SRC output. External series resistors are needed		
24	SRC1_LP1	001	for termination.		
	0000 100		Complementary clock of low-power push-pull differential SRC output. External series resistors		
25	SRC2_LPC	001	are needed for termination.		
	0000 107		True clock of low-power push-pull differential SRC output. External series resistors are needed		
26	SRC2_LP1	001	for termination.		
27	VDDSRC	PWR	3.3V power for the SRC outputs and logic		
28	AVDD SRC	PWR	3.3V power for the SRC PLL analog circuits		
29	GNDSRC	PWR	Ground pin for SRC outputs and logic.		
30	NC	N/A	No Connection.		
			Complementary clock of low-power push-pull differential non-spreading SRC output. External		
31	NS_SRC0_LPC	001	series resistors are needed for termination.		
			True clock of low-power push-pull differential non-spreading SRC output. External series resistors		
32	NS_SRC0_LPT	001	are needed for termination.		
			Complementary clock of low-power push-pull differential non-spreading SRC output. External		
33	NS_SRC1_LPC	001	series resistors are needed for termination.		
			True clock of low-power push-pull differential non-spreading SRC output. External series resistors		
34	NS_SHC1_LPT	OUT	are needed for termination.		
35	VDDNS	PWR	3.3V power for the Non-Spreading differential outputs outputs and logic		
36	GNDNS	PWR	Ground pin for non-spreading differential outputs and logic.		
			True clock of low-power push-pull differential non-spreading SAS output. External series resistors		
38	NS_SAS0_LPT	001	are needed for termination.		

64MLF Pin Descriptions (cont.)

PIN #	PIN NAME	TYPE	DESCRIPTION
30			Complementary clock of low-power push-pull differential non-spreading SAS output. External
39	NS_SAST_LFC	001	series resistors are needed for termination.
		ОШТ	True clock of low-power push-pull differential non-spreading SAS output. External series resistors
40	NO_0A01_LF1	001	are needed for termination.
41	AVDD_NS_SAS	PWR	3.3V power for the non-spreading SAS/SRC PLL analog circuits.
42	GNDNS	PWR	Ground pin for non-spreading differential outputs and logic.
12		ОЛТ	Complementary clock of low-power push-pull differential CPU output. External series resistors
40		001	are needed for termination.
11		ОШТ	True clock of low-power push-pull differential CPU output. External series resistors are needed
44		001	for termination.
45		ОЛТ	Complementary clock of low-power push-pull differential CPU output. External series resistors
43		001	are needed for termination.
46		ОШТ	True clock of low-power push-pull differential CPU output. External series resistors are needed
40		001	for termination.
47	VDDCPU	PWR	3.3V power for the CPU outputs and logic
48	GNDCPU	PWR	Ground pin for CPU outputs and logic.
10	CPU2_LPC	OUT	Complementary clock of low-power push-pull differential CPU output. External series resistors
43			are needed for termination.
50		ОШТ	True clock of low-power push-pull differential CPU output. External series resistors are needed
50		001	for termination.
51		ОШТ	Complementary clock of low-power push-pull differential CPU output. External series resistors
51		001	are needed for termination.
52		ОШТ	True clock of low-power push-pull differential CPU output. External series resistors are needed
52		001	for termination.
53	VDDCPU	PWR	3.3V power for the CPU outputs and logic
54	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
55	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
56	GND14	PWR	Ground pin for 14MHz output and logic.
57	AVDD14	PWR	Analog power pin for 14MHz PLL
58	VDD14	PWR	Power pin for 14MHz output and logic
			14.318 MHz reference clock. 3X drive strength as default / TEST SEL latched input to enable
59	VREF14_3x/TEST_SEL	I/O	test mode. Refer to Test Clarification Table. This pin has a weak (~120Kohm) internal pull down.
60			Ground hin for 14MHz output and logic
61			Ground pin for Crystal Oscillator
62			Crystal input Nominally 25 00MHz
63	X1_20 X2_25		Crystal niput, Nominally 25.00MHz
64			2.0 power for the encoded excillence
04	VDDATAL	L MA	o.ov power for the crystal oscillator.

Block Diagram

6

Power Supply and Test Loads

Power Group Pin Numbers

ML	F	TSSOP		Description	
VDD	GND	VDD	GND	Description	
57	56	3	2	14MHz PLL Analog	
58	60	4	6	REF14M Output and Logic	
64	61	10	7	25MHz XTAL	
2, 9	1, 8	12, 19	11, 18	PCI Outputs and Logic	
10	12	20	22	48MHz Output and Logic	
16	13	26	23	96MHz PLL Analog, Output and Logic	
19, 27	22	29, 37	32	SRC Outputs and Logic	
28	29	38	39	SRC PLL Analog	
35	36	45	46	Non-Spreading Differential Outputs & Logic	
41	42	51	52	NS-SAS/SRC PLL Analog	
47, 53	48	57,63	58	CPU Outputs and Logic	

Single-ended Output Termination Table

		Rs Value		
		(for each load)		
Output	Loads	Zo = 50	Zo =60	
PCI/USB	1	36	43	
PCI/USB	2	22	33	
REF	1	39	47	
REF	2	27	36	
REF	3	10 20		

Differential Output Termination Table

DIF Zo (Ω)	Rs (Ω)
100	33
85	27

932SQL420 Differential Test Loads

7

Functionality and CPU SAS Frequency Tables

932SQL420 Functionality

				NS_SAS			
CPU	SRC	PCI	REF	NS_SRC	DOT96	USB	
100	100	33.33	14.318	100.00	96.00	48.00	MHz

Spread Spectrum Control Functionality

SS_Enable	CPU, SRC &		
(B1b0)	PCI		
0	OFF		
1	-0.50%		

932SQL420 Power Down Functionality

CKPWRGD#/PD	Differential Outputs	Single- ended Outputs	Single- ended Outputs w/Latch		
1	Low/Low	Low	Low ¹		
0	Running				

1. Single-ended outputs with a Latch will be Hi-Z until the first application of CKPWRGD#.

CPU/SRC/PCI Margining Table

Line	Byte6 Bit2 FS2	Byte6 Bit1 FS1	Byte6 Bit0 FS0	CPU Speed (MHz)	SRC (MHz)	PCI (MHz)
0	0	0	0	97.00	97.00	32.33
1	0	0	1	98.00	98.00	32.67
2	0	1	0	99.00	99.00	33.00
3	0	1	1	100.00	100.00	33.33
4	1	0	0	101.00	101.00	33.67
5	1	0	1	102.00	102.00	34.00
6	1	1	0	103.00	103.00	34.33
7	1	1	1	104.00	104.00	34.67

NS_SAS Margining Table

Line	Byte5 Bit3 FS3	Byte5 Bit2 FS2	Byte5 Bit1 FS1	Byte5 Bit0 FS0	NS_xxx (MHz)
0	0	0	0	0	82.5
1	0	0	0	1	85.0
2	0	0	1	0	87.5
3	0	0	1	1	90.0
4	0	1	0	0	92.5
5	0	1	0	1	95.0
6	0	1	1	0	97.5
7	0	1	1	1	100.0
8	1	0	0	0	102.5
9	1	0	0	1	105.0
10	1	0	1	0	107.5
11	1	0	1	1	110.0
12	1	1	0	0	112.5
13	1	1	0	1	115.0
14	1	1	1	0	117.5
15	1	1	1	1	120.0

NOTE: Operation at other than the default entry is not guaranteed. These values are for margining purposes only.

Clock AC Tolerances

		NS_SAS,	PCI	DOTOS	/QMH-7	DEE	
PPM tolerance	100	100	100	100	100	100	ppm
Cycle to Cycle Jitter	50	50	500	250	350	1000	ps
Spread	-0.50%	0.00%	-0.50%	0	0.00%	0.00%	%

Clock Periods–Outputs with Spread Spectrum Disabled

				Me	easurement W	nt Window					
	Contor	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock			
SSC OFF	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes	
CPU	100.000	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2	
SRC, NS_SAS, NS_SRC	100.000	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2	
PCI	33.333	29.49700		29.99700	30.00000	30.00300		30.50300	ns	1,2	
DOT96	96.000	10.16563		10.41563	10.41667	10.41771		10.66771	ns	1,2	
48MHz	48.000	20.48125		20.83125	20.83333	20.83542		21.18542	ns	1,2	
REF	14.318	69.78429		69.83429	69.84128	69.84826		69.89826	ns	1,2	

Clock Periods–Outputs with Spread Spectrum Enabled

	Center Freq. MHz		Measurement Window							
		1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC ON		-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
CPU	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2
PCI	33.25	29.49718	29.99718	30.07218	30.07519	30.07820	30.15320	30.65320	ns	1,2
SRC	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the REF output is tuned to exactly 14.31818MHz.

General SMBus Serial Interface Information for 932SQL420

How to Write

- · Controller (host) sends a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read

- Controller (host) will send a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- · Controller (host) will send a separate start bit
- · Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- · Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

	Index Block F	Read O	peration
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave	Address D2 _(H)		
WR	WRite		
			ACK
Begi	nning Byte = N		
		_	ACK
RT	Repeat starT		
Slave	Address D3 _(H)		
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK	_	
		e	0
	0	B	0
	0	×	0
	0		
	-		Byte N + X - 1
Ν	Not acknowledge		
Р	stoP bit		

	Index Block Write Operation									
Controll	er (Host)		IDT (Slave/Receiver)							
Т	starT bit									
Slave Add	ress D2 _(H)									
WR	WRite									
			ACK							
Beginning	g Byte = N									
			ACK							
Data Byte	Count = X									
			ACK							
Beginnin	g Byte N									
			ACK							
0		×								
0		Byt	0							
0		e	0							
			0							
Byte N	+ X - 1									
			ACK							
Р	stoP bit									

Read AddressWrite AddressD3(H)D2(H)

IDT® LOW POWER PCIE GEN2/3 & QPI CLOCK FOR INTEL-BASED SERVERS

10

NOTE: Pin numbers refer to TSSOP

SMBus Table: Output Enable Register

Byte	0 Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	24/25	DOT96 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 6	50/49	NS_SAS1 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 5	48/47	NS_SAS0 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 4	44/43	NS_SRC1 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 3	42/41	NS_SRC0 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 2	36/35	SRC2 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 1	34/33	SRC1 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 0	30/31	SRC0 Enable	Output Enable	RW	Disable-Low/Low	Enable	1

SMBus Table: Output Enable Register

Byte	1 Pin #	Name	Control Function	Туре	0	1	Default	
Bit 7	5	REF14_3x Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 6			RESERVED					
Bit 5			RESERVED					
Bit 4	62/61	CPU3	Output Enable	RW	Disable-Low/Low	Enable	1	
Bit 3	60/59	CPU2	Output Enable	RW	Disable-Low/Low	Enable	1	
Bit 2	56/55	CPU1	Output Enable	RW	Disable-Low/Low	Enable	1	
Bit 1	54/53	CPU0	Output Enable	RW	Disable-Low/Low	Enable	1	
Bit 0	CPU/SRC/ PCI	Spread Spectrum Enable	Spread Off/On	RW	Spread Off	Spread On	0	

SMBus Table: Output Enable Register

Byte	2 Pin #	Name	Control Function	Туре	0	1	Default	
Bit 7			RESERVED					
Bit 6			RESERVED					
Bit 5	13	PCI4 Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 4	14	PCI3 Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 3	15	PCI2 Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 2	16	PCI1 Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 1	17	PCI0 Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 0	21	48MHz Enable	Output Enable	RW	Disable-Low	Enable	1	

SMBus Table: Differential Amplitude Control

Byte	3	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7			CPU AMPLITUDE 1		RW	00 = 700mV	01 = 800mV	0
Bit 6			CPU AMPLITUDE 0	CFO VIIgII	RW	10 = 900mV	11 = 1000mV	1
Bit 5			SRC AMPLITUDE 1	SPC Which	RW	00 = 700mV	01 = 800mV	0
Bit 4			SRC AMPLITUDE 0	Sho Viligii	RW	10 = 900mV	11 = 1000mV	1
Bit 3			DOT96 AMPLITUDE 1		RW	00 = 700mV	01 = 800mV	0
Bit 2			DOT96 AMPLITUDE 0	DO196 Viligh	RW	10 = 900mV	11 = 1000mV	1
Bit 1			NS-SAS/SRC AMPLITUDE 1		RW	00 = 700mV	01 = 800mV	0
Bit 0			NS-SAS/SRC AMPLITUDE 0	NO-SAS/SAC VIIgn	RW	10 = 900mV	11 = 1000mV	1

SMBus Table: Spread Amount Register

Byte) 4	Pin #	Name	Control Function	Туре	0	1	Default		
Bit 7				RESERVE	D			0		
Bit 6				RESERVE	D			0		
Bit 5				RESERVED						
Bit 4				RESERVED						
Bit 3				RESERVED						
Bit 2				RESERVE	D			0		
Bit 1			SS AMOUNT[1]	SS AMOUNT[1] Spread Amount (note RW 00= -0.2% 10= -0.4%						
Bit 0			SS AMOUNT[0] B1b0 must be set to '1') RW 01= -0.3% 11= -0.5%							
IDT® LO	® LOW POWER PCIE GEN2/3 & QPI CLOCK FOR INTEL-BASED SERVERS 11 932SQL420 REV 0.									

UIIBao	1001011	110_0/		ing rabie						
Byte	5 Pi	'in #	Name	Control Function	Туре	0	1	Default		
Bit 7				RESERVE	2			0		
Bit 6				RESERVED						
Bit 5			RESERVED							
Bit 4				RESERVED						
Bit 3	-		FS3	Freq. Sel 3	RW			0		
Bit 2	-		FS2	Freq. Sel 2	RW	See NS_SAS/NS	SRC Frequency	1		
Bit 1	-		FS1	Freq. Sel 1	RW	Tab	le.	1		
Bit 0	-		FS0	Freq. Sel 0	RW			1		

SMBus Table: NS_SAS/NS_SRC Frequency Margining Table

SMBus Table: Test Mode and CPU/SRC/PCI Frequency Select Register

Byte	e6 Pin#	Name	Control Function	Туре	0	1	Default
Bit 7	-	Test Mode	Test Mode Type	RW	Hi-Z	REF/N	0
Bit 6	-	Test Select	Select Test Mode	RW	Disable	Enable	0
Bit 5	-		RESERVED				
Bit 4	-		RESERVED				
Bit 3	-		RESERVE	D			0
Bit 2	-	FS2	Freq. Sel 2	RW			0
Bit 1	-	FS1	Freq. Sel 1	RW	See CPU/SRC/PCI Frequency		1
Bit 0	-	FS0	Freq. Sel 0	RW	Select	Iable	1

Note: Internal Pull up on 100M_133M# pin will result in default CPU frequency of 100 MHz.

SMBus Table: Vendor & Revision ID Register

Byte	7 Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	RID3		R			0
Bit 6	-	RID2	REVISION ID	R	1 for [0	
Bit 5	-	RID1	(1h forB rev)	R	1 101 1	0	
Bit 4	-	RID0		R		1	
Bit 3	-	VID3		R		0	
Bit 2	-	VID2		R	0001 for	0	
Bit 1	-	VID1		R	0001101	0	
Bit 0	-	VID0		R			1

SMBus Table: Byte Count Register

Byte	8 Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	BC7		RW			0
Bit 6	-	BC6		RW		0	
Bit 5	-	BC5		RW	Writing to this regi	0	
Bit 4	-	BC4	Byte Count	RW	how many bytes v	0	
Bit 3	-	BC3	Programming b(7:0)	RW	default is	A bytes.	1
Bit 2	-	BC2		RW	(0 to	o 9	0
Bit 1	-	BC1		RW		1	
Bit 0	-	BC0		RW			0

SMBus Table: Device ID Register

Byte	9 Pin	#	Name	Control Function	Туре	0	1	Default
Bit 7	-		DID7		R	-	-	0
Bit 6			DID6		R	-	-	1
Bit 5			DID5		R	-	-	0
Bit 4			DID4	Device ID	R	-	-	0
Bit 3			DID3	(42 hex)	R	-	-	0
Bit 2			DID2		R	-	-	0
Bit 1			DID1		R	-	-	1
Bit 0			DID0		R	-	-	0

12

IDT® LOW POWER PCIE GEN2/3 & QPI CLOCK FOR INTEL-BASED SERVERS

932SQL420

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 932SQL420. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	V _{IL}		GND-0.5			V	1
Input High Voltage	V _{IH}	Except for SMBus interface			V_{DD} +0.5V	V	1
Input High Voltage	VIHSMB	SMBus clock and data pins			5.5V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Case Temperature	Тс				110	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

Electrical Characteristics–Current Consumption

TA = T _{COM} ; Supply Voltage VDD = 3.3 V +/-5%									
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES		
Operating Supply Current	I _{DD3.3OP}	All outputs active @100MHz, $C_L = Full load;$			250	mA	1		
Powerdown Current	I _{DD3.3PDZ}				6	mA	1		

¹Guaranteed by design and characterization, not 100% tested in production.

AC Electrical Characteristics–Differential Current Mode Outputs

TA = T_{COM} : Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45		55	%	1
Skew, Output to Output	t _{sk3SRC}	Across all SRC outputs, $V_T = 50\%$			50	ps	1
Skew, Output to Output	t _{sk3CPU}	Across all CPU outputs, $V_T = 50\%$			50	ps	1
litter. Ovele to evelo	+	CPU, SRC, NS_SAS outputs			50	ps	1,3
	ljcyc-cyc	DOT96 output			250	ps	1,3

¹Guaranteed by design and characterization, not 100% tested in production.

² Zo=85 Ω (differential impedance).

³ Measured from differential waveform

Electrical Characteristics–Input/Supply/Common Parameters

TA = T_{COM} ; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating Temperature	Т _{СОМ}	Commmercial range	0		70	°C	1
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus, low threshold and tri- level inputs	2		V _{DD} + 0.3	V	1
Input Low Voltage	V _{IL}	Single-ended inputs, except SMBus, low threshold and tri- level inputs	GND - 0.3		0.8	V	1
	I _{IN}	Single-ended inputs, V _{IN} = GND, V _{IN} = VDD	-5		5	uA	1
Input Current	I _{INP}	Single-ended inputs. V _{IN} = 0 V; Inputs with internal pull-up resistors V _{IN} = VDD; Inputs with internal pull-down resistors	-200		200	uA	1
Low Threshold Input- High Voltage	V_{IH_FS}	3.3 V +/-5%	0.7		V _{DD} + 0.3	v	1
Low Threshold Input- Low Voltage	$V_{\text{IL}_{\text{FS}}}$	3.3 V +/-5%	V _{SS} - 0.3		0.35	V	1
Input Frequency	Fi			25.00		MHz	2
Pin Inductance	L _{pin}				7	nH	1
	CIN	Logic Inputs			5	pF	1
Capacitance	C _{OUT}	Output pin capacitance			5	pF	1
, , , , , , , , , , , , , , , , , , ,	CINX	X1 & X2 pins			5	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de- assertion of PD# to 1st clock			1.8	ms	1,2
SS Modulation Frequency	f _{MODIN}	Allowable Frequency (Triangular Modulation)	30	31.5	33	kHz	1
Tdrive_PD#	t _{DRVPD}	Differential output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of control inputs			5	ns	1,2
Trise	t _R	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	V _{ILSMB}				0.8	V	1
SMBus Input High Voltage	V _{IHSMB}		2.1		V _{DDSMB}	v	1
SMBus Output Low Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	v	1
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	1
Nominal Bus Voltage	V _{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1

¹Guaranteed by design and characterization, not 100% tested in production.

 $^2\mbox{Control}$ input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

IDT® LOW POWER PCIE GEN2/3 & QPI CLOCK FOR INTEL-BASED SERVERS

DC Electrical Characteristics–Differential Current Mode Outputs

 $T_A = T_{COM}$: Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on	1		4	V/ns	1, 2, 3
Slew rate matching	∆dV/dt	Slew rate matching, Scope averaging on			20	%	1, 2, 4
Rise/Fall Time Matching	ΔTrf	Rise/fall matching, Scope averaging off			125	ps	1, 8, 9
Voltage High	VHigh	Statistical measurement on single-ended signal using	660		850	m\/	1
Voltage Low	VLow	oscilloscope math function. (Scope averaging on)	-150		150	IIIV	1
Max Voltage	Vmax	Measurement on single ended			1150	m\/	1, 7
Min Voltage	Vmin	signal using absolute value.	-300			mv	1, 7
Vswing	Vswing	Scope averaging off	300			mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250		550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off			140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production. $Z_0=85\Omega$ (differential impedance).

² Measured from differential waveform

 3 Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than

⁷ Includes overshoot and undershoot.

⁸ Measured from single-ended waveform

⁹ Measured with scope averaging off, using statistics function. Variation is difference between min and max.

Electrical Characteristics-48MHz

 T_A = 0 - 70°C; Supply Voltage $V_{DD/}V_{DDA}$ = 3.3 V +/-5%,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Output Impedance	R _{DSP}	$V_{O} = V_{DD}^{*}(0.5)$	20		60	Ω	1
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4			V	1
Output Low Voltage	V _{OL}	$I_{OL} = 1 \text{ mA}$			0.55	V	1
Output High Current	1	MIN @V _{OH} = 1.0 V	-29			mA	1
	ЮН	MAX @V _{OH} = 3.135 V			-33	mA	1
Output Low Current	1	MIN @V _{OL} = 1.95 V	29			mA	1
Output Low Current	OL	MAX @ V _{OL} = 0.4 V			27	mA	1
Clock High Time	T _{HIGH}	1.5V	8.094		10.036	ns	1
Clock Low Time	T _{LOW}	1.5V	7.694		9.836	ns	1
Edge Rate	t _{slewr/f_USB}	Rising/Falling edge rate	1		2	V/ns	1,2
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V			350	ps	1

See "Power Supply and Test Loads" page for termination circuits

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

IDT® LOW POWER PCIE GEN2/3 & QPI CLOCK FOR INTEL-BASED SERVERS

Electrical Characteristics–Phase Jitter Parameters

 $T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD/}V_{DDA} = 3.3 V + -5\%$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
	t _{iphPCleG1}	PCIe Gen 1			86	ps (p-p)	1,2,3,6
		PCIe Gen 2 Lo Band			3	ps	1,2,6
	tinhPCIeG2	10kHz < † < 1.5MHz				(rms)	
	-jpiir Greaz	PCIe Gen 2 High Band			3.1	ps	126
		1.5MHz < f < Nyquist (50MHz)			••••	(rms)	1,2,0
		PCIe Gen 3					
	t _{inhPCleG3}	(PLL BW of 2-4MHz, CDR =			1	ps (max)	1,2,4,6
	Jpin ereae	10MHz)				(rms)	
Phase Jitter		QPI & SMI					
		(100MHz, 4.8Gb/s, 6.4Gb/s			0.5	ps	1,5,7
		12UI)			-	(rms)	,-,
	t _{iphQPI} SMI	QPI & SMI			0.0	ps	4 5 7
	J	(100MHz, 8.0Gb/s, 12UI)			0.3	(rms)	1,5,7
		QPI & SMI			0.0	ps	4
		(100MHz, 9.6Gb/s, 12UI)			0.2	(rms)	1,5,7
	•	SAS 100			10	ps	1 5 0
	ljphSAS12G	SAS 12G			1.3	(rms)	1,5,8

¹ Guaranteed by design and characterization, not 100% tested in production.

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final radification by PCI SIG.

⁵ Calculated from Intel-supplied Clock Jitter Tool v 1.6.6

⁶ Applied to SRC outputs

⁷ Applies to CPU outputs

⁸ Applies to NS_SAS, NS_SRC outputs, Spread Off

Electrical Characteristics-PCI

 $T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD/}V_{DDA} = 3.3 V + -5\%$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Output Impedance	R _{DSP}	$V_{O} = V_{DD}^{*}(0.5)$	12		55	Ω	1
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4			V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA			0.55	V	1
Output High Current		MIN @V _{OH} = 1.0 V	-33			mA	1
	ЮН	MAX @V _{OH} = 3.135 V			-33	mA	1
Output Low Current		MIN @V _{OL} = 1.95 V	30			mA	1
Output Low Current	OL	MAX @ V _{OL} = 0.4 V			38	mA	1
Clock High Time	Тысы	1.5V	12			ns	1
	· nign					_	
Clock Low Time	T _{LOW}	1.5V	12			ns	1
Edge Rate	t _{slewr/f}	Rising/Falling edge rate	1		4	V/ns	1,2
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Group Skew	t _{skew}	V _T = 1.5 V			500	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V			500	ps	1

See "Power Supply and Test Loads" page for termination circuits

¹Guaranteed by design and characterization, not 100% tested in production.

 $^{\rm 2}$ Measured between 0.8V and 2.0V

Electrical Characteristics-REF

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Output Impedance	R _{DSP}	$V_{O} = V_{DD}^{*}(0.5)$	12		55	Ω	1
Output High Voltage	V _{OH}	I _{ОН} = -1 mА	2.4			V	1
Output Low Voltage	V _{OL}	$I_{OL} = 1 \text{ mA}$			0.55	V	1
Output High Current	1	MIN @V _{OH} = 1.0 V	-33			mA	1
	ЮН	MAX @V _{OH} = 3.135 V			-33	mA	1
Output Low Current		MIN @V _{OL} = 1.95 V	30			mA	1
Output Low Current	IOL	MAX @ V _{OL} = 0.4 V			38	mA	1
Clock High Time	T _{HIGH}	1.5V	27.5			ns	1
Clock Low Time	T _{LOW}	1.5V	27.5			ns	1
Edge Rate	t _{slewr/f}	Rising/Falling edge rate	1		4	V/ns	1,2
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V			1000	ps	1

$T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD/}V_{DDA} = 3.3 V + -5\%$,

See "Power Supply and Test Loads" page for termination circuits

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

Test Clarification Table

Comments	HW		SW		
	TEST_SEL HW PIN	TEST_MOD E HW PIN	TEST ENTRY BIT B6b6	REF/N or HI-Z B6b7	OUTPUT
	0	Х	0	Х	NORMAL
Power up w/TEST SEL = 1 (> 2.0)() to enter test	1	0	Х	0	HI-Z
Fower-up w/ TEST_SEL = $1(22.00)$ to enter test	1	0	Х	1	REF/N
mode. Cycle power to disable test mode.	1	1	Х	0	REF/N
	1	1	Х	1	REF/N
If TEST_SEL HW pin is 0 during power-up, test mode can be selected through B6b6. If test mode is selected by B6b6, then B6b7 is used to select HI-Z or REF/N FS_B/TEST_Mode pin is not used. Cycle power to disable test mode.	0	Х	1	0	HI-Z
	0	х	1	1	REF/N

B6b6: 1= ENTER TEST MODE, Default = 0 (NORMAL OPERATION) B6b7: 1= REF/N, Default = 0 (HI-Z)

Package C	Dutline and	Package	Dimensions	(64-pin TSSOP)
U		<u> </u>		· · · /

	Millimeters		Inches*		
Symbol	Min	Max	Min	Мах	
А	_	1.20	_	.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	0.32	0.41	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	16.90	17.10	.665	.673	
Е	8.10 BASIC		0.319 BASIC		
E1	6.00	6.20	.236	.244	
е	0.50 BASIC		0.020 BASIC		
aaa	-	0.10	-	.004	
L	0.45	0.75	.018	.030	
α	0 °	8 °	0 °	8°	

*For reference only. Controlling dimensions in mm.

Package Outline and Package Dimensions (64-pin MLF)

Ordering Information

Part / Order Number	Shipping Packaging Package		Temperature	
932SQL420BGLF	Tubes	64-pin TSSOP	0 to +70° C	
932SQL420BGLFT	Tape and Reel	64-pin TSSOP	0 to +70° C	
932SQL420BKLF	Tray	64-pin MLF	0 to +70° C	
932SQL420BKLFT	Tape and Reel	64-pin MLF	0 to +70° C	

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

"B" is the device revision designator (will not correlate with the datasheet revision).

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Issue Date	Who	Description	Page #
0.1	4/26/2010	RDW	Initial Release	-
0.2	6/3/2010	RDW	Updated block diagram to remove the IREF resistor.	
0.3	10/24/2011	RDW	 Updated power management table for Low Power Outputs (LPO) Updated SMBus for LPO disabled state Updated electrical tables with latest CK420BQ tables. 	Various
0.4	12/5/2011	RDW	 Updated frequency tables to match AP336 PLL programming Added dif output amplitude control to Byte 3 Updated bytes 5 and 6 to reflect new frequency tables. Updated bytes 11-45 to reflect PLL control registers and test bytes. 	Various
0.5	1/19/2012	RDW	 Updated CPU/SRC/PCI Margining Table Updated NS_SAS Margining Table Updated Current Consumption Table Updated General Description and Output Features Table 	Various
0.6	3/27/2012	RDW	 Updated ordering information to B rev Updated Rev ID in SMBus to reflect this. 	Various
0.7	4/16/2012	RDW	 Removed support for 133M on CPU 48M output becomes Output only and not latched B6[4] is now reserved and has default value of '1'. CPU frequency table now reduced to 8 entries. DOT96 and NS_SAS/SRC amplitude bit are swapped to match A rev silicon (B3[3:2] and B2[1:0]) 4 selectable spread amounts are added with control bits in B4[1:0]. See these bits for definition. Differential output test loads now indicate Rs instead of specific value to allow for 100ohm or 85ohm terminations. 	Various
0.8	6/20/2012	RDW	1. Updated Vendor ID/Revision ID byte from 0000 0001 to 0001 0001 2. Updated ordering information from AGLF/AKLF to BGLF/BKLF	Various

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

www.idt.com/go/clockhelp pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

© 2012 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, ICS, and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA