

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

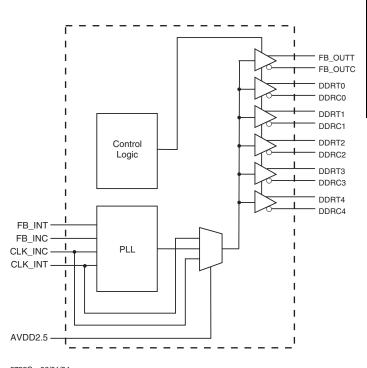
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DDR Phase Lock Loop Clock Driver

Recommended Application:

DDR Clock Driver


- Low skew, low jitter PLL clock driver
- External feedback pins for input to output synchronization
- Spread Spectrum tolerant inputs
- With bypass mode mux
- Operating frequency 60 to 170 MHz
- Operating Temperature –45°C to +85°C
- CYCLE CYCLE jitter:<75ps
- OUTPUT OUTPUT skew: <60ps
- Output Rise and Fall Time: 650ps 950ps

Pin Configuration

GND	1			DDRC4
DDRC0	2		27	DDRT4
DDRT0	3		26	VDD2.5
VDD2.5	4		25	GND
CLK_INT	5	2	24	FB_OUTO
CLK_INC	6	85.	23	FB_OUTT
AVDD2.5	7		22	VDD2.5
AGND	8	93V	21	FB_INT
GND	9	S	20	FB_INC
DDRC1	10	<u>5</u>	19	GND
DDRT1	11		18	VDD2.5
VDD2.5	12		17	DDRT3
DDRT2	13		16	DDRC3
DDRC2	14		15	GND
				l

28-Pin 4.4mm TSSOP

Block Diagram

Functionality

INPUTS				PLL State				
AVDD	CLK_INT	CLK_INC	DDRT	DDRC	FB_OUTT	FB_OUTC	PLL State	
GND	L	Н	Г	Н	L	Н	Bypassed/Off	
GND	Н	L	Н	L	Н	L	Bypassed/Off	
2.5V (nom)	L	Н	L	H	L	н	On	
2.5V (nom)	Н	٦	н	L	Н	L	On	
2.5V (nom)	<20 MHz	<20 MHz	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Off	

0783C-06/01/04

ICS93V855I

Pin Descriptions

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	GND	PWR	Ground pin.
2	DDRC0	OUT	"Complimentary" Clock of differential pair output.
3	DDRT0	OUT	"True" Clock of differential pair output.
4	VDD2.5	PWR	Power supply, nominal 2.5V
5	CLK_INT	IN	"True" reference clock input.
6	CLK_INC	IN	"Complimentary" reference clock input.
7	AVDD2.5	PWR	2.5V Analog Power pin for Core PLL
8	AGND	PWR	Analog Ground pin for Core PLL
9	GND	PWR	Ground pin.
10	DDRC1	OUT	"Complimentary" Clock of differential pair output.
11	DDRT1	OUT	"True" Clock of differential pair output.
12	VDD2.5	PWR	Power supply, nominal 2.5V
13	DDRT2	OUT	"True" Clock of differential pair output.
14	DDRC2	OUT	"Complimentary" Clock of differential pair output.
15	GND	PWR	Ground pin.
16	DDRC3	OUT	"Complimentary" Clock of differential pair output.
17	DDRT3	OUT	"True" Clock of differential pair output.
18	VDD2.5	PWR	Power supply, nominal 2.5V
19	GND	PWR	Ground pin.
20	FB_INC	IN	Complement single-ended feedback input, provides feedback signal to internal PLL for synchronization with CLK_INT to eliminate phase error.
21	FB_INT	IN	True single-ended feedback input, provides feedback signal to internal PLL for synchronization with CLK_INT to eliminate phase error.
22	VDD2.5	PWR	Power supply, nominal 2.5V
23	FB_OUTT	OUT	True single-ended feedback output, dedicated external feedback. It switches at the same frequency as other DDR outputs, This output must be connect to FB_INT.
24	FB_OUTC	OUT	Complement single-ended feedback output, dedicated external feedback. It switches at the same frequency as other DDR outputs, This output must be connect to FB_INC.
25	GND	PWR	Ground pin.
26	VDD2.5	PWR	Power supply, nominal 2.5V
27	DDRT4	OUT	"True" Clock of differential pair output.
28	DDRC4	OUT	"Complimentary" Clock of differential pair output.

Absolute Maximum Ratings

Supply Voltage: (VDD & AVDD)--0.5V to 3.6V

(VDDI).....--0.5V to 4.6V

Input clamp current: IIK (VI < 0 or VI > VDD) +/- 50mA

Output clamp current: IOK (VO < 0 or VO > VDD) +/- 50mA

Continuous output current: IO (VO = 0 to VDD) +/- 50mA

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

TA = -45°C to +85°C; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Current	I _{IH}	$V_I = V_{DD}$ or GND	5			μΑ
Input Low Current	I _{IL}	$V_I = V_{DD}$ or GND			5	μA
Operating Supply	I _{DD2.5}	$C_L = 0pf, R_L = 120 ohms$			250	mA
Current	I _{DDPD}	$C_L = 0pf, R_L = 120 ohms$			100	μΑ
Output High Current	I _{OH}	$V_{DD} = 2.3V, V_{OUT} = 1V$	-18			mA
Output Low Current	I _{OL}	$V_{DD} = 2.3V, V_{OUT} = 1.2V$	26			mA
High Impedance Output Current	I _{OZ}	V _{DD} =2.7V, Vout=V _{DD} or GND			±10	μΑ
Input Clamp Voltage	V_{IK}	lin = -18mA			-1.2	V
High-level output voltage	W	V_{DD} = min to max, I_{OH} = -1 mA	V _{DD} - 0.1			V
	V _{OH}	$V_{DD} = 2.3V$, $I_{OH} = -12 \text{ mA}$	1.7			V
Low-level output voltage	V _{OL}	V_{DD} = min to max I_{OL} =1 mA			0.1	
	VOL	$V_{DD} = 2.3V$ $I_{OH} = 12 \text{ mA}$			0.6	V
Input Capacitance ¹	C _{IN}	VI = V _{DD} or GND		3		pF
Output Capacitance ¹	C _{OUT}	VI = V _{DD} or GND		3		pF

¹Guaranteed by design and characterization, not 100% tested in production.

ICS93V855I

DC Electrical Characteristics

 $T_A = -45$ °C to +85 °C; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{DDQ} , A_{VDD}		2.3	2.5	2.7	V
Low level input voltage	V _{IL}	CLK_INT, CLK_INC, FB_INC, FB_INT		0.4	V _{DD} /2 - 0.18	V
High level input voltage	V _{IH}	CLK_INT, CLK_INC, FB_INC, FB_INT	$V_{DD}/2 + 0.18$	2.1		V
DC input signal voltage (note 2)	V _{IN}		-0.3		V _{DD} + 0.3	V
Differential input signal	V _{ID}	DC - CLK_INT, CLK_INC, FB_INC, FB_INT	0.36		V _{DD} + 0.6	V
voltage (note 3)	VID	AC - CLK_INT, CLK_INC, FB_INC, FB_INT	0.7		V _{DD} + 0.6	V
Output differential cross- voltage (note 4)	V _{ox}		V _{DD} /2 - 0.15		$V_{DD}/2 + 0.15$	V
Input differential cross- voltage (note 4)	V_{IX}		V _{DD} /2 - 0.2	V _{DD} /2	$V_{DD}/2 + 0.2$	V
Operating free-air temperature	T_A		-45		85	°C

Notes:

- 1 Unused inputs must be held high or low to prevent them from floating.
- 2 DC input signal voltage specifies the allowable DC excursion of differential input.
- 3 Differential inputs signal voltages specifies the differential voltage [VT-VCP] required for switching, where VTR is the true input level and VCP is the complementary input level.
- 4 Differential cross-point voltage is expected to track variations of VDD and is the voltage at which the differential signal must be crossing.

Switching Characteristics

 $T_A = -45$ °C to +85 °C; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V (unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Max clock frequency ³	freq _{op}		33		233	MHz
Application Frequency Range ³	freq _{App}		60		170	MHz
Input clock duty cycle	d_{tin}		40		60	%
Output clock slew rate	t _{sl(o)}		1		2	v/ns
CLK stabilization	T _{STAB}				100	μs
Low-to high level propagation delay time	t _{PLH}	CLK_IN to any output		5.5		ns
High-to low level propagation delay time	t _{PHL} 1	CLK_IN to any output		5.5		ns
Output enable time	t _{en}	PD# to any output		5		ns
Output disable time	t_{dis}	PD# to any output		5		ns
Period jitter	t _{jit (per)}		-75		75	ps
Half-period jitter	t _{jit(hper)}		-100		100	ps
Input clock slew rate	t _{sl(I)}	Over the application	1		2	v/ns
Cycle to Cycle Jitter	$t_{\rm cyc}$ - $t_{\rm cyc}$	frequency range	-75		75	ps
Phase error ⁴	t _(phase error)		-50		50	ps
Output to Output Skew	t_{skew}			40	60	ps
Rise Time, Fall Time	t _r , t _f	Load = 120\psi/16pF	650	800	950	ps

Notes:

- 1. Refers to transition on noninverting output in PLL bypass mode.
- 2. While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle=twH/tc, were the cycle (tc) decreases as the frequency goes up.
- 3. Switching characteristics are guaranteed for application frequency range. The PLL Locks over the Max Clock Frequency range, but the device doe not necessarily meet other timing parameters.
- 4. Does not include jitter.

Parameter Measurement Information

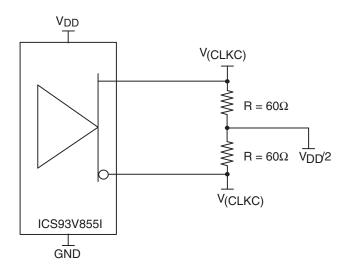


Figure 1. IBIS Model Output Load

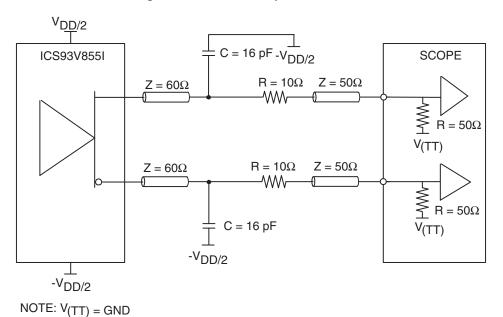


Figure 2. Output Load Test Circuit

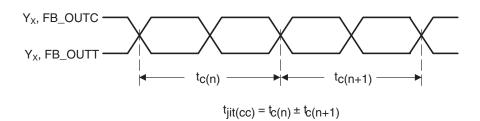
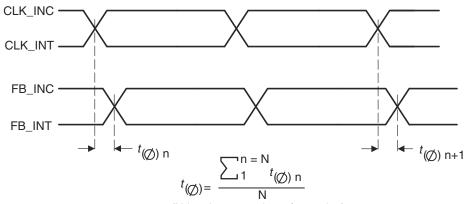



Figure 3. Cycle-to-Cycle Jitter

0783C-06/01/04

Parameter Measurement Information

(N is a large number of samples)

Figure 4. Static Phase Offset

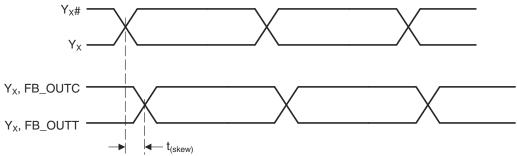


Figure 5. Output Skew

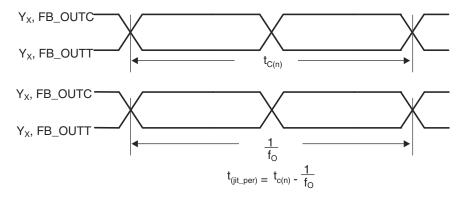


Figure 6. Period Jitter

Parameter Measurement Information

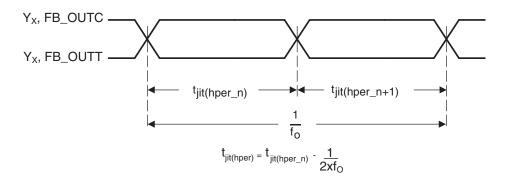
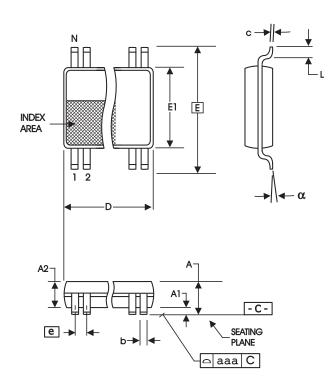
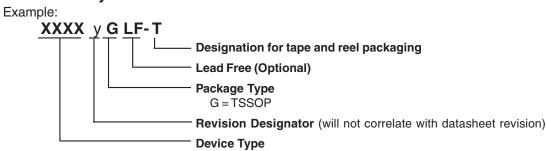



Figure 7. Half-Period Jitter

Figure 8. Input and Output Slew Rates

	In Milli	meters	In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		1.20	-	.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007	.012	
С	0.09	0.20	.0035	.008	
D	SEE VARIATIONS		SEE VARIATIONS		
E	6.40 E	BASIC	0.252 BASIC		
E1	4.30	4.50	.169	.177	
е	0.65 E	BASIC	0.0256 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAF	RIATIONS	
а	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS


ı	N	Dr	nm.	D (inch)		
		MIN	MAX	MIN	MAX	
	28	9.60	9.80	.378	.386	

Reference Doc.: JEDEC Publication 95, MO-153

4.40 mm. Body, 0.65 mm. pitch TSSOP (173 mil) (0.0256 lnch)

Ordering Information

93V855yGILF-T

0783C-06/01/04