## imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



# 

# Programmable System Clock Chip for ATI RS/RD690 K8<sup>TM</sup> - based Systems

#### **Recommended Application:**

ATI RS/RD690 systems using AMD K8 processors & SB600 Southbridge

#### **Output Features:**

- 2 0.7V current-mode differential CPU pairs
- 6 0.7V current-mode differential SRC pairs
- 2 0.7V current-mode differential ATIG pairs
- 1 HyperTransport clock seed
- 2 48MHz USB clock

**Pin Configuration** 

• 3 - 14.318MHz Reference clock

#### **Key Specifications:**

- CPU outputs cycle-to-cycle jitter < 85ps</li>
- SRC outputs cycle-to-cycle jitter < 125ps
- ATIG outputs cycle-to-cycle jitter < 125ps</li>
- +/- 300ppm frequency accuracy on CPU, SRC & ATIG clocks

#### Features/Benefits:

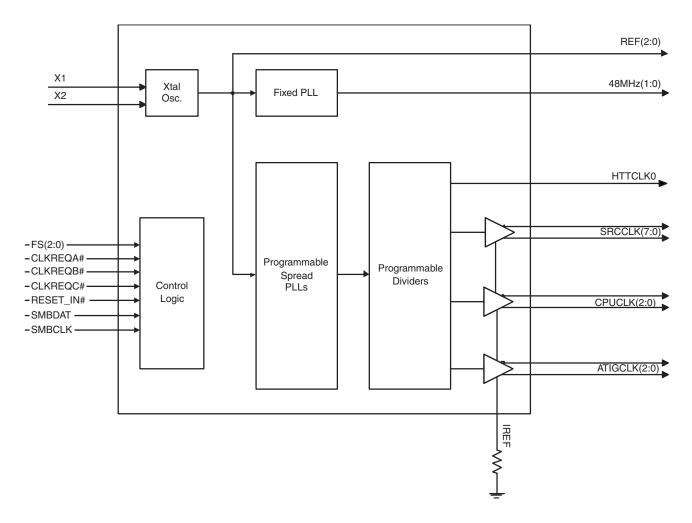
- 3 Programmable Clock Request pins for SRC and ATIG clocks
- ATIGCLKs are programmable for frequency
- Spread Spectrum for EMI reduction
- Outputs may be disabled via SMBus
- External crystal load capacitors for maximum frequency accuracy

| VDDSRC 26 31 ATIGCLKT1<br>GNDSRC 27 30 ATIGCLKC1<br>*CLKREQB# 28 29 *CLKREQC#<br>56-Pin SSOP/TSSOP<br>Note: Pins preceeded by * have a 120 Kohm Internal Pull Up resistor<br>Pins preceeded by ** have a 120 Kohm Internal Pull Down resistor |    |                   |    |                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------|----|----------------------|--|
| SRCCLK12                                                                                                                                                                                                                                      |    |                   |    | GNDATIG              |  |
| VDDSRC<br>SRCCLKT2                                                                                                                                                                                                                            |    |                   |    | ATIGCLKC0<br>VDDATIG |  |
| GNDSRC                                                                                                                                                                                                                                        |    |                   |    | ATIGCLKT0            |  |
| SRCCLKC4                                                                                                                                                                                                                                      |    |                   |    | VDDSRC               |  |
| SRCCLKT4                                                                                                                                                                                                                                      |    |                   |    | GNDSRC               |  |
| SRCCLKC5                                                                                                                                                                                                                                      |    |                   |    | SRCCLKC0             |  |
| SRCCLKT5                                                                                                                                                                                                                                      |    |                   |    | SRCCLKT0             |  |
| SRCCLKC6                                                                                                                                                                                                                                      |    | 6                 |    | IREF                 |  |
| SRCCLKT6                                                                                                                                                                                                                                      |    | 5                 |    | GNDA                 |  |
| GNDSRC                                                                                                                                                                                                                                        |    | 46                |    | VDDA                 |  |
| VDDSRC                                                                                                                                                                                                                                        | 14 | 951464 <b>A</b> G |    | CPUCLK8C1            |  |
| SRCCLKC7                                                                                                                                                                                                                                      | 13 | ច                 | 44 | CPUCLK8T1            |  |
| SRCCLKT7                                                                                                                                                                                                                                      | 12 | Щ                 | 45 | GNDCPU               |  |
| RESET_IN#                                                                                                                                                                                                                                     | 11 |                   | 46 | VDDCPU               |  |
| SMBDAT                                                                                                                                                                                                                                        | 10 |                   | 47 | CPUCLK8C0            |  |
| SMBCLK                                                                                                                                                                                                                                        | 9  |                   | 48 | CPUCLK8T0            |  |
| GND48                                                                                                                                                                                                                                         |    |                   |    | *CLKREQA#            |  |
| 48MHz 1                                                                                                                                                                                                                                       |    |                   |    | GNDHTT               |  |
| 48MHz 0                                                                                                                                                                                                                                       | -  |                   |    | HTTCLK0              |  |
| VDD48                                                                                                                                                                                                                                         |    |                   |    | VDDHTT               |  |
| X1<br>X2                                                                                                                                                                                                                                      |    |                   | -  | **PD                 |  |
| X1                                                                                                                                                                                                                                            |    |                   |    | FS2/REF2             |  |
| VDDREF                                                                                                                                                                                                                                        |    |                   |    | FS1/REF1             |  |
| GNDREF                                                                                                                                                                                                                                        | -  |                   | 56 | FS0/REF0             |  |

IDT™/ICST<sup>™</sup> Programmable System Clock Chip for ATI RS/RD690 K8<sup>TM</sup> - based Systems

## **Pin Description**

| PIN # | PIN NAME  | TYPE | DESCRIPTION                                                                                                             |  |
|-------|-----------|------|-------------------------------------------------------------------------------------------------------------------------|--|
| 1     | GNDREF    | PWR  | Ground pin for the REF outputs.                                                                                         |  |
| 2     | VDDREF    | PWR  | Ref, XTAL power supply, nominal 3.3V                                                                                    |  |
| 3     | X1        | IN   | Crystal input, Nominally 14.318MHz.                                                                                     |  |
| 4     | X2        | OUT  | Crystal output, Nominally 14.318MHz                                                                                     |  |
| 5     | VDD48     | PWR  | Power pin for the 48MHz output.3.3V                                                                                     |  |
| 6     | 48MHz_0   | OUT  | 48MHz clock output.                                                                                                     |  |
| 7     | 48MHz_1   | OUT  | 48MHz clock output.                                                                                                     |  |
| 8     | GND48     | PWR  | Ground pin for the 48MHz outputs                                                                                        |  |
| 9     | SMBCLK    | IN   | Clock pin of SMBUS circuitry, 5V tolerant                                                                               |  |
| 10    | SMBDAT    | I/O  | Data pin of SMBUS circuitry, 5V tolerant                                                                                |  |
| 11    | RESET_IN# | IN   | Real time active low input. When active, SMBus is reset to power up default.                                            |  |
| 12    | SRCCLKT7  | OUT  | True clock of differential SRC clock pair.                                                                              |  |
| 13    | SRCCLKC7  | OUT  | Complement clock of differential SRC clock pair.                                                                        |  |
| 14    | VDDSRC    | PWR  | Supply for SRC clocks, 3.3V nominal                                                                                     |  |
| 15    | GNDSRC    | PWR  | Ground pin for the SRC outputs                                                                                          |  |
| 16    | SRCCLKT6  | OUT  | True clock of differential SRC clock pair.                                                                              |  |
| 17    | SRCCLKC6  | OUT  | Complement clock of differential SRC clock pair.                                                                        |  |
| 18    | SRCCLKT5  | OUT  | True clock of differential SRC clock pair.                                                                              |  |
| 19    | SRCCLKC5  | OUT  | Complement clock of differential SRC clock pair.                                                                        |  |
| 20    | SRCCLKT4  | OUT  | True clock of differential SRC clock pair.                                                                              |  |
| 21    | SRCCLKC4  | OUT  | Complement clock of differential SRC clock pair.                                                                        |  |
| 22    | GNDSRC    | PWR  | Ground pin for the SRC outputs                                                                                          |  |
| 23    | VDDSRC    | PWR  | Supply for SRC clocks, 3.3V nominal                                                                                     |  |
| 24    | SRCCLKT2  | OUT  | True clock of differential SRC clock pair.                                                                              |  |
| 25    | SRCCLKC2  | OUT  | Complement clock of differential SRC clock pair.                                                                        |  |
| 26    | VDDSRC    | PWR  | Supply for SRC clocks, 3.3V nominal                                                                                     |  |
| 27    | GNDSRC    | PWR  | Ground pin for the SRC outputs                                                                                          |  |
| 28    | *CLKREQB# | IN   | Output enable for PCI Express (SRC) outputs. SMBus selects which outputs are controlled.<br>0 = enabled, 1 = tri-stated |  |


## Pin Description (Continued)

| PIN # | PIN NAME  | TYPE | DESCRIPTION                                                                                                                |
|-------|-----------|------|----------------------------------------------------------------------------------------------------------------------------|
| 29    | *CLKREQC# | IN   | Output enable for PCI Express (SRC) outputs. SMBus selects which outputs are controlled.                                   |
| 29    | OLNHLQO#  |      | 0 = enabled, 1 = tri-stated                                                                                                |
| 30    | ATIGCLKC1 | OUT  | Complementary clock of differential ATIGCLK clock pair.                                                                    |
| 31    | ATIGCLKT1 | OUT  | True clock of differential ATIGCLK clock pair.                                                                             |
| 32    | GNDATIG   | PWR  | Ground for ATIG clocks                                                                                                     |
| 33    | VDDATIG   | PWR  | Power supply ATIG clocks, nominal 3.3V                                                                                     |
| 34    | ATIGCLKC0 | OUT  | Complementary clock of differential ATIGCLK clock pair.                                                                    |
| 35    | ATIGCLKT0 | OUT  | True clock of differential ATIGCLK clock pair.                                                                             |
| 36    | VDDSRC    | PWR  | Supply for SRC clocks, 3.3V nominal                                                                                        |
| 37    | GNDSRC    | PWR  | Ground pin for the SRC outputs                                                                                             |
| 38    | SRCCLKC0  | OUT  | Complement clock of differential SRC clock pair.                                                                           |
| 39    | SRCCLKT0  | OUT  | True clock of differential SRC clock pair.                                                                                 |
|       |           |      | This pin establishes the reference current for the differential current-mode output pairs. This                            |
| 40    | IREF      | OUT  | pin requires a fixed precision resistor tied to ground in order to establish the appropriate                               |
|       |           |      | current. 475 ohms is the standard value.                                                                                   |
| 41    | GNDA      | PWR  | Ground pin for the PLL core.                                                                                               |
| 42    | VDDA      | PWR  | 3.3V power for the PLL core.                                                                                               |
| 43    | CPUCLK8C1 | OUT  | Complementary clock of differential 3.3V push-pull K8 pair.                                                                |
| 44    | CPUCLK8T1 | OUT  | True clock of differential 3.3V push-pull K8 pair.                                                                         |
| 45    | GNDCPU    | PWR  | Ground pin for the CPU outputs                                                                                             |
| 46    | VDDCPU    | PWR  | Supply for CPU clocks, 3.3V nominal                                                                                        |
| 47    | CPUCLK8C0 | OUT  | Complementary clock of differential 3.3V push-pull K8 pair.                                                                |
| 48    | CPUCLK8T0 | OUT  | True clock of differential 3.3V push-pull K8 pair.                                                                         |
| 49    | *CLKREQA# | IN   | Output enable for PCI Express (SRC) outputs. SMBus selects which outputs are controlled.                                   |
|       |           |      | 0 = enabled, 1 = tri-stated                                                                                                |
| 50    | GNDHTT    | PWR  | Ground pin for the HTT outputs                                                                                             |
| 51    | HTTCLK0   | OUT  | 3.3V Hyper Transport output                                                                                                |
| 52    | VDDHTT    | PWR  | Supply for HTT clocks, nominal 3.3V.                                                                                       |
| 53    | **PD      | IN   | Asynchronous active high input pin used to power down the device. The internal clocks are disabled and the VCO is stopped. |
| 54    | FS2/REF2  | I/O  | Frequency select latch input pin / 14.318 MHz reference clock.                                                             |
| 55    | FS1/REF1  | I/O  | Frequency select latch input pin / 14.318 MHz reference clock.                                                             |
| 56    | FS0/REF0  | I/O  | Frequency select latch input pin / 14.318 MHz reference clock.                                                             |

#### **General Description**

The **ICS951464** is a main clock synthesizer chip that provides all clocks required for ATI RS/RD690-based systems. An SMBus interface allows full control of the device.

#### **Block Diagram**



#### 951464 Power Group Table

| VDD Pin# | GND Pin# | Description                                 |
|----------|----------|---------------------------------------------|
| 2        | 1        | Crsytal, REF VDD & VSS I/O & Core           |
| 5        | 8        | 48M Core and Output; FIX PLL Analog/Digital |
| 14,26    | 15,27    | SRC I/O & Core                              |
| 23       | 22       | SRC I/O & Core; SRC PLL Digital             |
| 36       | 37       | SRC I/O & Core; SRC PLL Analog              |
| 33       | 32       | ATIG I/O & Core; ATIG PLL Analog/Digital    |
| 42       | 41       | CPU PLL Analog                              |
| 46       | 45       | CPU I/O & Core; CPU PLL Digital             |
| 52       | 50       | HTT I/O & Core                              |

**IDT<sup>™</sup>/ICST<sup>™</sup>** Programmable System Clock Chip for ATI RS/RD690 K8<sup>TM</sup> - based Systems

### Table1: CPU and HTT Frequency Selection Table

|              |            | yte 0      |            |            | cy Selecti     |       |        |             |
|--------------|------------|------------|------------|------------|----------------|-------|--------|-------------|
| Bit4         | Bit3       | Bit2       | Bit1       | Bit0       | CPUCLK         | нтт   | Spread | Overclock   |
| CPU<br>SS_EN | CPU<br>FS3 | CPU<br>FS2 | CPU<br>FS1 | CPU<br>FS0 | (2:0)<br>(MHz) | (MHz) | %      | %           |
| 0            | 0          | 0          | 0          | 0          | Hi-Z           | Hi-Z  | None   |             |
| 0            | 0          | 0          | 0          | 1          | X / 2          | X / 3 | None   |             |
| 0            | 0          | 0          | 1          | 0          | 230.00         | 76.67 | None   | 15%         |
| 0            | 0          | 0          | 1          | 1          | 240.00         | 80.00 | None   | 20%         |
| 0            | 0          | 1          | 0          | 0          | 100.00         | 66.67 | None   |             |
| 0            | 0          | 1          | 0          | 1          | 133.33         | 66.67 | None   | 0%          |
| 0            | 0          | 1          | 1          | 0          | 166.67         | 66.67 | None   | 0%          |
| 0            | 0          | 1          | 1          | 1          | 200.00         | 66.67 | None   |             |
| 0            | 1          | 0          | 0          | 0          | 250.00         | 83.33 | None   | 25%         |
| 0            | 1          | 0          | 0          | 1          | 260.00         | 86.67 | None   | 30%         |
| 0            | 1          | 0          | 1          | 0          | 270.00         | 90.00 | None   | 35%         |
| 0            | 1          | 0          | 1          | 1          | 280.00         | 93.33 | None   | 40%         |
| 0            | 1          | 1          | 0          | 0          | 102.00         | 68.00 | None   |             |
| 0            | 1          | 1          | 0          | 1          | 136.00         | 68.00 | None   | 09/         |
| 0            | 1          | 1          | 1          | 0          | 170.00         | 68.00 | None   | 2%          |
| 0            | 1          | 1          | 1          | 1          | 204.00         | 68.00 | None   |             |
| 1            | 0          | 0          | 0          | 0          | 210.00         | 70.00 | -0.5%  | 5%          |
| 1            | 0          | 0          | 0          | 1          | 220.00         | 73.33 | -0.5%  | 10%         |
| 1            | 0          | 0          | 1          | 0          | 230.00         | 76.67 | -0.5%  | 15%         |
| 1            | 0          | 0          | 1          | 1          | 240.00         | 80.00 | -0.5%  | 20%         |
| 1            | 0          | 1          | 0          | 0          | 100.00         | 66.67 | -0.5%  |             |
| 1            | 0          | 1          | 0          | 1          | 133.33         | 66.67 | -0.5%  | 09/         |
| 1            | 0          | 1          | 1          | 0          | 166.67         | 66.67 | -0.5%  | 0%          |
| 1            | 0          | 1          | 1          | 1          | 200.00         | 66.67 | -0.5%  |             |
| 1            | 1          | 0          | 0          | 0          | 250.00         | 83.33 | -0.5%  | 25%         |
| 1            | 1          | 0          | 0          | 1          | 260.00         | 86.67 | -0.5%  | 30%         |
| 1            | 1          | 0          | 1          | 0          | 270.00         | 90.00 | -0.5%  | 35%         |
| 1            | 1          | 0          | 1          | 1          | 280.00         | 93.33 | -0.5%  | 40%         |
| 1            | 1          | 1          | 0          | 0          | 102.00         | 68.00 | -0.5%  |             |
| 1            | 1          | 1          | 0          | 1          | 136.00         | 68.00 | -0.5%  | <u>0</u> 9/ |
| 1            | 1          | 1          | 1          | 0          | 170.00         | 68.00 | -0.5%  | 2%          |
| 1            | 1          | 1          | 1          | 1          | 204.00         | 68.00 | -0.5%  |             |

## Table2: SRC Frequency Selection Table

| Byte 0 |      |      | te 5 |      |        |        | 0.00      |
|--------|------|------|------|------|--------|--------|-----------|
| Bit 5  | Bit3 | Bit2 | Bit1 | Bit0 | SRC    | Spread | SRC       |
| SRC    | SRC  | SRC  | SRC  | SRC  | (MHz)  | %      | OverClock |
| SS_EN  | FS3  | FS2  | FS1  | FS0  | . ,    |        | %         |
| 0      | 0    | 0    | 0    | 0    | 100.00 | 0      | 0%        |
| 0      | 0    | 0    | 0    | 1    | 101.00 | 0      | 1%        |
| 0      | 0    | 0    | 1    | 0    | 102.00 | 0      | 2%        |
| 0      | 0    | 0    | 1    | 1    | 103.00 | 0      | 3%        |
| 0      | 0    | 1    | 0    | 0    | 104.00 | 0      | 4%        |
| 0      | 0    | 1    | 0    | 1    | 105.00 | 0      | 5%        |
| 0      | 0    | 1    | 1    | 0    | 106.00 | 0      | 6%        |
| 0      | 0    | 1    | 1    | 1    | 107.00 | 0      | 7%        |
| 0      | 1    | 0    | 0    | 0    | 100.00 | 0      | 0%        |
| 0      | 1    | 0    | 0    | 1    | 101.00 | 0      | 1%        |
| 0      | 1    | 0    | 1    | 0    | 102.00 | 0      | 2%        |
| 0      | 1    | 0    | 1    | 1    | 103.00 | 0      | 3%        |
| 0      | 1    | 1    | 0    | 0    | 104.00 | 0      | 4%        |
| 0      | 1    | 1    | 0    | 1    | 105.00 | 0      | 5%        |
| 0      | 1    | 1    | 1    | 0    | 106.00 | 0      | 6%        |
| 0      | 1    | 1    | 1    | 1    | 107.00 | 0      | 7%        |
| 1      | 0    | 0    | 0    | 0    | 100.00 | -0.25% | 0%        |
| 1      | 0    | 0    | 0    | 1    | 101.00 | -0.25% | 1%        |
| 1      | 0    | 0    | 1    | 0    | 102.00 | -0.25% | 2%        |
| 1      | 0    | 0    | 1    | 1    | 103.00 | -0.25% | 3%        |
| 1      | 0    | 1    | 0    | 0    | 104.00 | -0.25% | 4%        |
| 1      | 0    | 1    | 0    | 1    | 105.00 | -0.25% | 5%        |
| 1      | 0    | 1    | 1    | 0    | 106.00 | -0.25% | 6%        |
| 1      | 0    | 1    | 1    | 1    | 107.00 | -0.25% | 7%        |
| 1      | 1    | 0    | 0    | 0    | 100.00 | -0.5%  | 0%        |
| 1      | 1    | 0    | 0    | 1    | 101.00 | -0.5%  | 1%        |
| 1      | 1    | 0    | 1    | 0    | 102.00 | -0.5%  | 2%        |
| 1      | 1    | 0    | 1    | 1    | 103.00 | -0.5%  | 3%        |
| 1      | 1    | 1    | 0    | 0    | 104.00 | -0.5%  | 4%        |
| 1      | 1    | 1    | 0    | 1    | 105.00 | -0.5%  | 5%        |
| 1      | 1    | 1    | 1    | 0    | 106.00 | -0.5%  | 6%        |
| 1      | 1    | 1    | 1    | 1    | 107.00 | -0.5%  | 7%        |

### Table3: ATIG Frequency Selection Table

| Byte 0        |             |             | te 9        |             |        |             |                |
|---------------|-------------|-------------|-------------|-------------|--------|-------------|----------------|
| Bit 6         | Bit4        | Bit3        | Bit1        | Bit0        | ATIG   | Spread      | ATIG           |
| ATIG<br>SS_EN | ATIG<br>FS3 | ATIG<br>FS2 | ATIG<br>FS1 | ATIG<br>FS0 | (MHz)  | Spread<br>% | OverClock<br>% |
| 0             | 0           | 0           | 0           | 0           | 100.00 | 0           | 0%             |
| 0             | 0           | 0           | 0           | 1           | 105.00 | 0           | 5%             |
| 0             | 0           | 0           | 1           | 0           | 110.00 | 0           | 10%            |
| 0             | 0           | 0           | 1           | 1           | 115.00 | 0           | 15%            |
| 0             | 0           | 1           | 0           | 0           | 120.00 | 0           | 20%            |
| 0             | 0           | 1           | 0           | 1           | 125.00 | 0           | 25%            |
| 0             | 0           | 1           | 1           | 0           | 130.00 | 0           | 30%            |
| 0             | 0           | 1           | 1           | 1           | 135.00 | 0           | 35%            |
| 0             | 1           | 0           | 0           | 0           | 100.00 | 0           | 0%             |
| 0             | 1           | 0           | 0           | 1           | 105.00 | 0           | 5%             |
| 0             | 1           | 0           | 1           | 0           | 110.00 | 0           | 10%            |
| 0             | 1           | 0           | 1           | 1           | 115.00 | 0           | 15%            |
| 0             | 1           | 1           | 0           | 0           | 120.00 | 0           | 20%            |
| 0             | 1           | 1           | 0           | 1           | 125.00 | 0           | 25%            |
| 0             | 1           | 1           | 1           | 0           | 130.00 | 0           | 30%            |
| 0             | 1           | 1           | 1           | 1           | 135.00 | 0           | 35%            |
| 1             | 0           | 0           | 0           | 0           | 100.00 | -0.25%      | 0%             |
| 1             | 0           | 0           | 0           | 1           | 105.00 | -0.25%      | 5%             |
| 1             | 0           | 0           | 1           | 0           | 110.00 | -0.25%      | 10%            |
| 1             | 0           | 0           | 1           | 1           | 115.00 | -0.25%      | 15%            |
| 1             | 0           | 1           | 0           | 0           | 120.00 | -0.25%      | 20%            |
| 1             | 0           | 1           | 0           | 1           | 125.00 | -0.25%      | 25%            |
| 1             | 0           | 1           | 1           | 0           | 130.00 | -0.25%      | 30%            |
| 1             | 0           | 1           | 1           | 1           | 135.00 | -0.25%      | 35%            |
| 1             | 1           | 0           | 0           | 0           | 100.00 | -0.5%       | 0%             |
| 1             | 1           | 0           | 0           | 1           | 105.00 | -0.5%       | 5%             |
| 1             | 1           | 0           | 1           | 0           | 110.00 | -0.5%       | 10%            |
| 1             | 1           | 0           | 1           | 1           | 115.00 | -0.5%       | 15%            |
| 1             | 1           | 1           | 0           | 0           | 120.00 | -0.5%       | 20%            |
| 1             | 1           | 1           | 0           | 1           | 125.00 | -0.5%       | 25%            |
| 1             | 1           | 1           | 1           | 0           | 130.00 | -0.5%       | 30%            |
| 1             | 1           | 1           | 1           | 1           | 135.00 | -0.5%       | 35%            |

#### Table 4: CPU Divider Ratios

| B19b(7:4) |     | Divider (3:2) |     |         |    |         |     |         |     |
|-----------|-----|---------------|-----|---------|----|---------|-----|---------|-----|
|           | Bit | 00            |     | 01      |    | 10      |     | 11      | MSB |
| (1:0)     | 00  | 0000          | 2   | 0100    | 4  | 1000    | 8   | 1100    | 16  |
|           | 01  | 0001          | 3   | 0101    | 6  | 1001    | 12  | 1101    | 24  |
| Divider   | 10  | 0010          | 5   | 0110    | 10 | 1010    | 20  | 1110    | 40  |
| Div       | 11  | 0011          | 15  | 0111    | 30 | 1011    | 60  | 1111    | 120 |
|           | LSB | Address       | Div | Address |    | Address | Div | Address | Div |

#### Table 5: HTT Divider Ratios

| B20b(3:0) |     | Divider (3:2) |     |         |    |         |     |         |     |
|-----------|-----|---------------|-----|---------|----|---------|-----|---------|-----|
|           | Bit | 00            |     | 01      |    | 10      |     | 11      | MSB |
| (1:0)     | 00  | 0000          | 4   | 0100    | 8  | 1000    | 16  | 1100    | 32  |
|           | 01  | 0001          | 3   | 0101    | 6  | 1001    | 12  | 1101    | 24  |
| Divider   | 10  | 0010          | 5   | 0110    | 10 | 1010    | 20  | 1110    | 40  |
| Div       | 11  | 0011          | 15  | 0111    | 30 | 1011    | 60  | 1111    | 120 |
|           | LSB | Address       | Div | Address |    | Address | Div | Address | Div |

#### **Table 6: ATIG Divider Ratios**

| B19b(3:0) |     | Divider (3:2) |     |         |    |         |     |         |     |
|-----------|-----|---------------|-----|---------|----|---------|-----|---------|-----|
|           | Bit | 00            |     | 01      |    | 10      |     | 11      | MSB |
| (1:0)     | 00  | 0000          | 2   | 0100    | 4  | 1000    | 8   | 1100    | 16  |
|           | 01  | 0001          | 3   | 0101    | 6  | 1001    | 12  | 1101    | 24  |
| ide       | 10  | 0010          | 5   | 0110    | 10 | 1010    | 20  | 1110    | 40  |
| Divider   | 11  | 0011          | 7   | 0111    | 14 | 1011    | 28  | 1111    | 56  |
|           | LSB | Address       | Div | Address |    | Address | Div | Address | Div |

## General SMBus serial interface information for the ICS951464

## How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will *acknowledge*
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

## How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- ICS clock will *acknowledge*
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will *acknowledge*
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X<sub>(H)</sub> was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

| In    | Index Block Write Operation |                      |     |  |  |  |  |  |
|-------|-----------------------------|----------------------|-----|--|--|--|--|--|
| Co    | ntroller (Host)             | ICS (Slave/Receiver) |     |  |  |  |  |  |
| Т     | starT bit                   |                      |     |  |  |  |  |  |
| Slav  | e Address D2 <sub>(H)</sub> |                      |     |  |  |  |  |  |
| WR    | WRite                       |                      |     |  |  |  |  |  |
|       |                             |                      | ACK |  |  |  |  |  |
| Beg   | inning Byte = N             |                      |     |  |  |  |  |  |
|       |                             |                      | ACK |  |  |  |  |  |
| Data  | Byte Count = X              |                      |     |  |  |  |  |  |
|       |                             |                      | ACK |  |  |  |  |  |
| Begir | nning Byte N                |                      |     |  |  |  |  |  |
|       |                             |                      | ACK |  |  |  |  |  |
|       | 0                           | fe                   |     |  |  |  |  |  |
|       | 0                           | X Byte               | 0   |  |  |  |  |  |
|       | 0                           | $\times$             | 0   |  |  |  |  |  |
|       |                             |                      | 0   |  |  |  |  |  |
| Byt   | e N + X - 1                 |                      |     |  |  |  |  |  |
|       |                             |                      | ACK |  |  |  |  |  |
| Р     | stoP bit                    |                      |     |  |  |  |  |  |

| In    | dex Block Rea               | ad (                | Operation          |  |
|-------|-----------------------------|---------------------|--------------------|--|
| Con   | troller (Host)              | IC                  | S (Slave/Receiver) |  |
| Т     | starT bit                   |                     |                    |  |
| Slave | e Address D2 <sub>(H)</sub> |                     |                    |  |
| WR    | WRite                       |                     |                    |  |
|       |                             | ACK                 |                    |  |
| Begi  | nning Byte = N              |                     |                    |  |
|       |                             |                     | ACK                |  |
| RT    | Repeat starT                |                     |                    |  |
| Slave | e Address D3 <sub>(H)</sub> |                     |                    |  |
| RD    | ReaD                        |                     |                    |  |
|       |                             | ACK                 |                    |  |
|       |                             |                     |                    |  |
|       |                             | Data Byte Count = X |                    |  |
|       | ACK                         |                     |                    |  |
|       |                             |                     | Beginning Byte N   |  |
|       | ACK                         |                     |                    |  |
|       |                             | X Byte              | 0                  |  |
|       | 0                           | Ð,                  | 0                  |  |
|       | 0                           | $ \times $          | 0                  |  |
|       | 0                           |                     |                    |  |
|       |                             |                     | Byte N + X - 1     |  |
| N     | Not acknowledge             |                     |                    |  |
| Р     | stoP bit                    |                     |                    |  |

| Byte 0 | Pin # | Name       | Control Function            | Туре | 0                                                | 1      | PWD   |
|--------|-------|------------|-----------------------------|------|--------------------------------------------------|--------|-------|
| Bit 7  | -     | FS Source  | Latched Input or SMBus      | RW   | Latched                                          | SMBus  | 0     |
|        |       |            | Frequency Select            |      | Inputs                                           |        |       |
| Bit 6  | -     | ATIG SS_EN | ATIG Spread Spectrum Enable | RW   | Disable                                          | Enable | 0     |
| Bit 5  | -     | SRC SS_EN  | SRC Spread Spectrum Enable  | RW   | Disable                                          | Enable | 0     |
| Bit 4  | -     | CPU SS_EN  | CPU Spread Spectrum Enable  | RW   | Disable                                          | Enable | 0     |
| Bit 3  | -     | CPU FS3    | CPU Freq Select Bit 3       | RW   | See T                                            | oble 1 | 0     |
| Bit 2  | -     | CPU FS2    | CPU Freq Select Bit 2       | RW   | See Table 1:<br>CPU Frequency Selection<br>Table |        | Latch |
| Bit 1  | -     | CPU FS1    | CPU Freq Select Bit 1       | RW   |                                                  |        | Latch |
| Bit 0  | -     | CPU FS0    | CPU Freq Select Bit 0       | RW   | 14                                               |        | Latch |

Note: Each Spread Spectrum Enable bit is independent from the other.

Bit(6:4) must all set to "1" in order to enable spread for CPU, SRC and ATIG clocks.

#### SMBus Table: Output Control Register

| Byte 1 | Pin # | Name    | Control Function      | Туре | 0       | 1      | PWD |
|--------|-------|---------|-----------------------|------|---------|--------|-----|
| Bit 7  | 7     | 48MHz_1 | 48MHz_1 Output Enable | RW   | Disable | Enable | 1   |
| Bit 6  | 6     | 48MHz_0 | 48MHz_0 Output Enable | RW   | Disable | Enable | 1   |
| Bit 5  | 54    | REF2    | REF2 Output Enable    | RW   | Disable | Enable | 1   |
| Bit 4  | 55    | REF1    | REF1 Output Enable    | RW   | Disable | Enable | 1   |
| Bit 3  | 56    | REF0    | REF0 Output Enable    | RW   | Disable | Enable | 1   |
| Bit 2  | 51    | HTTCLK0 | HTTCLK0 Output Enable | RW   | Disable | Enable | 1   |
| Bit 1  | 44,43 | CPUCLK1 | CPUCLK1 Output Enable | RW   | Disable | Enable | 1   |
| Bit 0  | 48,47 | CPUCLK0 | CPUCLK0 Output Enable | RW   | Disable | Enable | 1   |

#### SMBus Table: ATIGCLK and CLKREQB# Output Control Register

| Byte 2 | Pin # | Name     | Control Function       | Туре | 0                   | 1        | PWD |
|--------|-------|----------|------------------------|------|---------------------|----------|-----|
| Bit 7  |       |          | Reserved               |      |                     |          | 1   |
| Bit 6  |       |          | Reserved               |      |                     |          | 1   |
| Bit 5  | 31,30 | ATIGCLK1 | ATIGCLK1 Output Enable | RW   | Disable             | Enable   | 1   |
| Bit 4  | 35,34 | ATIGCLK0 | ATIGCLK0 Output Enable | RW   | Disable             | Enable   | 1   |
| Bit 3  | 20,21 | REQBSRC4 | CLKREQB# Controls SRC4 | RW   | Does not<br>control | Controls | 0   |
| Bit 2  |       |          | Reserved               |      |                     |          | 0   |
| Bit 1  | 24,25 | REQBSRC2 | CLKREQB# Controls SRC2 | RW   | Does not<br>control | Controls | 0   |
| Bit 0  |       |          | Reserved               |      |                     |          | 0   |

#### SMBus Table: SRCCLK Output Control Register

| Byte 3 | Pin #    | Name     | Control Function               | Туре     | 0        | 1      | PWD |
|--------|----------|----------|--------------------------------|----------|----------|--------|-----|
| Bit 7  | 12,13    | SRCCLK7  |                                | RW       | Disable  | Enable | 1   |
| Bit 6  | 16,17    | SRCCLK6  | Master Output control. Enables | RW       | Disable  | Enable | 1   |
| Bit 5  | 18,19    | SRCCLK5  |                                | RW       | Disable  | Enable | 1   |
| Bit 4  | 20,21    | SRCCLK4  |                                | RW       | Disable  | Enable | 1   |
| Bit 3  |          | Reserved | CLKREQ# inputs.                | Reserved |          |        | 1   |
| Bit 2  | 24,25    | SRCCLK2  |                                | RW       | Disable  | Enable | 1   |
| Bit 1  | Reserved |          |                                |          | Reserved |        | 1   |
| Bit 0  | 39,38    | SRCCLK0  |                                | RW       | Disable  | Enable | 1   |

#### SMBus Table: CLKREQA# and CLKREQC# Output Control Register

| Byte 4 | Pin # | Name      | Control Function        | Туре | 0                   | 1        | PWD |  |
|--------|-------|-----------|-------------------------|------|---------------------|----------|-----|--|
| Bit 7  | 12,13 | REQASRC7  | CLKREQA# Controls SRC7  | RW   | Does not<br>control | Controls | 0   |  |
| Bit 6  | 16,17 | REQASRC6  | CLKREQA# Controls SRC6  | RW   | Does not<br>control | Controls | 0   |  |
| Bit 5  | 18,19 | REQASRC5  | CLKREQA# Controls SRC5  | RW   | Does not<br>control | Controls | 0   |  |
| Bit 4  |       | Reserved  |                         |      |                     |          |     |  |
| Bit 3  |       |           | Reserved                |      |                     |          | 0   |  |
| Bit 2  | 31,30 | REQCATIG1 | CLKREQC# Controls ATIG1 | RW   | Does not<br>control | Controls | 0   |  |
| Bit 1  | 35,34 | REQCATIG0 | CLKREQC# Controls ATIG0 | RW   | Does not<br>control | Controls | 0   |  |
| Bit 0  | 39,38 | REQCSRC0  | CLKREQC# Controls SRC0  | RW   | Does not<br>control | Controls | 0   |  |

#### SMBus Table: CPU Stop Control and SRC Frequency Select Register

| Byte 5 | Pin #        | Name                                | Control Function            | Туре | 0                                                | 1    | PWD |  |
|--------|--------------|-------------------------------------|-----------------------------|------|--------------------------------------------------|------|-----|--|
| Bit 7  |              |                                     | Reserved                    |      |                                                  |      | 0   |  |
| Bit 6  |              |                                     | Reserved                    |      |                                                  |      | 0   |  |
| Bit 5  |              | Reserved                            |                             |      |                                                  |      |     |  |
| Bit 4  | SRC,<br>ATIG | Differential Output Disable<br>Mode | Hi-Z or Driven when disable | RW   | Driven                                           | Hi-Z | 0   |  |
| Bit 3  | -            | SRC FS3                             | SRC Freq Select Bit 3       | RW   | 0T                                               |      | 0   |  |
| Bit 2  | -            | SRC FS2                             | SRC Freq Select Bit 2       | RW   | See Table 2:<br>SRC Frequency Selection<br>Table |      | 0   |  |
| Bit 1  | -            | SRC FS1                             | SRC Freq Select Bit 1       | RW   |                                                  |      | 0   |  |
| Bit 0  | -            | SRC FS0                             | SRC Freq Select Bit 0       | RW   |                                                  |      | 0   |  |

#### SMBus Table: Device ID Register

| Byte 6 | Pin # | Name             | Control Function | Туре | 0 | 1 | PWD |
|--------|-------|------------------|------------------|------|---|---|-----|
| Bit 7  | -     | Device ID7 (MSB) |                  | R    | - | - | 0   |
| Bit 6  | -     | Device ID6       |                  | R    | - | - | 1   |
| Bit 5  | -     | Device ID5       | DEVICE ID -      | R    | - | - | 1   |
| Bit 4  | -     | Device ID4       |                  | R    | - | - | 0   |
| Bit 3  | -     | Device ID3       | DEVICE ID        | R    | - | - | 0   |
| Bit 2  | -     | Device ID2       |                  | R    | - | - | 0   |
| Bit 1  | -     | Device ID1       |                  | R    | - | - | 1   |
| Bit 0  | -     | Device ID0 (LSB) |                  | R    | - | - | 0   |

#### SMBus Table: Revision and Vendor ID Register

| Byte 7 | Pin # | Name | Control Function   | Туре | 0 | 1 | PWD |
|--------|-------|------|--------------------|------|---|---|-----|
| Bit 7  | -     | RID3 |                    | R    | - | - | х   |
| Bit 6  | -     | RID2 | <b>REVISION ID</b> | R    | - | - | х   |
| Bit 5  | -     | RID1 |                    | R    | - | - | х   |
| Bit 4  | -     | RID0 |                    | R    | - | - | х   |
| Bit 3  | -     | VID3 |                    | R    | - | - | 0   |
| Bit 2  | -     | VID2 | VENDOR ID          | R    | - | - | 0   |
| Bit 1  | -     | VID1 | VENDORID           | R    | - | - | 0   |
| Bit 0  | -     | VID0 |                    | R    | - | - | 1   |

#### SMBus Table: Byte Count Register

| Byte 8 | Pin # | Name | Control Function              | Туре | 0                                                             | 1               | PWD |
|--------|-------|------|-------------------------------|------|---------------------------------------------------------------|-----------------|-----|
| Bit 7  | -     | BC7  |                               | RW   |                                                               |                 | 0   |
| Bit 6  | -     | BC6  |                               | RW   |                                                               |                 | 0   |
| Bit 5  | -     | BC5  |                               | RW   | Writing to this register will<br>congiure how many bytes will |                 | 0   |
| Bit 4  | -     | BC4  | Byte Count Programming b(7:0) | RW   |                                                               |                 | 0   |
| Bit 3  | -     | BC3  | Byte Count Programming b(7.0) | RW   | be read back                                                  | k, default is 9 | 1   |
| Bit 2  | -     | BC2  |                               | RW   | byt                                                           | es.             | 0   |
| Bit 1  | -     | BC1  |                               | RW   |                                                               |                 | 0   |
| Bit 0  | -     | BC0  |                               | RW   |                                                               |                 | 1   |

#### SMBus Table: REF2, 48MHz Output Strength Control and ATIG Frequency Select Register

| Byte 9 | Pin # | Name       | Control Function         | Туре | 0           | 1         | PWD |  |
|--------|-------|------------|--------------------------|------|-------------|-----------|-----|--|
| Bit 7  | 54    | REF2Str    | REF2 Strength Control    | RW   | 1X          | 2X        | 1   |  |
| Bit 6  | 7     | 48MHz_1Str | 48MHz_1 Strength Control | RW   | 1X          | 2X        | 1   |  |
| Bit 5  | 6     | 48MHz_0Str | 48MHz_0 Strength Control | RW   | 1X          | 2X        | 1   |  |
| Bit 4  |       | Reserved   |                          |      |             |           |     |  |
| Bit 3  | -     | ATIG FS3   | ATIG Freq Select Bit 3   | RW   |             |           | 0   |  |
| Bit 2  | -     | ATIG FS2   | ATIG Freq Select Bit 2   | RW   | See Table   | e 3: ATIG | 0   |  |
| Bit 1  | -     | ATIG FS1   | ATIG Freq Select Bit 1   | RW   | Frequency S | 0         |     |  |
| Bit 0  | -     | ATIG FS0   | ATIG Freq Select Bit 0   | RW   |             |           | 0   |  |

#### SMBus Table: PLLs M/N Programming Enable and REF1, REF0 Output Strength Control Register

| Byte 10 | Pin # | Name     | Control Function            | Туре | 0       | 1      | PWD |  |
|---------|-------|----------|-----------------------------|------|---------|--------|-----|--|
| Bit 7   | -     | M/N_EN   | PLLs M/N Programming Enable | RW   | Disable | Enable | 0   |  |
| Bit 6   | 55    | REF1Str  | REF1 Strength Control       | RW   | 1X      | 2X     | 1   |  |
| Bit 5   | 56    | REF0Str  | REF0 Strength Control       | RW   | 1X      | 2X     | 1   |  |
| Bit 4   |       | Reserved |                             |      |         |        |     |  |
| Bit 3   |       |          | Reserved                    |      |         |        | 0   |  |
| Bit 2   |       |          | Reserved                    |      |         |        | 0   |  |
| Bit 1   |       | Reserved |                             |      |         |        |     |  |
| Bit 0   |       |          | Reserved                    |      |         |        | 0   |  |

#### SMBus Table: CPU PLL VCO Frequency Control Register

| Byte 11 | Pin # | Name    | Control Function            | Туре | 0              | 1               | PWD |
|---------|-------|---------|-----------------------------|------|----------------|-----------------|-----|
| Bit 7   | -     | N Div8  | N Divider Prog bit 8        | RW   | The decimal re | presentation of | Х   |
| Bit 6   | -     | N Div 9 | N Divider Prog bit 9        | RW   | M and N Divier |                 |     |
| Bit 5   | -     | M Div5  |                             | RW   | 12 will config | ure the VCO     | Х   |
| Bit 4   | -     | M Div4  |                             | RW   | frequency. D   | efault at power | Х   |
| Bit 3   | -     | M Div3  | M Divider Programming bits  | RW   |                | or Byte 0 Rom   | Х   |
| Bit 2   | -     | M Div2  | Ni Divider Frogramming bits | RW   |                | =requency =     | Х   |
| Bit 1   | -     | M Div1  |                             | RW   | 14.318 x [N    |                 | Х   |
| Bit 0   | -     | M Div0  |                             | RW   | [MDiv(         | 5:0)+2]         | Х   |

#### SMBus Table: CPU PLL VCO Frequency Control Register

| Byte 12 | Pin # | Name   | Control Function             | Туре | 0               | 1               | PWD |
|---------|-------|--------|------------------------------|------|-----------------|-----------------|-----|
| Bit 7   | -     | N Div7 |                              | RW   | The decimal re  | Х               |     |
| Bit 6   | -     | N Div6 |                              | RW   | M and N Divier  |                 |     |
| Bit 5   | -     | N Div5 |                              | RW   | 12 will config  | ure the VCO     | Х   |
| Bit 4   | -     | N Div4 | N Divider Programming b(7:0) | RW   | frequency. De   | efault at power | Х   |
| Bit 3   | -     | N Div3 |                              | RW   | up = latch-in c | or Byte 0 Rom   | Х   |
| Bit 2   | -     | N Div2 |                              | RW   |                 | requency =      | Х   |
| Bit 1   | -     | N Div1 |                              | RW   |                 | Div(9:0)+8] /   | Х   |
| Bit 0   | -     | N Div0 |                              | RW   | [MDiv(          | 5:0)+2]         | Х   |

IDT<sup>™</sup>/ICST<sup>™</sup> Programmable System Clock Chip for ATI RS/RD690 K8<sup>™</sup> - based Systems

#### SMBus Table: CPU PLL Spread Spectrum Control Register

| Byte 13 | Pin # | Name | Control Function            | Туре | 0              | 1               | PWD |
|---------|-------|------|-----------------------------|------|----------------|-----------------|-----|
| Bit 7   | -     | SSP7 |                             | RW   |                |                 | Х   |
| Bit 6   | -     | SSP6 |                             | RW   | These Spread   | Spectrum bits   | Х   |
| Bit 5   | -     | SSP5 |                             | RW   | in Byte 13 and | 14 will program | Х   |
| Bit 4   | -     | SSP4 | Spread Spectrum Programming | RW   | the spread pe  | ecentage. It is | Х   |
| Bit 3   | -     | SSP3 | b(7:0)                      | RW   |                | ed to use ICS   | Х   |
| Bit 2   | -     | SSP2 |                             | RW   |                | ble for spread  | Х   |
| Bit 1   | -     | SSP1 |                             | RW   | progra         | mming.          | Х   |
| Bit 0   | -     | SSP0 |                             | RW   |                |                 | Х   |

#### SMBus Table: CPU PLL Spread Spectrum Control Register

| Byte 14 | Pin # | Name  | Control Function                       | Туре | 0                         | 1                                | PWD |  |  |
|---------|-------|-------|----------------------------------------|------|---------------------------|----------------------------------|-----|--|--|
| Bit 7   |       |       | Reserved                               |      |                           |                                  |     |  |  |
| Bit 6   | -     | SSP14 |                                        | RW   | _                         | Х                                |     |  |  |
| Bit 5   | -     | SSP13 |                                        | RW   | These Spread Spectrum bit | Х                                |     |  |  |
| Bit 4   | -     | SSP12 | Spread Speatrum Dreasonning            | RW   | in Byte 13 and            | Х                                |     |  |  |
| Bit 3   | -     | SSP11 | Spread Spectrum Programming<br>b(14:8) | RW   |                           | ecentage. It is<br>ed to use ICS | Х   |  |  |
| Bit 2   | -     | SSP10 | D(14.8)                                | RW   |                           | ble for spread                   | Х   |  |  |
| Bit 1   | -     | SSP9  | ]                                      | RW   | progra                    | Х                                |     |  |  |
| Bit 0   | -     | SSP8  |                                        | RW   | progra                    |                                  | Х   |  |  |

#### SMBus Table: ATIG PLL VCO Frequency Control Register

| Byte 15 | Pin # | Name   | Control Function            | Туре | 0                                                                                  | 1               | PWD |   |
|---------|-------|--------|-----------------------------|------|------------------------------------------------------------------------------------|-----------------|-----|---|
| Bit 7   | -     | N Div8 | N Divider Prog bit 8        | RW   | <b>-</b>                                                                           |                 | Х   |   |
| Bit 6   | -     | N Div9 | N Divider Prog bit 9        | RW   |                                                                                    | presentation of |     |   |
| Bit 5   | -     | M Div5 |                             | RW   | M and N Divier in Byte 17 and                                                      | -               | -   | Х |
| Bit 4   | -     | M Div4 |                             | RW   | <ul> <li>18 will configure the VCO</li> <li>frequency. Default at power</li> </ul> |                 |     |   |
| Bit 3   | -     | M Div3 | M Divider Programming bits  | RW   |                                                                                    | om table. VCO   | Х   |   |
| Bit 2   | -     | M Div2 | Wi Divider Programming bits | RW   |                                                                                    | = 14.318  x     | Х   |   |
| Bit 1   | -     | M Div1 |                             | RW   | [NDiv(9:0)+8]                                                                      | Х               |     |   |
| Bit 0   | -     | M Div0 |                             | RW   |                                                                                    | [=(0.0).=]      | Х   |   |

#### SMBus Table: ATIG PLL VCO Frequency Control Register

| Byte 16 | Pin # | Name   | Control Function             | Туре                                                      | 0                                                              | 1          | PWD |   |  |   |   |   |
|---------|-------|--------|------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|------------|-----|---|--|---|---|---|
| Bit 7   | -     | N Div7 |                              | RW                                                        |                                                                |            |     | Х |  |   |   |   |
| Bit 6   | -     | N Div6 |                              | RW                                                        | The decimal representation of<br>M and N Divier in Byte 17 and |            |     |   |  |   |   |   |
| Bit 5   | -     | N Div5 |                              | RW                                                        | 18 will configure the VCO                                      |            | -   | - |  | - | - | Х |
| Bit 4   | -     | N Div4 | N Divider Programming b(7:0) | RW                                                        |                                                                |            | Х   |   |  |   |   |   |
| Bit 3   | -     | N Div3 |                              | frequency. Default at power<br>up = Byte 0 Rom table. VCO |                                                                |            |     |   |  |   |   |   |
| Bit 2   | -     | N Div2 |                              | RW                                                        |                                                                |            | Х   |   |  |   |   |   |
| Bit 1   | -     | N Div1 |                              | RW Frequency = 14.3<br>RW [NDiv(9:0)+8] / [MDiv(          |                                                                |            | Х   |   |  |   |   |   |
| Bit 0   | -     | N Div0 |                              | RW                                                        | . (0.0).0],                                                    | [ (0.0) -] | Х   |   |  |   |   |   |

#### SMBus Table: ATIG PLL Spread Spectrum Control Register

| Byte 17 | Pin # | Name | Control Function            | Туре | 0              | 1               | PWD |
|---------|-------|------|-----------------------------|------|----------------|-----------------|-----|
| Bit 7   | -     | SSP7 |                             | RW   |                |                 | Х   |
| Bit 6   | -     | SSP6 |                             | RW   | These Spread   | Spectrum bits   | Х   |
| Bit 5   | -     | SSP5 |                             | RW   | in Byte 19 and | 20 will program | Х   |
| Bit 4   | -     | SSP4 | Spread Spectrum Programming | RW   | the spread pe  | ecentage. It is | Х   |
| Bit 3   | -     | SSP3 | b(7:0)                      | RW   | recommende     | ed to use ICS   | Х   |
| Bit 2   | -     | SSP2 |                             | RW   | Spread % tab   | ole for spread  | Х   |
| Bit 1   | -     | SSP1 |                             | RW   | progra         | mming.          | Х   |
| Bit 0   | -     | SSP0 |                             | RW   |                |                 | Х   |

IDT<sup>™</sup>/ICST<sup>™</sup> Programmable System Clock Chip for ATI RS/RD690 K8<sup>TM</sup> - based Systems

#### SMBus Table: ATIG PLL Spread Spectrum Control Register

| Byte 18 | Pin # | Name  | Control Function                       | Туре                  | 0                          | 1             | PWD                           |   |
|---------|-------|-------|----------------------------------------|-----------------------|----------------------------|---------------|-------------------------------|---|
| Bit 7   |       |       | Reserved                               |                       |                            |               | 0                             |   |
| Bit 6   | -     | SSP14 |                                        | RW                    | -                          | Х             |                               |   |
| Bit 5   | -     | SSP13 |                                        | RW                    | These Spread Spectrum bits |               | in Byte 19 and 20 will progra | Х |
| Bit 4   | -     | SSP12 | Caread Castrum Dragonaming             | RW                    | -                          | Х             |                               |   |
| Bit 3   | -     | SSP11 | Spread Spectrum Programming<br>b(14:8) | RW                    | the spread pe              | ed to use ICS | Х                             |   |
| Bit 2   | -     | SSP10 | D(14.8)                                | RW Spread % table for |                            | Х             |                               |   |
| Bit 1   | -     | SSP9  |                                        | mming.                | Х                          |               |                               |   |
| Bit 0   | -     | SSP8  |                                        | RW                    | progra                     |               | Х                             |   |

#### SMBus Table: CPU and ATIG Divider Ratio Programming Bits Select Register

| Byte 19 | Pin # | Name      | Control Function   | Туре | 0         | 1          | PWD |
|---------|-------|-----------|--------------------|------|-----------|------------|-----|
| Bit 7   | -     | CPU_Div3  |                    | RW   |           |            | Х   |
| Bit 6   | -     | CPU_Div2  | CPU_Divider Ratio  | RW   | See T     | able 4:    | Х   |
| Bit 5   | -     | CPU_Div1  | Programming Bits   | RW   | CPU Divid | der Ratios | Х   |
| Bit 4   | -     | CPU_Div0  |                    | RW   |           |            | Х   |
| Bit 3   | -     | ATIG_Div3 |                    | RW   |           |            | Х   |
| Bit 2   | -     | ATIG_Div2 | ATIG_Divider Ratio | RW   | See T     | able 5:    | Х   |
| Bit 1   | -     | ATIG_Div1 | Programming Bits   | RW   | ATIG Divi | der Ratios | Х   |
| Bit 0   | -     | ATIG_Div0 |                    | RW   |           |            | Х   |

#### SMBus Table: HTT Divider Ratio Programming Bits Select Register

| Byte 20 | Pin # | Name     | Control Function  | Туре | 0         | 1          | PWD |
|---------|-------|----------|-------------------|------|-----------|------------|-----|
| Bit 7   |       |          | Reserved          |      |           |            | 0   |
| Bit 6   |       |          | Reserved          |      |           |            | 0   |
| Bit 5   |       |          | Reserved          |      |           |            | 0   |
| Bit 4   |       |          | Reserved          |      |           |            | 0   |
| Bit 3   | -     | HTT_Div3 |                   | RW   |           |            | Х   |
| Bit 2   | -     | HTT_Div2 | HTT_Divider Ratio | RW   | See T     | able 6:    | Х   |
| Bit 1   | -     | HTT_Div1 | Programming Bits  | RW   | HTT Divid | der Ratios | Х   |
| Bit 0   | -     | HTT_Div0 |                   | RW   |           |            | Х   |

#### **Absolute Max**

| PARAMETER                          | SYMBOL   | CONDITIONS | MIN          | TYP | MAX                    | UNITS | Notes |
|------------------------------------|----------|------------|--------------|-----|------------------------|-------|-------|
| 3.3V Core Supply Voltage           | VDD_A    | -          |              |     | V <sub>DD</sub> + 0.5V | V     | 1     |
| 3.3V Logic Input Supply<br>Voltage | VDD_In   | -          | GND -<br>0.5 |     | V <sub>DD</sub> + 0.5V | V     | 1     |
| Storage Temperature                | Ts       | -          | -65          |     | 150                    | °C    | 1     |
| Ambient Operating Temp             | Tambient | -          | 0            |     | 70                     | °C    | 1     |
| Case Temperature                   | Tcase    | -          |              |     | 115                    | °C    | 1     |
| Input ESD protection HBM           | ESD prot | -          | 2000         |     |                        | V     | 1     |

<sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

## **Electrical Characteristics - Input/Supply/Common Output Parameters**

| PARAMETER                                     | SYMBOL               | CONDITIONS*                                              | MIN                   | TYP      | MAX                   | UNITS | Notes |
|-----------------------------------------------|----------------------|----------------------------------------------------------|-----------------------|----------|-----------------------|-------|-------|
| Input High Voltage                            | V <sub>IH</sub>      | 3.3 V +/-5%                                              | 2                     |          | V <sub>DD</sub> + 0.3 | V     | 1     |
| Input Low Voltage                             | V                    | 3.3 V +/-5%                                              | V <sub>SS</sub> - 0.3 |          | 0.8                   | V     | 1     |
| Input High Current                            | I <sub>IH</sub>      | $V_{IN} = V_{DD}$                                        | -5                    |          | 5                     | uA    | 1     |
| Input Low Current                             | I <sub>IL1</sub>     | V <sub>IN</sub> = 0 V; Inputs with no pull-up resistors  | -5                    |          |                       | uA    | 1     |
|                                               | I <sub>IL2</sub>     | V <sub>IN</sub> = 0 V; Inputs with pull-up resistors     | -200                  |          |                       | uA    | 1     |
| Low Threshold Input-<br>High Voltage          | V <sub>IH_FS</sub>   | 3.3 V +/-5%                                              | 0.7                   |          | V <sub>DD</sub> + 0.3 | V     | 1     |
| Low Threshold Input-<br>Low Voltage           | V <sub>IL_FS</sub>   | 3.3 V +/-5%                                              | V <sub>SS</sub> - 0.3 |          | 0.35                  | v     | 1     |
| Operating Current                             | I <sub>DD3.3OP</sub> | all outputs driven                                       |                       |          | 400                   | mA    | 1     |
| Powerdown Current                             | 1                    | all diff pairs driven                                    |                       |          | 70                    | mA    | 1     |
| r owerdown ourrent                            | I <sub>DD3.3PD</sub> | all differential pairs tri-stated                        |                       |          | 12                    | mA    | 1     |
| Input Frequency                               | F <sub>i</sub>       | $V_{DD} = 3.3 V$                                         |                       | 14.31818 |                       | MHz   | 2     |
| Pin Inductance                                | L <sub>pin</sub>     |                                                          |                       |          | 7                     | nH    | 1     |
|                                               | CIN                  | Logic Inputs                                             |                       |          | 5                     | pF    | 1     |
| Input Capacitance                             | C <sub>OUT</sub>     | Output pin capacitance                                   |                       |          | 6                     | pF    | 1     |
|                                               | C <sub>INX</sub>     | X1 & X2 pins                                             |                       |          | 5                     | pF    | 1     |
| Clk Stabilization                             | T <sub>STAB</sub>    | From VDD Power-Up or de-<br>assertion of PD to 1st clock |                       |          | 1.8                   | ms    | 1     |
| Modulation Frequency                          |                      | Triangular Modulation                                    | 30                    |          | 33                    | kHz   | 1     |
| Tdrive_PD                                     |                      | CPU output enable after<br>PD de-assertion               |                       |          | 300                   | us    | 1     |
| Tfall_PD                                      |                      | PD fall time of                                          |                       |          | 5                     | ns    | 1     |
| Trise_PD                                      |                      | PD rise time of                                          |                       |          | 5                     | ns    | 1     |
| SMBus Voltage                                 | V <sub>DD</sub>      |                                                          | 2.7                   |          | 5.5                   | V     | 1     |
| Low-level Output Voltage                      | V <sub>OL</sub>      | @ I <sub>PULLUP</sub>                                    |                       |          | 0.4                   | V     | 1     |
| Current sinking at<br>V <sub>OL</sub> = 0.4 V | I <sub>PULLUP</sub>  |                                                          | 4                     |          |                       | mA    | 1     |
| SMBCLK/SMBDAT<br>Clock/Data Rise Time         | T <sub>RI2C</sub>    | (Max VIL - 0.15) to<br>(Min VIH + 0.15)                  |                       |          | 1000                  | ns    | 1     |
| SMBCLK/SMBDAT<br>Clock/Data Fall Time         | T <sub>FI2C</sub>    | (Min VIH + 0.15) to<br>(Max VIL - 0.15)                  |                       |          | 300                   | ns    | 1     |

\*TA = 0 - 70°C; Supply Voltage VDD = 3.3 V + -5%

<sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

<sup>2</sup> Input frequency should be measured at the REF pin and tuned to ideal 14.31818MHz to meet ppm frequency accuracy on PLL outputs.

IDT<sup>™</sup>/ICST<sup>™</sup> Programmable System Clock Chip for ATI RS/RD690 K8<sup>TM</sup> - based Systems

## **Electrical Characteristics - K8 Push Pull Differential Pair**

 $T_A = 0 - 70^{\circ}C$ ;  $V_{DD} = 3.3 \text{ V} \pm -5\%$ ;  $C_L = AMD64 \text{ Processor Test Load}$ 

| PARAMETER                                | SYMBOL                   | CONDITIONS                                                                                                                                                                         | MIN   | TYP  | MAX  | UNITS | NOTES |
|------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|-------|-------|
| Rising Edge Rate                         | $\delta V/\delta t$      | Measured at the AMD64<br>processor's test load. 0 V +/- 400                                                                                                                        | 2     |      | 10   | V/ns  | 1     |
| Falling Edge Rate                        | δV/δt                    | mV (differential measurement)                                                                                                                                                      | 2     |      | 10   | V/ns  | 1     |
| Differential Voltage                     | V <sub>DIFF</sub>        |                                                                                                                                                                                    | 0.4   | 1.25 | 2.3  | V     | 1     |
| Change in V <sub>DIFF_DC</sub> Magnitude | $\Delta V_{\text{DIFF}}$ | Measured at the AMD64                                                                                                                                                              | -150  |      | 150  | mV    | 1     |
| Common Mode Voltage                      | V <sub>CM</sub>          | processor's test load. (single-                                                                                                                                                    | 1.05  | 1.25 | 1.45 | V     | 1     |
| Change in Common Mode<br>Voltage         | $\Delta V_{CM}$          | ended measurement)                                                                                                                                                                 | -200  |      | 200  | mV    | 1     |
| Jitter, Cycle to cycle                   | t <sub>jcyc-cyc</sub>    | Measurement from differential<br>wavefrom. Maximum difference of<br>cycle time between 2 adjacent<br>cycles.                                                                       | 0     | 50   | 85   | ps    | 1     |
| Jitter, Accumulated                      | t <sub>ja</sub>          | Measured using the JIT2 software<br>package with a Tek 7404 scope.<br>TIE (Time Interval Error)<br>measurement technique:<br>Sample resolution = 50 ps,<br>Sample Duration = 10 µs | -1000 |      | 1000 |       | 1,2,3 |
| Duty Cycle                               | d <sub>t3</sub>          | Measurement from differential<br>wavefrom                                                                                                                                          | 45    |      | 53   | %     | 1     |
| Output Impedance                         | R <sub>on</sub>          | Average value during switching<br>transition. Used for determining<br>series termination value.                                                                                    | 15    | 35   | 55   | Ω     | 1     |
| Group Skew                               | t <sub>src-skew</sub>    | Measurement from differential<br>wavefrom                                                                                                                                          |       |      | 50   | ps    | 1     |

<sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

 $^{\rm 2}\,{\rm All}$  accumulated jitter specifications are guaranteed assuming that REF is at 14.31818MHz

<sup>3</sup> Spread Spectrum is off

| PARAMETER              | SYMBOL                | CONDITIONS                                       | MIN     | TYP | MAX     | UNITS | Notes |
|------------------------|-----------------------|--------------------------------------------------|---------|-----|---------|-------|-------|
| Long Accuracy          | ppm                   | see Tperiod min-max values                       | -300    |     | 300     | ppm   | 1,2   |
| PCI33 Clock period     | т                     | 33.33MHz output nominal                          | 29.9910 |     | 30.0090 | ns    | 2     |
| PCISS Clock period     | T <sub>period</sub>   | 33.33MHz output spread                           | 29.9910 |     | 30.1598 | ns    | 2     |
| HTT66 Clock period     | т                     | 66.67MHz output nominal                          | 14.9955 |     | 15.0045 | ns    | 2     |
| TTT TOO CLOCK PERIOD   | T <sub>period</sub>   | 66.67MHz output spread                           | 14.9955 |     | 15.0799 | ns    | 2     |
| Output High Voltage    | V <sub>OH</sub>       | I <sub>ОН</sub> = -1 mА                          | 2.4     |     |         | V     | 1     |
| Output Low Voltage     | V <sub>OL</sub>       | I <sub>OL</sub> = 1 mA                           |         |     | 0.55    | V     | 1     |
| Output High Current    |                       | V <sub>OH</sub> @MIN = 1.0 V                     | -33     |     |         | mA    | 1     |
| Output high Current    | I <sub>ОН</sub>       | V <sub>OH</sub> @ MAX = 3.135 V                  |         |     | -33     | mA    | 1     |
| Output Low Current     |                       | V <sub>OL</sub> @ MIN = 1.95 V                   | 30      |     |         | mA    | 1     |
| Output Low Current     | I <sub>OL</sub>       | $V_{OL}$ @ MAX = 0.4 V                           |         |     | 38      | mA    | 1     |
| Edge Rate              | δV/δt                 | Rising edge rate                                 | 1       |     | 4       | V/ns  | 1     |
| Edge Rate              | δV/δt                 | Falling edge rate                                | 1       |     | 4       | V/ns  | 1     |
| Rise Time              | t <sub>r1</sub>       | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$ | 0.5     |     | 2       | ns    | 1     |
| Fall Time              | t <sub>f1</sub>       | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$ | 0.5     |     | 2       | ns    | 1     |
| Duty Cycle             | d <sub>t1</sub>       | V <sub>T</sub> = 1.5 V                           | 45      |     | 55      | %     | 1     |
| Jitter, Cycle to cycle | t <sub>jcyc-cyc</sub> | V <sub>T</sub> = 1.5 V                           |         |     | 180     | ps    | 1     |

## **Electrical Characteristics - HTTCLK Clock**

 $T_A = 0 - 70^{\circ}$ C; VDD=3.3V +/-5%; C<sub>L</sub> = 30 pF (unless otherwise specified)

<sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

<sup>2</sup> All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that REF is at 14.31818MHz

### Electrical Characteristics - SRC/ATIG 0.7V Current Mode Differential Pair

| PARAMETER                          | SYMBOL                | CONDITIONS*                                       | MIN    | TYP | MAX     | UNITS | Notes |
|------------------------------------|-----------------------|---------------------------------------------------|--------|-----|---------|-------|-------|
| Current Source Output<br>Impedance | Zo                    | $V_{O} = V_{x}$                                   | 3000   |     |         | Ω     | 1     |
| Voltage High                       | VHigh                 | Statistical measurement on                        | 660    |     | 850     | mV    | 1,3   |
| Voltage Low                        | VLow                  | single ended signal                               | -150   |     | 150     | mV    | 1,3   |
| Max Voltage                        | Vovs                  | Measurement on single ended                       |        |     | 1150    | mV    | 1     |
| Min Voltage                        | Vuds                  | signal using absolute value.                      | -300   |     |         | mV    | 1     |
| Crossing Voltage (abs)             | Vx(abs)               |                                                   | 250    |     | 550     | mV    | 1     |
| Crossing Voltage (var)             | d-Vx                  | Variation of crossing over all<br>edges           |        |     | 140     | mV    | 1     |
| Long Accuracy                      | ppm                   | see Tperiod min-max values                        | -300   |     | 300     | ppm   | 1,2   |
| Average period                     | Tperiod               | 100.00MHz nominal                                 | 9.9970 |     | 10.0030 | ns    | 2     |
| Average period                     | rpenou                | 100.00MHz spread                                  | 9.9970 |     | 10.0533 | ns    | 2     |
| Absolute min period                | Tabsmin               | 100.00MHz nominal/spread                          | 9.8720 |     |         | ns    | 1,2   |
| Rise Time                          | t <sub>r</sub>        | $V_{OL} = 0.175V, V_{OH} = 0.525V$                | 175    |     | 700     | ps    | 1     |
| Fall Time                          | t <sub>f</sub>        | V <sub>OH</sub> = 0.525V V <sub>OL</sub> = 0.175V | 175    |     | 700     | ps    | 1     |
| Rise Time Variation                | d-t <sub>r</sub>      | $V_{OL} = 0.175V, V_{OH} = 0.525V$                |        |     | 125     | ps    | 1     |
| Fall Time Variation                | d-t <sub>f</sub>      | V <sub>OH</sub> = 0.525V V <sub>OL</sub> = 0.175V |        |     | 125     | ps    | 1     |
| Duty Cycle                         | d <sub>t3</sub>       | Measurement from differential<br>wavefrom         | 45     |     | 55      | %     | 1     |
| Skew                               | t <sub>sk3</sub>      | V <sub>T</sub> = 50%                              |        |     | 100     | ps    | 1     |
| Jitter, Cycle to cycle             | t <sub>jcyc-cyc</sub> | Measurement from differential<br>wavefrom         |        |     | 85      | ps    | 1     |

 $^{*}T_{A} = 0 - 70^{\circ}C; V_{DD} = 3.3 \text{ V } + \!\!/ -5\%; C_{L} = \!\!2pF, R_{S} \!\!= \!\!33.2\Omega, R_{P} \!\!= \!\!49.9\Omega, I_{REF} \!= \!475\Omega$ 

<sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

<sup>2</sup> All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

 ${}^{3}I_{REF} = V_{DD}/(3xR_{R})$ . For  $R_{R} = 475\Omega$  (1%),  $I_{REF} = 2.32mA$ .  $I_{OH} = 6 \text{ x } I_{REF}$  and  $V_{OH} = 0.7V @ Z_{O} = 50\Omega$ .

IDT<sup>™</sup>/ICST<sup>™</sup> Programmable System Clock Chip for ATI RS/RD690 K8<sup>TM</sup> - based Systems

| PARAMETER              | SYMBOL                | CONDITIONS*                                      | MIN     | TYP | MAX     | UNITS | NOTES |
|------------------------|-----------------------|--------------------------------------------------|---------|-----|---------|-------|-------|
| Long Accuracy          | ppm                   | see Tperiod min-max values                       | -100    |     | 100     | ppm   | 1,2   |
| Clock period           | T <sub>period</sub>   | 48.00MHz output nominal                          | 20.8229 |     | 20.8344 | ns    | 2     |
| Clock Low Time         | T <sub>low</sub>      | Measure from < 0.6V                              | 9.3750  |     | 11.4580 | ns    | 2     |
| Clock High Time        | T <sub>high</sub>     | Measure from > 2.0V                              | 9.3750  |     | 11.4580 | ns    | 2     |
| Output High Voltage    | V <sub>OH</sub>       | I <sub>он</sub> = -1 mA                          | 2.4     |     |         | V     | 1     |
| Output Low Voltage     | V <sub>OL</sub>       | I <sub>OL</sub> = 1 mA                           |         |     | 0.55    | V     | 1     |
| Output High Current    |                       | V <sub>OH</sub> @MIN = 1.0 V                     | -33     |     |         | mA    | 1     |
| Ouput high ourient     | I <sub>ОН</sub>       | V <sub>OH</sub> @MAX = 3.135 V                   |         |     | -33     | mA    | 1     |
| Output Low Current     | 1                     | V <sub>OL</sub> @ MIN = 1.95 V                   | 30      |     |         | mA    | 1     |
|                        | I <sub>OL</sub>       | V <sub>OL</sub> @ MAX = 0.4 V                    |         |     | 38      | mA    | 1     |
| Rise Time              | t <sub>r_USB</sub>    | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$ | 0.5     |     | 1.5     | ns    | 1     |
| Fall Time              | t <sub>f_USB</sub>    | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$ | 0.5     |     | 1.5     | ns    | 1     |
| Duty Cycle             | d <sub>t1</sub>       | V <sub>T</sub> = 1.5 V                           | 45      |     | 55      | %     | 1     |
| Group Skew             | t <sub>skew</sub>     | V <sub>T</sub> = 1.5 V                           |         |     | 100     | ps    | 1     |
| Jitter, Cycle to cycle | t <sub>jcyc-cyc</sub> | V <sub>T</sub> = 1.5 V                           |         |     | 130     | ps    | 1,2   |

## Electrical Characteristics - USB - 48MHz

\*TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 5 pF with Rs = 22Ω (unless otherwise specified)

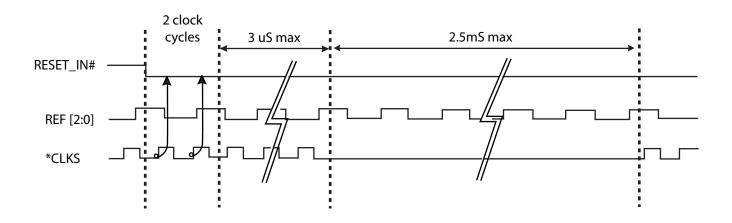
<sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

<sup>2</sup>ICS recommended and/or chipset vendor layout guidelines must be followed to meet this specification

## **Electrical Characteristics - REF-14.318MHz**

| PARAMETER           | SYMBOL                | CONDITIONS                                                      | MIN     | TYP | MAX     | UNITS | Notes |
|---------------------|-----------------------|-----------------------------------------------------------------|---------|-----|---------|-------|-------|
| Long Accuracy       | ppm                   | see Tperiod min-max values                                      | -100    |     | 100     | ppm   | 1,2   |
| Clock period        | T <sub>period</sub>   | 14.318MHz output nominal                                        | 69.8270 |     | 69.8550 | ns    | 2     |
| Clock Low Time      | T <sub>low</sub>      | Measure from < 0.6V                                             | 30.9290 |     | 37.9130 | ns    | 2     |
| Clock High Time     | T <sub>high</sub>     | Measure from > 2.0V                                             | 30.9290 |     | 37.9130 | ns    | 2     |
| Output High Voltage | V <sub>OH</sub>       | I <sub>он</sub> = -1 mА                                         | 2.4     |     |         | V     | 1     |
| Output Low Voltage  | V <sub>OL</sub>       | I <sub>OL</sub> = 1 mA                                          |         |     | 0.4     | V     | 1     |
| Output High Current | I <sub>OH</sub>       | V <sub>OH</sub> @MIN = 1.0 V,<br>V <sub>OH</sub> @MAX = 3.135 V | -29     |     | -23     | mA    | 1     |
| Output Low Current  | I <sub>OL</sub>       | V <sub>OL</sub> @MIN = 1.95 V,<br>V <sub>OL</sub> @MAX = 0.4 V  | 29      |     | 27      | mA    | 1     |
| Rise Time           | t <sub>ri</sub>       | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$                |         |     | 1.5     | ns    | 1     |
| Fall Time           | t <sub>f1</sub>       | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$                |         |     | 1.5     | ns    | 1     |
| Skew                | t <sub>sk1</sub>      | V <sub>T</sub> = 1.5 V                                          |         |     | 100     | ps    | 1     |
| Duty Cycle          | d <sub>t1</sub>       | V <sub>T</sub> = 1.5 V                                          | 44      | 53  | 56      | %     | 1     |
| Jitter              | t <sub>jcyc-cyc</sub> | V <sub>T</sub> = 1.5 V                                          |         | 200 | 300     | ps    | 1     |

\*TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 5 pF with Rs =  $22\Omega$  (unless otherwise specified)

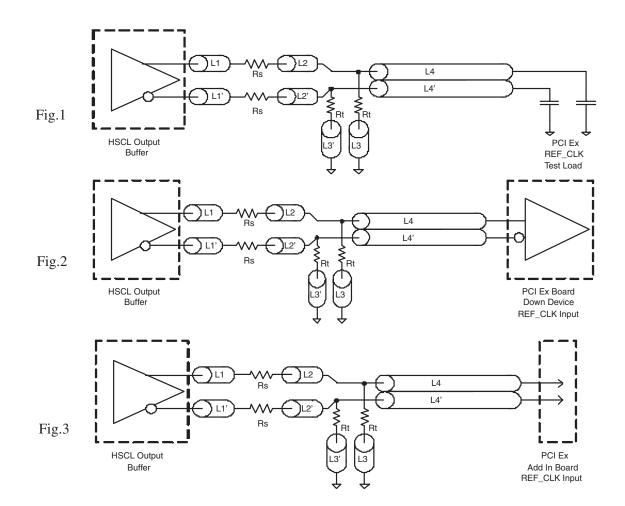

<sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

<sup>2</sup> All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

## RESET\_IN# - Assertion (transition from '1' to '0')

Asserting RESET\_IN pin stops all the outputs including CPU, SRC, ATIG, PCI and USB with the REF[2:0] running. The pin is a Schmitt trigger input with debouncing. After it is triggered, REF clocks will wait for two clock cycle to ensure the RESET\_IN is asserted. Then, it will take 3uS for the clocks to stop without glitches. The clock chip will be power down and re-power up, and SMBus will be reloaded. It will take no more than 2.5mS for the clocks to come out with correct frequencies and no glitches.

\*\* Deassertion of RESET\_IN# (transition from '0' to '1') has NO effect on the clocks.




## **SRC Routing Information**

| SRC Reference Clock                             |                    |      |        |  |  |  |  |  |
|-------------------------------------------------|--------------------|------|--------|--|--|--|--|--|
| Common Recommendations for Differential Routing | Dimension or Value | Unit | Figure |  |  |  |  |  |
| L1 length, Route as non-coupled 50 ohm trace.   | 0.5 max            | inch | 2, 3   |  |  |  |  |  |
| L2 length, Route as non-coupled 50 ohm trace.   | 0.2 max            | inch | 2, 3   |  |  |  |  |  |
| L3 length, Route as non-coupled 50 ohm trace.   | 0.2 max            | inch | 2, 3   |  |  |  |  |  |
| Rs                                              | 33                 | ohm  | 2, 3   |  |  |  |  |  |
| Rt                                              | 49.9               | ohm  | 2, 3   |  |  |  |  |  |

| Down Device Differential Routing               | Dimension or Value  | Unit | Figure |
|------------------------------------------------|---------------------|------|--------|
| L4 length, Route as coupled microstrip 100 ohm | 2 min to 16 max     | inch | 2      |
| differential trace.                            |                     |      |        |
| L4 length, Route as coupled stripline 100 ohm  | 1.8 min to 14.4 max | inch | 2      |
| differential trace.                            |                     |      |        |

| Differential Routing to PCI Express Connector  | Dimension or Value | Unit | Figure |
|------------------------------------------------|--------------------|------|--------|
| L4 length, Route as coupled microstrip 100 ohm | 0.25 to 14 max     | inch | 3      |
| differential trace.                            |                    |      |        |
| L4 length, Route as coupled stripline 100 ohm  | 0.225 min to 12.6  | inch | 3      |
| differential trace.                            | max                |      |        |



## Shared Pin Operation -Input/Output Pins

The I/O pins designated by (input/output) on the **ICS951464** serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period. Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

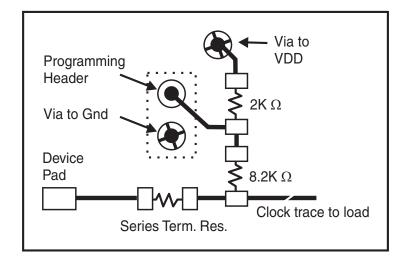
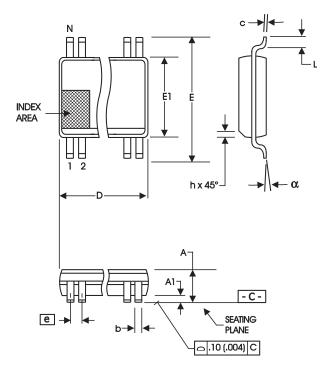




Fig. 1

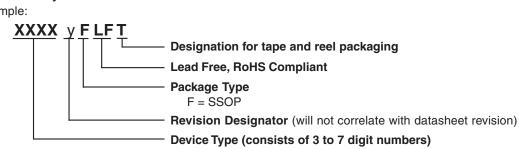


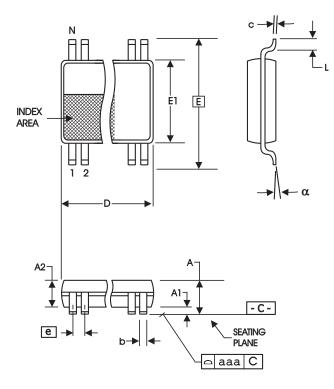
|        |          | meters    |                | ches      |
|--------|----------|-----------|----------------|-----------|
| SYMBOL | COMMON D | IMENSIONS | COMMON D       | IMENSIONS |
|        | MIN      | MAX       | MIN            | MAX       |
| А      | 2.41     | 2.80      | .095           | .110      |
| A1     | 0.20     | 0.40      | .008           | .016      |
| b      | 0.20     | 0.34      | .008           | .0135     |
| С      | 0.13     | 0.25      | .005           | .010      |
| D      | SEE VAF  | RIATIONS  | SEE VAF        | RIATIONS  |
| E      | 10.03    | 10.68     | .395           | .420      |
| E1     | 7.40     | 7.60      | .291           | .299      |
| е      | 0.635    | BASIC     | 0.025          | BASIC     |
| h      | 0.38     | 0.64      | .015           | .025      |
| L      | 0.50     | 1.02      | .020           | .040      |
| Ν      | SEE VAF  | RIATIONS  | SEE VARIATIONS |           |
| а      | 0°       | 8°        | 0°             | 8°        |

56-Lead, 300 mil Body, 25 mil, SSOP

VARIATIONS

| N  | Dn    | nm.   | D (ii | nch) |
|----|-------|-------|-------|------|
| N  | MIN   | MAX   | MIN   | MAX  |
| 56 | 18.31 | 18.55 | .720  | .730 |


Reference Doc.: JEDEC Publication 95, MO-118


10-0034

## **Ordering Information**

## 951464¥FLFT







|        | (240           | mil)       | (20 mil)       |          |
|--------|----------------|------------|----------------|----------|
|        | In Millir      | neters     | In Ind         | ches     |
| SYMBOL | COMMON DI      | MENSIONS   | COMMON DI      | MENSIONS |
|        | MIN            | MAX        | MIN            | MAX      |
| А      |                | 1.20       |                | .047     |
| A1     | 0.05           | 0.15       | .002           | .006     |
| A2     | 0.80           | 1.05       | .032           | .041     |
| b      | 0.17           | 0.27       | .007           | .011     |
| С      | 0.09           | 0.20       | .0035          | .008     |
| D      | SEE VARIATIONS |            | SEE VAR        | IATIONS  |
| E      | 8.10 B         | 8.10 BASIC |                | BASIC    |
| E1     | 6.00           | 6.20       | .236           | .244     |
| е      | 0.50 B         | ASIC       | 0.020 E        | BASIC    |
| L      | 0.45           | 0.75       | .018           | .030     |
| Ν      | SEE VAR        | IATIONS    | SEE VARIATIONS |          |
| а      | 0°             | 8°         | 0°             | 8°       |
| aaa    |                | 0.10       |                | .004     |

56-Lead 6.10 mm. Body, 0.50 mm. Pitch TSSOP

#### VARIATIONS

| N  | D m   | D mm. |      | nch) |
|----|-------|-------|------|------|
| IN | MIN   | MAX   | MIN  | MAX  |
| 56 | 13.90 | 14.10 | .547 | .555 |

Reference Doc.: JEDEC Publication 95, M O-153

10-0039

## **Ordering Information**

## 951464<u>y</u>GLFT





#### **Revision History**

| Rev. | Issue Date | Description                | Page # |
|------|------------|----------------------------|--------|
| Α    | 4/9/2008   | Going to Release.          | -      |
| В    | 9/17/2009  | Updated Power Group table. | 4      |
|      |            |                            |        |
|      |            |                            |        |

## Innovate with IDT and accelerate your future networks. Contact:

## www.IDT.com

#### For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

#### For Tech Support

408-284-6578 pcclockhelp@idt.com

#### **Corporate Headquarters**

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

#### Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

#### Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339



© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA