imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MODEL NO. : TMS150XG1-10TB ISSUED DATE: 2011-03-04

VERSION : <u>1.3</u>

Preliminary SpecificationFinal Product Specification

Customer :_

Approved by	Notes

SHANGHAI AVIC Confirmed :

Prepared by	Checked by	Approved by		
Wei Zhang	JiaXiang Du	XiaoPing Sun		

This technical specification is subjected to change without notice

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

INTRODUCTION

• WARRANTY

Shanghai AVIC OPTOELECTRONICS Co. Ltd (hereinafter called "AVIC") warrants that this product meets the product specifications set forth in this document. If this product under normal operation is found to be non-conforming to the product specifications, and such non-conformance is promptly notified to AVIC within one (1) year after the delivery date, and further such non-conformance is solely attributable to AVIC, AVIC shall repair the non-conforming product or replace it with a conforming one, free of charge. However, this warranty does not apply to any non-conformance that can be found easily by incoming inspections or those resulting from any one of the following:

- 1) Unauthorized or improper repair, maintenance or modification
- 2) Operation or use against specifications, instructions or warnings given by AVIC
- 3) Any other causes attributable to customer

In case AVIC repairs or replaces a product after the one (l)-year warranty period, AVIC shall be entitled to charge for such repair or replacement. Those replaced parts shall be covered with six (6)-month warranty period from the replacement day. Non-conforming products may be replaced with substitutes instead of repair when the manufacture of this product has been terminated.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, AVIC DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND DISCLAIMS ANY REMEDIES.

• MAINTENANCE

The specifications of maintenance parts may be partially changed within equivalent quality or better. In this product, AVIC will not accept to maintain for only mounting parts on circuit board (e.g. connector, fuse, capacitor, resistor, etc.) and only backlight conformation parts (e.g. reflector sheet, light guide plate, etc.).

If AVIC is planning discontinuation for this product, AVIC shall inform it to customers in six (6)-months advance from the issued date of official agreements. In addition, after product discontinuation, AVIC may replace substitutes instead of maintenance parts with whole product.

CHANGE CONTROL

For the purpose of product improvement, this product design may be changed for specifications, appearance, parts, and circuits and so on. In case a design change is affected on the product specifications, AVIC shall inform it to customers in advance.

HANDLING OF DOUBTFUL POINTS

Any question arising out of, or in connection with, this SPECIFICATION or any matter not stipulated herein will be settled each time upon consultation between both parties.

CONTENTS

INTRODUCTION	2
CONTENTS	
Record of Revision	4
1. OUTLINE	5
1.1 STRUCTURE AND PRINCIPLE	
1.2 APPLICATIONS	
1.3 FEATURES	
2. GENERAL SPECIFICATIONS	
3. ABSOLUTE MAXIMUM RATINGS	
4. BLOCK DIAGRAM	
5. MECHANICAL SPECIFICATIONS	
6. ELECTRICAL CHARACTERISTICS	
7. CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	11
8. DISPLAY COLORS AND INPUT DATA SIGNALS	
9. INTERFACE TIMING	
10. OPTICS	19
11. MARKINGS	
11.1 PRODUCT LABEL	
11.2 OTHER MARKINGS	
11.3 INDICATION LOCATIONS	
12. PACKING, TRANSPORTATION AND DELIVERY	
12.1 PACKING	
12.2 INSPECTION RECORD SHEET	
12.3 TRANSPORTATION	
12.4 SIZE AND WEIGHT FOR PACKING BOX	
12.5 OUTLINE FIGURE FOR PACKING	
13. PRECAUTIONS	
13.1 MEANING OF CUTION SIGNS	
13.2 CAUTIONS	
13.3 ATTENTIONS	
14. OUTDRAWING	

Rev	Issued Date	Description	Editor
1.0	2009-12-22	Preliminary Release	Hyman Chen
2.0(1.1)	2010-06-01	Add "Operation life time, Differential input voltage"	Hyman Chen
3.0(1.2)	2010-7-7	LVDS interface (6 bit+HIFRC) revise	James Xiao
1.3	2011-03-04	Change the front cover to new format.	Wei Zhang
	(
	\mathbf{O}		

Record of Revision

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

1. OUTLINE

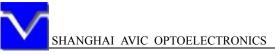
1.1 STRUCTURE AND PRINCIPLE

TMS150XG1-10TB module is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight. The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. PC, signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays. The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATIONS

• Monitor for PC (for amusement or industry)


1.3 FEATURES

- a-Si TFT active matrix
- LVDS interface (6 bit+HIFRC)
- Wide viewing angle
- High response time: 8ms (typ.)
- PSWG standard
- High contrast: 600:1(typ.)
- Edge light type backlight (Inverter less)
- ROHS compliance
- TCO'03 compliance

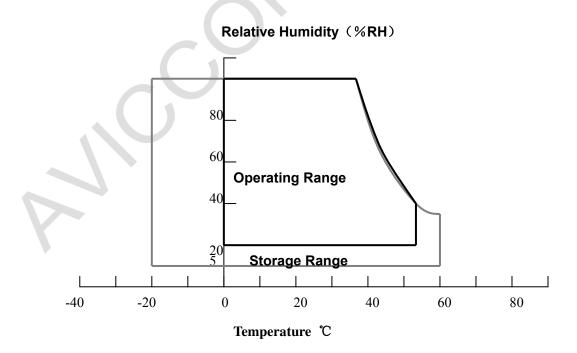
2. GENERAL SPECIFICATIONS

Display area	304.128 (W) x 228.096 (H) mm (typ.)
Diagonal size of display	38.0 cm (15.0 inches)
Drive system	a-Si TFT active matrix
Display color	16,777,216 colors (6bit+HIFRC)
Pixel	1,024 (H) x 768 (V) pixels
Pixel arrangement	RGB vertical stripe
Dot pitch	0.099 (W) x 0.297 (H) mm
Pixel pitch	0.297 (W) x 0.297 (H) mm
Module size	326.50 ± 0.5 (W) x 253.5 ± 0.5 (H) x 11.13 ± 0.5 (D) mm (typ.)
Weight	1000 g (typ.)
Contrast ratio	600:1 (typ.)
Viewing angle	160°/ 160° (typ.)
Color gamut	60 % (typ.)
Response time	8 ms (typ.)
Luminance	250 cd/m ² (typ.)
Tran missive Mode	Normally White
Surface Treatment	AG Type
Signal system	LVDS 1port
Power supply voltage	LCD panel signal processing board: 3.3V
Backlight	2 cold cathode fluorescent lamps
Power consumption	(10.1)W (typ.)

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

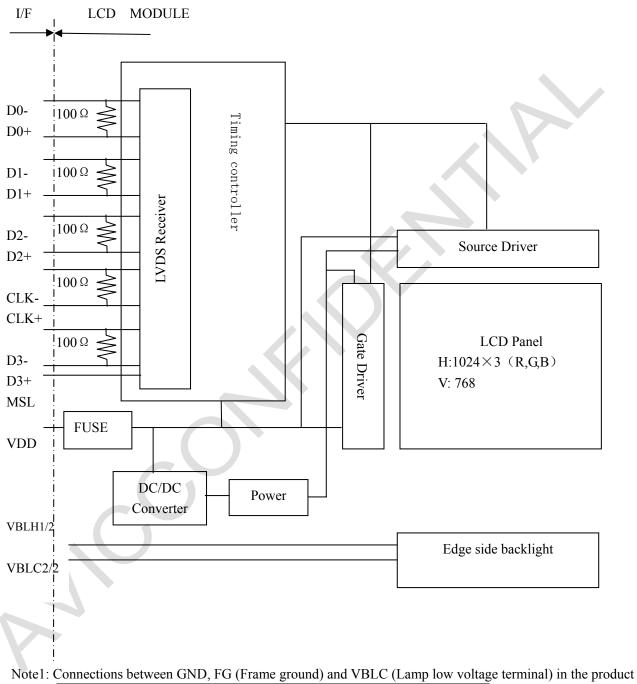
3. ABSOLUTE MAXIMUM RATINGS

	Parameter	Symbol	Rating	Unit	Remarks
Power supply voltage	LCD panel signal board	VDD	-0.3 ~ +3.6	V	Ta = 25 ℃
Input voltage	Display signals Note1	1 7	-0.3 ~ +3.6	v	Ta = 25℃
for signals	Function signals Note2	Vi	and Vi <vcc +0.3<="" td=""><td colspan="2">1a - 23 C</td></vcc>		1a - 23 C
Sto	orage temperature	Tst	-20 ~ +60	°C	Note3
Ope	Operating temperature		0~+55	°C	Note3, 4
Absolute humidity		AH	≤ 70	g/m ³	Ta > 55℃
Operating altitude		-	≪4, 850	m	0° C≪Ta≪55° C
	Storage altitude	-	≤13,600	m	-20° C≤Ta≤60° C


Note1: Display signals are D0+/-, D1+/-, D2+/-, D3+/- and CK+/-.

Note2: Function signal is MSL.

Note3: Temperature and relative humidity range is shown in the figure below.


- (a) 90%RH Max. (Ta ≤40°C)
- (b)Web-bulb temperature should be 39° CMax.(Ta $\geq 40^{\circ}$ C)
- (c) No condensation.

Note4: The temperature of panel display surface area should be 0°CMin and 60°CMax.

4. BLOCK DIAGRAM

GND - FG	Connected
GND - VBLC	Not connected
FG - VBLC	Not connected

Note2: These grounds should be connected together in customer equipment.

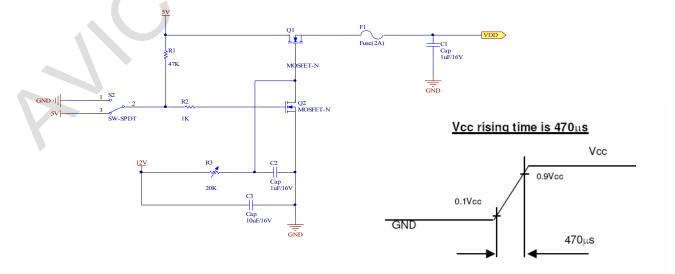
The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

5. MECHANICAL SPECIFICATIONS

Parameter	Specification			
Module size	326.5±0.5 (W) x 253.5±0.5 (H) x 11.13±0.5 (D)	mm		
Display area	304.128 (W) x 228.096 (H)	mm		
Weight	1000 (typ.)	g		

6. ELECTRICAL CHARACTERISTICS

6.1 Driving for LCD panel signal processing board

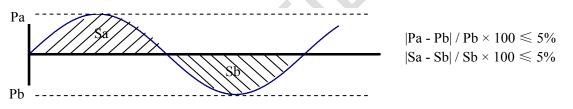

Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage		VDD	3.0	3.3	3.6	V	-
Power supply current		IDD	-	500Note1	700Note 2	mA	at VDD = 3.3V
Permissible ripple voltage		VRP	-	-	100	mV	VDD
Differential input voltage		Vid	200	-	600	mV	-
Differential input threshold	Low	VTL	-100	-		mV	at VCM = $1.2V$
voltage for LVDS receiver High		VTH	-	-	100	mV	Note3
Input voltage width for LVDS receiver		Vi	0	-	2.4	V	-
Terminating resistor		RT	-	100	-	Ω	-
Rush current		I _{rush}	-	-	2.0	А	Note4

Note 1: Checkered flag pattern (EIAJ ED-2522);

Note 2: 2H1V dot inverse pattern

Note 3: Common mode voltage for LVDS receiver

Note4: Measurement Conditions:



6.2 Driving for backlight lamp

(Ta=25°C) Note1							
Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
Lamp voltage	VBLH	549	610	671	Vrms	For each lamp	
Lamp current	IBL	3.5	7.0	7.5	mArms	at L = 250 cd/m ² (typ.)	
Lamp starting voltage	VS	-	-	1600	Vrms	$Ta = 0^{\circ}C$ Note2	
Note1	¥5	-	-	1100	Vrms	$Ta = 25^{\circ}C$ Note2	
Oscillation frequency	FO	40	50	60	kHz	Note3	
Operation life time	Hr	40,000	-	-	Hour	Ta = 25°C IBL = 7.0 mArms Note4	

Note1: The value is the characteristic of lamp. The starting voltage of inverter should be lower than the value. But the possibility of not lighting exists by the lower voltage, so the suitable voltage should considered by the test.

Note2: The asymmetric ratio of working waveform for lamps (Lamp voltage peak ratio, Lamp current peak ratio and waveform space ratio) should be less than 5% (See the following figure). If the waveform is asymmetric, DC (Direct current) element applies into the lamp. In this case, a lamp lifetime may be shortened, because a distribution of a lamp enclosure substance inclines toward one side between low voltage terminal (Cold terminal) and high voltage terminal (Hot terminal).

Pa: Supply voltage/current peak for positive, Pb: Supply voltage/current peak for negative

Sa: Waveform space for positive part, Sb: Waveform space for negative part

Note3: Recommended value of "FO" is as following.

 $FO = 1/4 \times 1/th \times (2n-1)$ n: Natural number (1, 2, 3)

Note4: Lamp operating lifetime is mean time to half-luminance. In case the product works under low temperature environment, the lifetime becomes short.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

7. CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

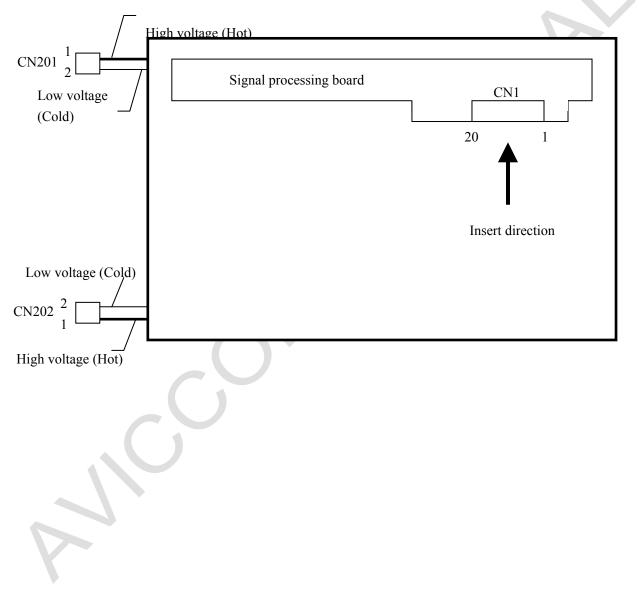
	Module sid	,			
	daptable plu	lectric Co., Ltd.)			
Pin No.	Symbol	Signal	Remarks		
1	VCC	Power supply			
2	VCC	i ower suppry			
3	GND	Ground			
4	GND	Oround			
5	D0-	Pixel data	Note2		
6	D0+	I IXCI data	Note2		
7	GND	Ground	-		
8	D1-	Pixel data	Note2		
9	D1+	r ixel uata	Note2		
10	GND	Ground	· ·		
11	D2-	Pixel data	Note2		
12	D2+	r ixel udia	Note2		
13	GND	Ground	-		
14	CLK-	D' 1 1 1			
15	CLK+	Pixel clock	Note2		
16	GND	Ground	-		
17	D3-	Pixel data	Note2		
18	D3+	Fixel uata	INOIC2		
19	GND	Ground	-		
20	MSL	Selection of LVDS input Map	Low or Open: NOTE1		

7.1 LCD	panel	signal	processing	board
7.1 LCD	puner	515Hui	processing	oouru

CN1 socket(Module side): DF-14H-20P-1.25H (Hirose Electric Co., Ltd.)

Note1: See"7.4 Connection between receiver and transmitter For LVDS".

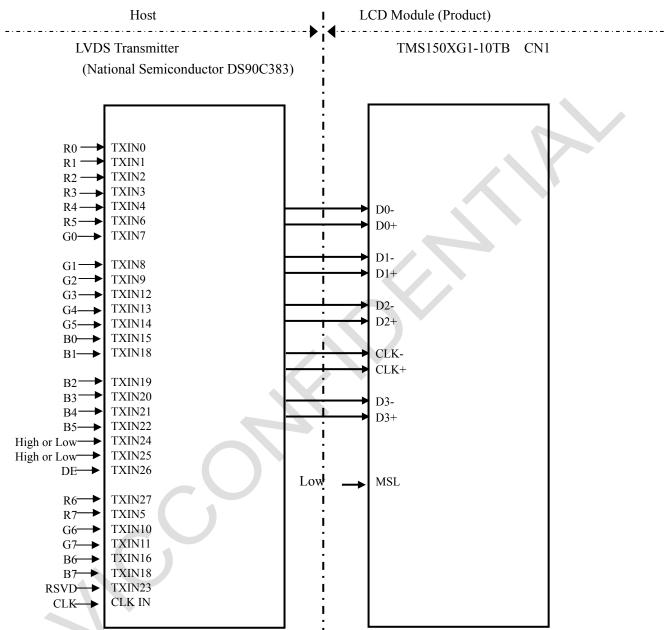
Note2: Twist pair wires with 100Ω (Characteristic impedance) should be connected between LCD panel signal processing board and LVDS transmitter.

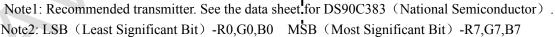

7.2 Backlight lamp

CN201 CN202 plug (LCD module side): BHR-03VS-1 (J.S.T Mfg. Co., Ltd.)

Adaptable socket: SM02 (8.0) B-BHS-1-TB (J.S.T Mfg. Co., Ltd.)

Pin No.	Symbol	signal	remarks		
1	VBLH	High voltage terminal(Hot)	Cable color: (Sky)Blue		
2	VBLC	Low voltage terminal(Cold)	Cable color: White		


7.3 Position of plugs and a socket



The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

7.4 Connection between receiver and transmitter for LVDS

Input LVDS map (MSL: "Low"or"Open")

8. DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display in equivalent to 16,777,216 colors in 256 scales. Also the relation between display colors and input data signals is as the following table.

Diam	larr a la ma						Ι	Data	ı sig	nal	(():Lo	ow l	leve	1,	1:H	igh	Lev	el)						
Displ	lay colors	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	В5	B4	B3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
or	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Basic Color	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
asic	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
B	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
cale	Dark ▲	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red grayscale					:									:								:			
ig bi	Dricht				:									:											
Re	Bright	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
е	D. 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
/sca	Dark ▲	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green grayscale					:									:											
een	Bright	0		0	:	0	0	0	0	1				:		0		0	0	0	0	:	0	0	0
G	, , , , , , , , , , , , , , , , , , ,	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Diack	0	0	0	0	0	0	0			0	0	0	0	0	0	0	_	0	0	0	0	0		
e	Dark	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 1	1 0
/sca	≜	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	U		0	1	0
gray					•									•											
Blue grayscale	▼ Bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
					5	5		0	0	<u> </u>		5				0	0	1	1	1	1	1	1		1

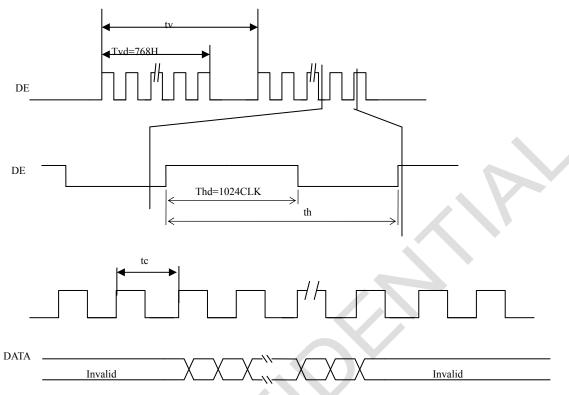
(Matal)

9. INTERFACE TIMING

9.1 Timing characteristics

CLK		2	Symbol 1/tc	min.	typ.	max.	Unit	Remarks		
CLK	Dut	2	1/tc	5.4						
CLK		V		54	65.0	81	MHz	15.384ns (typ.)		
	Rise time	Duty					—	Note2		
	Rise tille,	Fall time	—				ns	Note2		
DATA	CLK-DATA	Setup time	—				ns			
	CLK-DAIA	Hold time	—		—	ns	Note2			
	Rise time,	Fall time	_				ns			
				12.3	20.676	30.00	μs	48.363KHz(typ.)		
		Cycle	th	1050	1344	1800	CLK	Note3		
	Horizontal			1050	1344	1800	CLK	Note4		
		Display	thd	1024				_		
		period	uiu							
DE		Cycle	tx	13.1	16.666	20.0	ms			
DE	Vertical	Cycle	ιv	770	806	1334	Н	60.0 Hz (typ.)		
	(One frame)	Display	tyd		768		ц	00.0112 (typ.)		
		period	ivu		708		11			
		Setup time					ns			
	CLK-DE	Hold time			—		ns	Note2		
	Rise time, Fall time		-				ns			
DE	Vertical (One frame) CLK-DE	Display period Cycle Display period Setup time Hold time	th thd tv tvd 	1050	1344 1024 16.666	1800 20.0	CLK ms H H ns ns	Note3 Note4 – 60.0Hz (typ		

Note1: Definition of parameters is follows. tc=1CLK,Th=1H


Note 2: See the data sheet of LVDS transmitter.

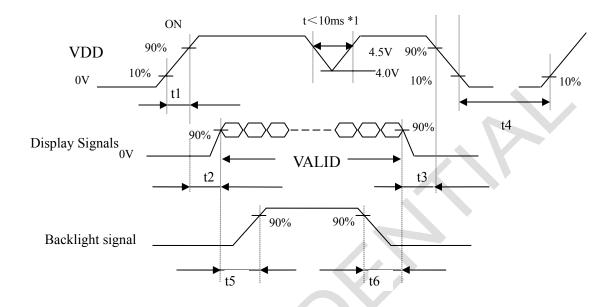
Note 3: Both of "time" and "CLK number" of the "th" must keep the Minimum value of specifications.

Note 4: "th" must keep the fluctuation within ± 1 CLK, because of avoidance of image sticking.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

9.2 Input signal timing chart

9.3 Pixel DATA alignment of display image


The following table is the coordinates per pixel

<u>C</u> (1	, 1)					
R	G B					
C(1, 1)	C (2, 1)		C (X, 1)	•••	C (1023, 1)	C (1024, 1)
C (1, 2)	C (2, 2)		C (X, Y)	•••	C (1023, 2)	C (1024, 2)
•		•	•	•	•	•
•		•••	•	•••	•	•
•	•	•	•	•	•	•
C (1, Y)	C (2, Y)	•••	C (X, Y)	•••	C (1023, Y)	C (1024, Y)
	•	•	•	•	•	•
	•	•••	•	•••	•	•
•	•	•	•	•	•	•
C (1, 767)	C (2, 767)	•••	C(X, 767)	•••	C(1023, 767)	C(1024,767)
C (1, 768)	C (2, 768)	•••	C(X, 768)	•••	C(1023, 767)	C(1024,768)

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

9.4. POWER SUPPLY VOLTAGE SEQUENCE

9.4.1 The sequence of backlight and power

Timing Specifications:

0.47ms<t1 <10ms; 0.5 ms<t2 <50ms; 0ms<t3 <50ms;

t4 >1000ms; t5 >200ms; t6 >200ms;

*1: These signals should be measured at the terminal of 100Ω resistor.

[NOTE ITEM]

Note1: In terms of voltage variation (voltage drop) while VCC rising edge is below 3.0 V, a protection circuit may work, and then this product may not work.

Note2: Display signals (D0+/-, D1+/-, D2+/-, D3+/- and CK+/-) and function signal (MSL) must be "0" voltage, exclude the VALID period (See above sequence diagram). If these signals are higher than 0.3 V, the internal circuit is damaged.

If some of display and function signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. If customer stops the display and function signals, they should be cut VCC.

- Note3: The backlight power supply voltage should be inputted within the valid period of display and function signals, in order to avoid unstable data display.
- Note4: In order to prevent unstable data displaying, suggest that, during display and function signal's valid period, backlight power voltage should be input under the custom ' condition as possible.

9.4.2 Power supply voltage ripple

This product works, even if the ripple voltage levels are beyond the permissible values as the following table, but there might be noise on the display image.

Parameter	Power supply voltage	Ripple voltage Note1(Measured at input terminal of power supply)	Unit
VCC	3.3 V	≤ 100	mVp-p

Note1: The permissible ripple voltage includes spike noise.

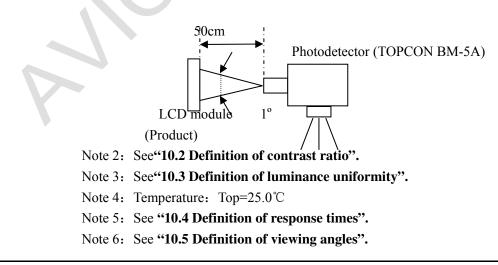
9.4.3 Fuse

D		Fuse	Detin		D 1	
Parameter	Туре	Supplier	Rating Fusing current		Remarks	
VCC	TF16SN2.50	KOA Corporation	1.5 A	5.0 Å	Note1	
VCC	1F105IN2.30	KOA Corporation	32 V	5.0 A	noter	

Note1: The power supply capacity should be more than the fusing current. If the power supply capacity is less than the fusing current, the fuse may not blow for a short time, and then nasty smell, smoking and so on may occur.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

10. OPTICS

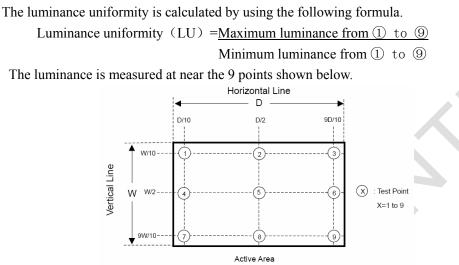

10.1 Optical characteristics

Parameter N	ote1	Condition	Symbol	min.	typ.	max.	Unit
Luminanc	e	White at center R=0, L=0, U=0,D=0	L	200	250	-	cd/ m ²
Contrast ra	tio	White/Black at center R=0, L=0, U=0,D=0	CR	400	600	-	-
Luminance unit	formity	-	LU	-	1.2	1.3	
	White	X coordinate	Wx	0.283	0.313	0.343	<u> </u>
	white	Y coordinate	Wy	0.299	0.329	0.359	-
	Red	X coordinate	Rx	0.60	0.63	0.66	-
Chromaticity		Y coordinate	Ry	0.31	0.34	0.37	
Chromaticity	Green	X coordinate	Gx	0.27	0.30	0.33	-
		Y coordinate	Gy	0.54	0.57	0.60	-
	Blue	X coordinate	Bx	0.11	0.14	0.17	-
	Blue	Y coordinate	Ву	0.07	0.10	0.13	-
Color gam	ut	R=0, L=0, U=0,D=0	C	50	60	-	%
Despense ti		White to black	Ton	-	2	4	ms
Response ti	me	Black to white	Toff	-	6	8	ms
	Right	θU=0°, θD=0°,CR=10	θR	70	80	-	o
Viewing angle	Left	θU=0°, θD=0°,CR=10	θL	70	80	-	o
viewing angle	Up	θR=0°, θL=0°,CR=10	θU	70	80	-	o
	Down	θR=0°, θL=0°,CR=10	θD	70	80	-	o

Note1: Measurement conditions are follows.

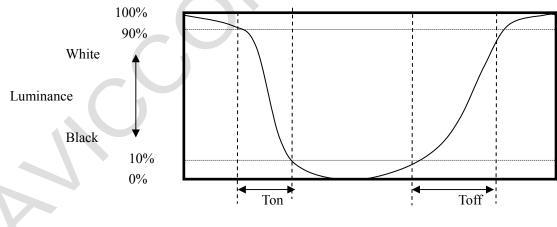
Ta=25C, VCC=3.3V, IBL=7mArms/lamp, Display mode: XGA, Horizontal cycle=48.363 KHz, Vertical cycle=60.000Hz

Optical characteristics are measured at luminance saturation after 20minutes from working the product, in the dark room. Also measurement method for luminance is as follows.

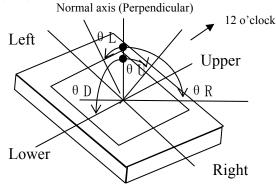

10.2Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

Contrast ratio (CR) =<u>Luminance of white screen</u>


Luminance of black screen

10.3 Definition of luminance uniformity



10.4 Definition of response times

Response time is measured, the luminance changes from "white" to "black", or "black" to "white" on the same screen point, by photo-detector. Ton is the time it takes the luminance change from 90% down to 10%. Also Toff is the time it takes the luminance change from 10% up to 90%. (See the following diagram.)

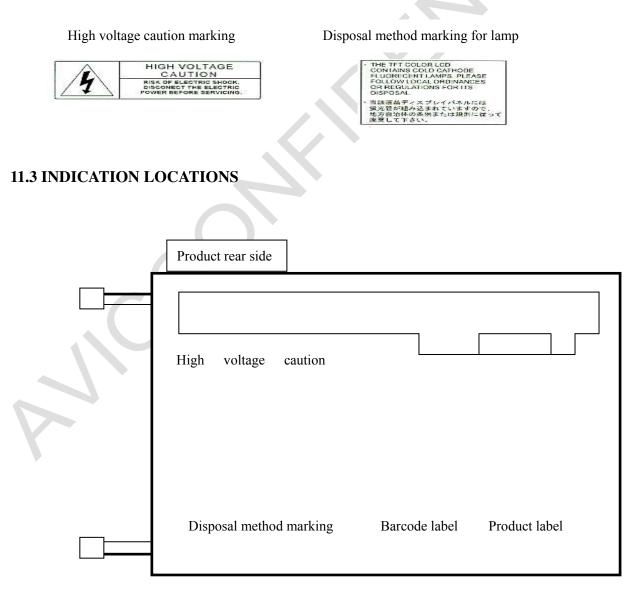
10.5 Definition of viewing angles

11. MARKINGS

The various markings are attached to this product. See "11.3 INDECATION LOCATIONS" for attachment positions.

11.1 PRODUCT LABEL Product label **UL MARK** ROHS **ROHS Mark** TMS150XG1 -10TB F250878 Country of manufacture MADE IN CHINA Lot number OEM NO: TM5XG10A55SA1SA19CF0001 OEM number Note 1 Note2 Note1: The meaning of OEM number •Example: TM5XG10A55SA1SA19CF0001 SA1SA1 TM5XG10A 55 9CF 0001**Module Number** Source & Gate Location Line# Serial Number Date code **Driver IC Code Date code:** 1st Character Year Codes Month 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 So on 9 Code 7 8 0 2 5 6 1 3 4 6 2nd Character Month Codes Month February July October November December January March April May June August September 7 Code 1 2 3 4 5 6 8 9 A В С

Q/S1005-2011


SHANGHAI AVIC OPTOELECTRONICS

3rd Character Day Codes

Day	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11st	12nd
Code	1	2	3	4	5	6	7	8	9	А	В	С
	13rd	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th
	D	Е	F	G	Н	J	K	L	М	Ν	Р	Q
								-				
	25th	26th	27th	28th	29th	30th	31st					
	R	S	Т	U	V	W	Х					

Note2: **Do not attach anything such as label and so on, on the product label**! In case repair the product, AVIC needs the contents of product label such as the lot number, inspection date and so on, to identify the warranty period with individual product. If AVIC cannot decipher the contents of product label, such repair shall be entitled to charge. Also AVIC may give a new lot number to reconditioned products.

11.2 OTHER MARKINGS

12. PACKING, TRANSPORTATION AND DELIVERY

AVIC will pack products to deliver to customer in accordance with AVIC packing specifications, and will deliver products to customer in such a state that products will not suffer from damage during transportation .The delivery conditions are as follows.

12.1 PACKING

(1) Packing box

14products are packed up with the maximum in a packing box (See "**12.5 OUTLINE FIGURE FOR PACKING** "). Products are put into a plastic bag for prevention of moisture with cushion, and then the bag is sealed up with heat sealing.

The type name and quality are shown on outside of the packing box, either labeling or printing.

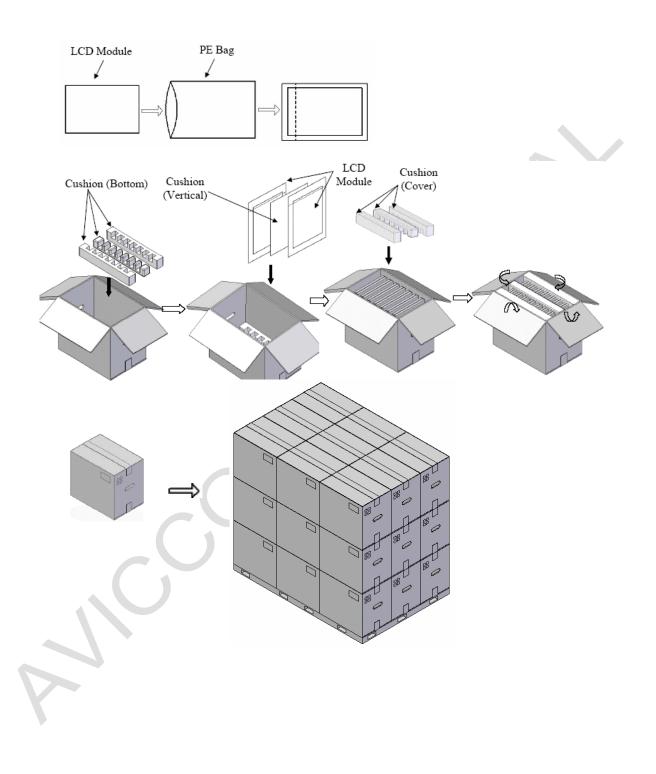
(2)Pallet Packing (See"12.5 OUTLINE FIGURE FOR PACKING ")

① Packing boxes are tired on a cardboard pallet. (9 boxes×3 tiers maximum)

②Cardboard sleeve and top cap are attached to the packing boxes, and then they are fixed by a band.

12.2 INSPECTION RECORD SHEET

Inspection record sheets are included in the packing box with delivery products to customer. It is summarized to a number of products for pass/fail assessment.


12.3 TRANSPORTATION

The product is transported by vehicle, aircraft or shipment in the state of pallet packing.

12.4 SIZE AND WEIGHT FOR PACKING BOX

	Parameter	Packing box	Unit
	Size	378 (L) x368 (W) x315.5 (H) (typ.)	mm
	Weight	1 (typ.)	kg
Y	Total weight	14.6 (typ.) (with 14 products)	kg

12.5 OUTLINE FIGURE FOR PACKING

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

13. PRECAUTIONS

13.1 MEANING OF CUTION SIGNS

The following caution signs have very important meaning .Be sure to read "13.2 CAUTIONS" and "13.3 ATTENTIONS", after understanding these contents!

This sign have the meaning that customer will be injured by himself or the product will sustain a damage, if customer has wrong operations.

This sign has the meaning that customer will get an electrical shock, if customer has wrong operations.

This sign has the meaning that customer will be injured by himself, if customer has wrong operations.

13.2 CAUTIONS

* Do not touch lamp cables while turn on .Customers will be in danger of an electric shock

* Do not touch the working backlight and IC. Customers will be in danger of burn injury.
 * Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass.(shock :To be not greater 294m/s² and to be not greater 11ms, Pressure: To be not greater 19.6N)

13.3 ATTENTIONS

- 13.1 Handling of the product
- ① Take hold of both ends without touch the circuit board when customer pulls out products (LCD modules) from inner packing box. If customer touches it, products may be broken down or out of adjustment, because of stress to mounting parts.
- 2 Do not hook cables nor pull connection cables such as flexible cable and so on, for fear of damage.
- ③ If customer puts down the product temporarily, the product puts on flat subsoil as a display side turns down.
- (4) Take the measures of electrostatic discharge such as earth band, ionic shower and so on, when customer deal with the product, because products may be damaged by electrostatic.
- ⁽⁵⁾The torque for mounting screws must never exceed 0.34N-m. Higher torque values might result in distortion of the bezel.