

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Four Output Differential Fanout Buffer for PCI Express Gen 1 & 2

ICS9DBL411A

Recommended Application:

PCI-Express fanout buffer

Output Features:

- 4 low power differential output pairs
- Individual OE# control of each output pair

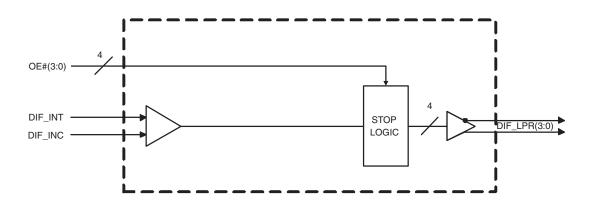
Key Specifications:

- Output cycle-cycle jitter < 25ps additive
- Output to output skew: < 50ps

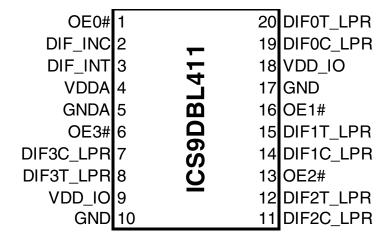
Features/Benefits:

- Low power differential fanout buffer for PCI-Express and CPU clocks
- 20-pin MLF or TSSOP packaging

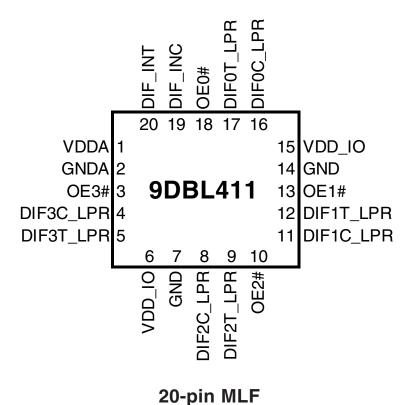
General Description:


The **ICS9DBL411** is a 4 output lower power differential buffer. Each output has its own OE# pin. It has a maximum input frequency of 400 MHz.

Power Groups


Pin Number (TSSOP)		Description		
VDD	GND	Description		
9,18 10,17		VDD_IO for DIF(3:0)		
4	5	3.3V Analog VDD & GND		

Pin Number (MLF)		Description
VDD	GND	Description
6,15	7,14	VDD_IO for DIF(3:0)
1	2	3.3V Analog VDD & GND


Funtional Block Diagram

Pin Configuration

20-pin TSSOP

IDT® Four Output Differential Buffer for PCI Express

TSSOP Pin Description

PIN # (TSSOP)	PIN NAME	PIN TYPE	DESCRIPTION
4	OE0#	IN	Output Enable for DIF0 output. Control is as follows:
!	OEU#	IIN	0 = enabled, 1 = Low-Low
2	DIF_INC	IN	Complement side of differential input clock
3	DIF_INT	IN	True side of differential input clock
4	VDDA	PWR	3.3V Power for the Analog Core
5	GNDA	GND	Ground for the Analog Core
6	OE3#	IN	Output Enable for DIF3 output. Control is as follows:
0	OE3#	IIN	0 = enabled, 1 = Low-Low
7	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
8	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
9	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
10	GND	GND	Ground pin
11	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
12	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
13	OE2#	IN	Output Enable for DIF2 output. Control is as follows:
13	OE2#	IIN	0 = enabled, 1 = Low-Low
14	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
15	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
16	OE1#	IN	Output Enable for DIF1 output. Control is as follows:
16 OE1# IN		IIN	0 = enabled, 1 = Low-Low
17	GND	GND	Ground pin
18	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
19	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
20	DIF0T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)

MLF Pin Description

PIN # (MLF)	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDA	PWR	3.3V Power for the Analog Core
2	GNDA	GND	Ground for the Analog Core
3	OE3#	IN	Output Enable for DIF3 output. Control is as follows: 0 = enabled, 1 = Low-Low
4	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
5	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
6	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
7	GND	GND	Ground pin
8	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
9	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
10	OE2#	IN	Output Enable for DIF2 output. Control is as follows: 0 = enabled, 1 = Low-Low
11	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
12	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
13	OE1#	IN	Output Enable for DIF1 output. Control is as follows: 0 = enabled, 1 = Low-Low
14	GND	GND	Ground pin
15	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
16	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
17	DIF0T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
18	OE0#	IN	Output Enable for DIF0 output. Control is as follows: 0 = enabled, 1 = Low-Low
19	DIF_INC	IN	Complement side of differential input clock
20	DIF_INT	IN	True side of differential input clock

Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Maximum Supply Voltage	VDDA	Core Supply Voltage		4.6	V	1,7
Maximum Supply Voltage	VDD_IO	Low-Voltage Differential I/O Supply	0.99	3.8	V	1,7
Maximum Input Voltage	V_{IH}	3.3V LVCMOS Inputs		4.6	V	1,7,8
Minimum Input Voltage	V_{IL}	Any Input	Vss - 0.5		V	1,7
Storage Temperature	Ts	-	-65	150	°C	1,7
Input ESD protection	ESD prot	Human Body Model	2000		V	1,7

Electrical Characteristics - Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Ambient Operating Temp	Tambient	-	0	70	°C	1
Supply Voltage	VDDxxx	Supply Voltage	3.135	3.465	V	1
Supply Voltage	VDDxxx_IO	Low-Voltage Differential I/O Supply	0.99	3.465	٧	1
Input High Voltage	V_{IHSE}	Single-ended inputs	2	$V_{DD} + 0.3$	٧	1
Input Low Voltage	V_{ILSE}	Single-ended inputs	V _{SS} - 0.3	0.8	V	1
Differential Input High Voltage	V _{IHDIF}	Differential inputs (single-ended measurement)	600	1.15	V	1
Differential Input Low Voltage	V_{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 0.3	300	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4	8	V/ns	2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5	5	uA	1
	I _{DD_3.3V}	3.3V supply		25	mA	1
Operating Supply Current	I _{DD IO+100M}	VDD_IO supply @ fOP = 100MHz		15	mA	1
	I _{DD_IO_400M}	VDD_IO supply @ fOP = 400MHz		54	mA	1
Standby Current	I _{DD_SB33}	3.3V supply, Input stopped, OE# pins all high		1	mA	1
	I _{DD_SBIO}	VDD_IO supply, Input stopped		0.1	mA	1
Input Frequency	F _i	V _{DD} = 3.3 V	33	400	MHz	2
Pin Inductance	L _{oin}			7	nΗ	1
Input Capacitance	C_{IN}	Logic Inputs	1.5	5	pF	1
при Оараскансе	C _{OUT}	Output pin capacitance		6	pF	1
OE# latency	T _{OE#LAT}	Number of clocks to enable or disable output from assertion/deassertion of OE#	1	3	periods	1
Tdrive_OE#	T _{DROE#}	Output enable after OE# de-assertion		10	ns	1
Tfall_OE#	T_{FALL}	Fall/rise time of OE# inputs		5	ns	1
Trise_OE#	T_{RISE}	T and the of OLT inputs		5	ns	1

AC Electrical Characteristics - DIF Low Power Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Rising Edge Slew Rate	t _{SLR}	Differential Measurement	1	2.5	V/ns	1,2
Falling Edge Slew Rate	t _{FLR}	Differential Measurement	1	2.5	V/ns	1,2
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement		20	%	1
Maximum Output Voltage	V_{HIGH}	Includes overshoot		1150	mV	1
Minimum Output Voltage	V_{LOW}	Includes undershoot	-300		mV	1
Differential Voltage Swing	V_{SWING}	Differential Measurement	1200		mV	1
Crossing Point Voltage	V _{XABS}	Single-ended Measurement	300	550	mV	1,3,4
Crossing Point Variation	V _{XABSVAR}	Single-ended Measurement		140	mV	1,3,5
	D _{CYCDIS0}	Differential Measurement, fIN<=100MHz		0.5	%	1,6
Duty Cycle Distortion	D _{CYCDIS1}	Differential Measurement 100MHz < flN<=267MHz		+5	%	1,6
	D _{CYCDIS2}	Differential Measurement, fIN>267MHz		+7	%	1,6
DIF Jitter - Cycle to Cycle	DIFJ _{C2C}	Differential Measurement, Additive		25	ps	1
DIF[3:0] Skew	DIF _{SKEW}	Differential Measurement		50	ps	1
Propagation Delay	t _{PD}	Input to output Delay	2.5	3.5	ns	1
PCIe Gen2 Phase Jitter - Addtive	t _{phase_addHI}	1.5MHz < fIN < Nyquist (50MHz)		0.8	ps rms	1
PCIe Gen2 Phase Jitter - Addtive	t _{phase_addLO}	10KHz < fIN < 1.5MHz		0.1	ps rms	1

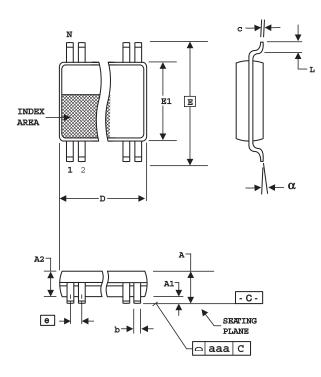
Notes on Electrical Characteristics:

¹Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)


⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

 $^{^{\}rm 6}$ Tthis is the figure refers to the maximum distortion of the input wave form.

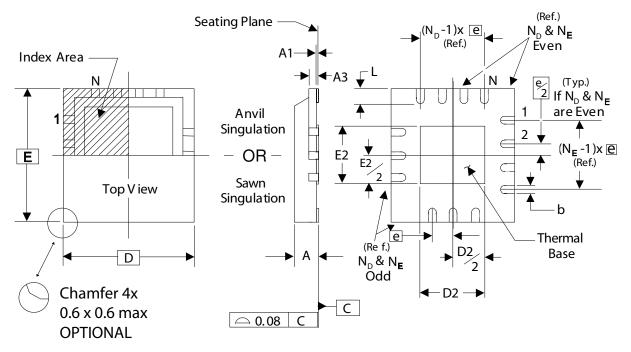
⁷ Operation under these conditions is neither implied, nor guaranteed.

⁸ Maximum input voltage is not to exceed maximum VDD

20-pin TSSOP Package Drawing and Dimensions

20-Lead, 4.40 mm. Body, 0.65 mm. Pitch TSSOP

	(17	3 mii)	(25.6 MII)	
	In Milli	meters	In In	ches
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSION	
	MIN	MAX	MIN	MAX
Α		1.20		.047
A1	0.05	0.15	.002	.006
A2	0.80	1.05	.032	.041
b	0.19	0.30	.007	.012
С	0.09	0.20	.0035	.008
D	SEE VARIATIONS		SEE VAF	RIATIONS
E	6.40 E	BASIC	0.252	BASIC
E1	4.30	4.50	.169	.177
е	0.65 BASIC		0.0256 BASIC	
L	0.45	0.75	.018	.030
N	SEE VARIATIONS		SEE VAF	RIATIONS
а	0°	8°	0°	8°
aaa		0.10		.004


VARIATIONS

N	D mm.		D (inch)		
IN	MIN	MAX	MIN	MAX	
20	6.40	6.60	.252	.260	

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

20-pin MLF Package Drawing and Dimensions

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

DIMENSIONS

SYMBOL	MIN.	MAX.		
Α	0.8	1.0		
A1	0	0.05		
A3	0.20 Re	0.20 Reference		
b	0.18	0.3		
е	0.50 BASIC			

DIMENSIONS

SYMBOL	ICS 20L TOLERANCE		
N	20		
N_D	5		
N _E	5		
D x E BASIC	4.00 x 4.00		
D2 MIN. / MAX.	2.00 / 2.25		
E2 MIN. / MAX.	2.00 / 2.25		
L MIN. / MAX.	0.45 / 0.65		

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DBL411AKLF	Tubes	20-pin MLF	0 to +70°C
9DBL411AKLFT	Tape and Reel	20-pin MLF	0 to +70°C
9DBL411AGLF	Tubes	20-pin TSSOP	0 to +70°C
9DBL411AGLFT	Tape and Reel	20-pin TSSOP	0 to +70°C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

[&]quot;A" is the device revision designator (will not correlate to the datasheet revision).

Revision History

Rev.	Issue Date	Description	Page #
0.1	8/1/2006	Initial Release.	-
0.2	9/22/2006	Updated MLF Package Dimensions.	8
		1. Updated electrical characteristics - additive jitter, cycle-to-cycle, tpd, skews,	
		slew rates, Idd, etc.	
		2. Corrected power grouping table for TSSOP pkg	
Α	7/31/2007	3. Final Release	1,5,6
		1. Highlighted that V _{IHDIF} and V _{ILDIF} are single ended measurments.	
		2. Corrected VSWING paramater from 300mV to 1200mV.	
В	2/21/2008	3. Updated duty cycle distortion table with a 3rd figure for speeds <=100MHz.	5
С	6/28/2012	Typo for "Differential Input Low Voltage" units; changed "V" to "mV"	

This product is protected by United States Patent NO. 7, 342, 420 and other patents.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

408-284-6578 pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, ICS, and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners.

Printed in USA