

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







DATASHEET

# **Description**

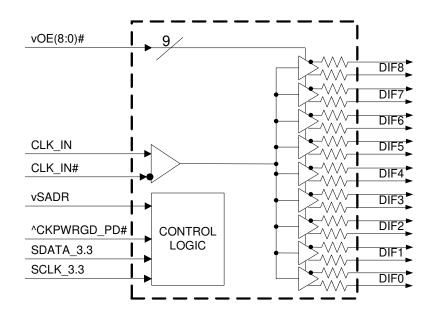
The 9DBU0941 is a member of IDT's 1.5V Ultra-Low-Power (ULP) PCIe family. It has integrated terminations for direct connection to  $100\Omega$  transmission lines. The device has 9 output enables for clock management, and 3 selectable SMBus addresses.

## **Recommended Application**

1.5V PCIe Gen1-2-3 Fanout Buffer (FOB)

## **Output Features**

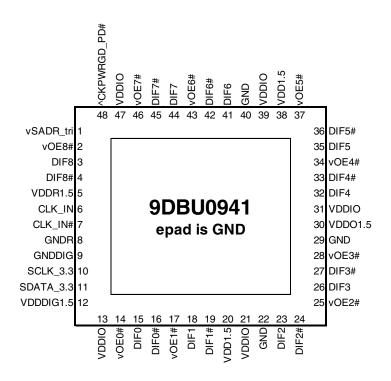
• 9 1-167MHz Low-Power (LP) HCSL DIF pairs with Zo=100Ω


## Key Specifications

- DIF additive cycle-to-cycle jitter < 5ps
- DIF output-to-output skew < 60ps
- DIF additive phase jitter is < 300fs rms for PCle Gen3
- DIF additive phase jitter < 350s rms for SGMII</li>

#### Features/Benefits

- Direct connection to 100Ω transmission lines; save 36 resistors compared to standard HCSL outputs
- 47mW typical power consumption; eliminates thermal concerns
- · Outputs can optionally be supplied from any voltage between 1.05 and 1.5V; maximum power savings
- Spread Spectrum (SS) compatible; allows SS for EMI reduction
- OE# pins for each output; support DIF power management
- HCSL-compatible differential input; can be driven by common clock sources
- SMBus-selectable features; optimize signal integrity to application
  - slew rate for each output
  - · differential output amplitude
- Device contains default configuration; SMBus interface not required for device operation
- Selectable SMBus addresses; multiple devices can easily share an SMBus segment
- 3.3V tolerant SMBus interface works with legacy controllers
- 6 x 6 mm 48-VFQFPN; minimal board space


# **Block Diagram**



1



# **Pin Configuration**



#### 48-pin VFQFPN, 6x6 mm, 0.4mm pitch

- ^v prefix indicates internal 120KOhm pull up AND pull down resistor (biased to VDD/2)
- v prefix indicates internal 120KOhm pull down resistor
- ^ prefix indicates internal 120KOhm pull up resistor

#### **SMBus Address Selection Table**

|                                       | SADR | Address | + Read/Write bit |
|---------------------------------------|------|---------|------------------|
| State of SADR on first application of | 0    | 1101011 | X                |
| CKPWRGD_PD#                           | M    | 1101100 | X                |
|                                       | 1    | 1101101 | X                |

#### **Power Management Table**

| CKPWRGD PD# | CLK IN  | SMBus   | SMBus OEx# Pin DIFx |          | х         |
|-------------|---------|---------|---------------------|----------|-----------|
| CKFWHGD_FD# | CLK_IN  | OEx bit | OLX# FIII           | True O/P | Comp. O/P |
| 0           | X       | X       | Х                   | Low      | Low       |
| 1           | Running | 0       | Х                   | Low      | Low       |
| 1           | Running | 1       | 0 Running           |          | Running   |
| 1           | Running | 1       | 1                   | Low      | Low       |

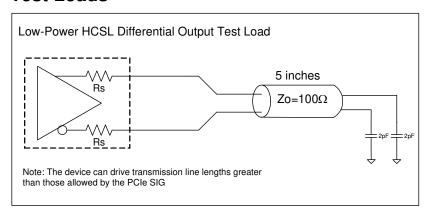
#### **Power Connections**

| Pin Number  |                |          | Description           |
|-------------|----------------|----------|-----------------------|
| VDD         | VDDIO          | GND      | Description           |
| 5           |                | 8        | Input receiver analog |
| 12          |                | 9        | Digital power         |
| 20,30,31,38 | 13,21,31,39,47 | 22,29,40 | DIF outputs           |

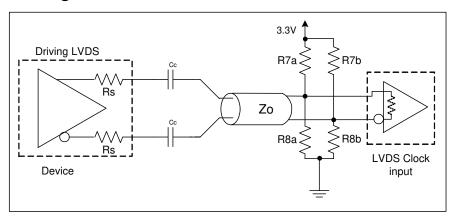
Note: EPAD on this device is not electrically connected to the die. It should be connected to ground for best thermal performance.



# **Pin Descriptions**


| PIN# | PIN NAME  | TYPE    | DESCRIPTION                                                                          |
|------|-----------|---------|--------------------------------------------------------------------------------------|
| 1    | vSADR_tri | LATCHED | Tri-level latch to select SMBus Address. It has an internal 120kohm pull down        |
| 1    | VOADh_III | IN      | resistor. See SMBus Address Selection Table.                                         |
| 2    | vOE8#     | IN      | Active low input for enabling output 8. This pin has an internal 120kohm pull-down.  |
|      | VOL0#     | IIN     | 1 = disable outputs, 0 = enable outputs.                                             |
| 3    | DIF8      | OUT     | Differential true clock output.                                                      |
| 4    | DIF8#     | OUT     | Differential complementary clock output.                                             |
| 5    | VDDR1.5   | PWR     | 1.5V power for differential input clock (receiver). This VDD should be treated as an |
|      |           | 1 7711  | Analog power rail and filtered appropriately.                                        |
| 6    | CLK_IN    | IN      | True input for differential reference clock.                                         |
| 7    | CLK_IN#   | IN      | Complementary input for differential reference clock.                                |
| 8    | GNDR      | GND     | Analog ground pin for the differential input (receiver)                              |
| 9    | GNDDIG    | GND     | Ground pin for digital circuitry.                                                    |
|      | SCLK_3.3  | IN      | Clock pin of SMBus circuitry, 3.3V tolerant.                                         |
| 11   | SDATA_3.3 | I/O     | Data pin for SMBus circuitry, 3.3V tolerant.                                         |
| 12   | VDDDIG1.5 | PWR     | 1.5V digital power (dirty power)                                                     |
| 13   | VDDIO     | PWR     | Power supply for differential outputs                                                |
| 14   | vOE0#     | IN      | Active low input for enabling output 0. This pin has an internal 120kohm pull-down.  |
| 14   | VOL0#     | 114     | 1 = disable outputs, 0 = enable outputs.                                             |
| 15   | DIF0      | OUT     | Differential true clock output.                                                      |
| 16   | DIF0#     | OUT     | Differential complementary clock output.                                             |
| 17   | vOE1#     | IN      | Active low input for enabling output 1. This pin has an internal 120kohm pull-down.  |
| 17   | VOL 1#    | IIN     | 1 = disable outputs, 0 = enable outputs.                                             |
| 18   | DIF1      | OUT     | Differential true clock output.                                                      |
| 19   | DIF1#     | OUT     | Differential complementary clock output.                                             |
| 20   | VDD1.5    | PWR     | Power supply, nominally 1.5V                                                         |
| 21   | VDDIO     | PWR     | Power supply for differential outputs                                                |
| 22   | GND       | GND     | Ground pin.                                                                          |
| 23   | DIF2      | OUT     | Differential true clock output.                                                      |
| 24   | DIF2#     | OUT     | Differential complementary clock output.                                             |
| 25   | vOE2#     | IN      | Active low input for enabling output 2. This pin has an internal 120kohm pull-down.  |
|      |           |         | 1 = disable outputs, 0 = enable outputs.                                             |
| 26   | DIF3      | OUT     | Differential true clock output.                                                      |
| 27   | DIF3#     | OUT     | Differential complementary clock output.                                             |
| 28   | vOE3#     | IN      | Active low input for enabling output 3. This pin has an internal 120kohm pull-down.  |
|      |           |         | 1 = disable outputs, 0 = enable outputs.                                             |
|      | GND       | GND     | Ground pin.                                                                          |
| 30   | VDDO1.5   | PWR     | Power supply for outputs, nominally 1.5V.                                            |
| 31   | VDDIO     | PWR     | Power supply for differential outputs                                                |
| 32   | DIF4      | OUT     | Differential true clock output.                                                      |
| 33   | DIF4#     | OUT     | Differential complementary clock output.                                             |
| 34   | vOE4#     | IN      | Active low input for enabling output 4. This pin has an internal 120kohm pull-down.  |
|      |           |         | 1 = disable outputs, 0 = enable outputs.                                             |
| 35   | DIF5      | OUT     | Differential true clock output.                                                      |
| 36   | DIF5#     | OUT     | Differential complementary clock output.                                             |
| 37   | vOE5#     | IN      | Active low input for enabling output 5. This pin has an internal 120kohm pull-down.  |
|      |           |         | 1 = disable outputs, 0 = enable outputs.                                             |
| 38   | VDD1.5    | PWR     | Power supply, nominally 1.5V                                                         |
| 39   | VDDIO     | PWR     | Power supply for differential outputs                                                |
| 40   | GND       | GND     | Ground pin.                                                                          |




# **Pin Descriptions (cont.)**

| PIN# | PIN NAME     | TYPE | DESCRIPTION                                                                              |
|------|--------------|------|------------------------------------------------------------------------------------------|
| 41   | DIF6         | OUT  | Differential true clock output.                                                          |
| 42   | DIF6#        | OUT  | Differential complementary clock output.                                                 |
| 43   | vOE6#        | IN   | Active low input for enabling output 6. This pin has an internal 120kohm pull-down.      |
| 40   | VOL0#        | 1111 | 1 = disable outputs, 0 = enable outputs.                                                 |
| 44   | DIF7         | OUT  | Differential true clock output.                                                          |
| 45   | DIF7#        | OUT  | Differential complementary clock output.                                                 |
| 46   | vOE7#        | IN   | Active low input for enabling output 7. This pin has an internal 120kohm pull-down.      |
| 40   | VOL7#        | IIN  | 1 = disable outputs, 0 = enable outputs.                                                 |
| 47   | VDDIO        | PWR  | Power supply for differential outputs                                                    |
|      |              |      | Input notifies device to sample latched inputs and start up on first high assertion. Low |
| 48   | ^CKPWRGD_PD# | IN   | enters Power Down Mode, subsequent high assertions exit Power Down Mode. This            |
|      |              |      | pin has internal 120kohm pull-up resistor.                                               |
| 49   | EPAD         | GND  | Connect EPAD to ground.                                                                  |

# **Test Loads**



# **Driving LVDS**



Driving LVDS inputs

|           | ,                        |                                    |  |
|-----------|--------------------------|------------------------------------|--|
| Component | Receiver has termination | Receiver does not have termination |  |
| R7a, R7b  | 10K ohm                  | 140 ohm                            |  |
| R8a, R8b  | 5.6K ohm                 | 75 ohm                             |  |
| Cc        | 0.1µF                    | 0.1μF                              |  |
| Vcm       | 1.2 volts                | 1.2 volts                          |  |



## **Absolute Maximum Ratings**

Stresses above the ratings listed below can cause permanent damage to the 9DBU0941. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

| PARAMETER                 | SYMBOL      | CONDITIONS                     | MIN  | TYP | MAX                  | UNITS | NOTES |
|---------------------------|-------------|--------------------------------|------|-----|----------------------|-------|-------|
| Supply Voltage            | VDDx        | Applies to VDD, VDDA and VDDIO | -0.5 |     | 2                    | V     | 1,2   |
| Input Voltage             | $V_{IN}$    |                                | -0.5 |     | V <sub>DD</sub> +0.5 | V     | 1,    |
| Input High Voltage, SMBus | $V_{IHSMB}$ | SMBus clock and data pins      |      |     | 3.3                  | V     | 1     |
| Storage Temperature       | Ts          |                                | -65  |     | 150                  | °C    | 1     |
| Junction Temperature      | Tj          |                                |      |     | 125                  | ç     | 1     |
| Input ESD protection      | ESD prot    | Human Body Model               | 2000 |     |                      | V     | 1     |

<sup>&</sup>lt;sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

# **Electrical Characteristics-Clock Input Parameters**

TA = TAMB, Supply voltages per normal operation conditions; see Test Loads for loading conditions

| ir ir iii. 2, Gappi, reitage          | o po:            | operation conditions, see 1 cet Leade for leading cer | 101110110 |     |      |       |       |
|---------------------------------------|------------------|-------------------------------------------------------|-----------|-----|------|-------|-------|
| PARAMETER                             | SYMBOL           | CONDITIONS                                            | MIN       | TYP | MAX  | UNITS | NOTES |
| Input Common Mode<br>Voltage - DIF_IN | V <sub>COM</sub> | Common Mode Input Voltage                             | 200       |     | 725  | mV    | 1     |
| Input Swing - DIF_IN                  | $V_{SWING}$      | Differential value                                    | 300       |     | 1450 | mV    | 1     |
| Input Slew Rate - DIF_IN              | dv/dt            | Measured differentially                               | 0.4       |     | 8    | V/ns  | 1,2   |
| Input Leakage Current                 | I <sub>IN</sub>  | $V_{IN} = V_{DD}$ , $V_{IN} = GND$                    | -5        |     | 5    | μA    |       |
| Input Duty Cycle                      | d <sub>tin</sub> | Measurement from differential waveform                | 45        | 50  | 55   | %     | 1     |
| Input Jitter - Cycle to Cycle         | $J_{DIFIn}$      | Differential Measurement                              | 0         |     | 150  | ps    | 1     |

<sup>&</sup>lt;sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

<sup>&</sup>lt;sup>2</sup> Operation under these conditions is neither implied nor guaranteed.

<sup>&</sup>lt;sup>3</sup> Not to exceed 2.0V.

<sup>&</sup>lt;sup>2</sup> Slew rate measured through +/-75mV window centered around differential zero.



# **Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions**

TA = TAMB, Supply voltages per normal operation conditions; see Test Loads for loading conditions

| PARAMETER                                 | SYMBOL                 | CONDITIONS                                                                                                                                                         | MIN                  | TYP      | MAX                  | UNITS  | NOTES |
|-------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|----------------------|--------|-------|
| Supply Voltage                            | VDDx                   | Supply voltage for core and analog                                                                                                                                 | 1.425                | 1.5      | 1.575                | V      |       |
| Output Supply Voltage                     | VDDIO                  | Low voltage supply LP-HCSL outputs                                                                                                                                 | 0.95                 | 1.05-1.5 | 1.575                | V      |       |
| Ambient Operating                         | $T_{AMB}$              | Commercial range                                                                                                                                                   | 0                    | 25       | 70                   | °C     | 1     |
| Temperature                               | AMB                    | Industrial range                                                                                                                                                   | -40                  | 25       | 85                   | °C     | 1     |
| Input High Voltage                        | $V_{IH}$               | Single-ended inputs, except SMBus                                                                                                                                  | 0.75 V <sub>DD</sub> |          | $V_{DD} + 0.3$       | V      |       |
| Input Mid Voltage                         | $V_{IM}$               | Single-ended tri-level inputs ('_tri' suffix)                                                                                                                      | 0.4 V <sub>DD</sub>  |          | $0.6 V_{DD}$         | V      |       |
| Input Low Voltage                         | $V_{IL}$               | Single-ended inputs, except SMBus                                                                                                                                  | -0.3                 |          | 0.25 V <sub>DD</sub> | V      |       |
|                                           | I <sub>IN</sub>        | Single-ended inputs, $V_{IN} = GND$ , $V_{IN} = VDD$                                                                                                               | -5                   |          | 5                    | μΑ     |       |
| Input Current                             | I <sub>INP</sub>       | Single-ended inputs $V_{\text{IN}} = 0 \text{ V}$ ; Inputs with internal pull-up resistors $V_{\text{IN}} = \text{VDD}$ ; Inputs with internal pull-down resistors | -200                 |          | 200                  | μΑ     |       |
| Input Frequency                           | F <sub>in</sub>        |                                                                                                                                                                    | 1                    |          | 167                  | MHz    | 2     |
| Pin Inductance                            | L <sub>pin</sub>       |                                                                                                                                                                    |                      |          | 7                    | nH     | 1     |
|                                           | C <sub>IN</sub>        | Logic inputs, except DIF_IN                                                                                                                                        | 1.5                  |          | 5                    | pF     | 1     |
| Capacitance                               | C <sub>INDIF_IN</sub>  | DIF_IN differential clock inputs                                                                                                                                   | 1.5                  |          | 2.7                  | pF     | 1,5   |
|                                           | C <sub>OUT</sub>       | Output pin capacitance                                                                                                                                             |                      |          | 6                    | pF     | 1     |
| Clk Stabilization                         | T <sub>STAB</sub>      | From V <sub>DD</sub> power-up and after input clock stabilization or de-assertion of PD# to 1st clock                                                              |                      |          | 1                    | ms     | 1,2   |
| Input SS Modulation<br>Frequency PCle     | f <sub>MODINPCle</sub> | Allowable Frequency for PCIe Applications (Triangular modulation)                                                                                                  | 30                   |          | 33                   | kHz    |       |
| Input SS Modulation<br>Frequency non-PCle | f <sub>MODIN</sub>     | Allowable Frequency for non-PCle Applications (Triangular Modulation)                                                                                              | 0                    |          | 66                   | kHz    |       |
| OE# Latency                               | t <sub>LATOE#</sub>    | DIF start after OE# assertion DIF stop after OE# deassertion                                                                                                       | 1                    |          | 3                    | clocks | 1,3   |
| Tdrive_PD#                                | t <sub>DRVPD</sub>     | DIF output enable after PD# de-assertion                                                                                                                           |                      |          | 300                  | μs     | 1,3   |
| Tfall                                     | t <sub>F</sub>         | Fall time of single-ended control inputs                                                                                                                           |                      |          | 5                    | ns     | 2     |
| Trise                                     | t <sub>R</sub>         | Rise time of single-ended control inputs                                                                                                                           |                      |          | 5                    | ns     | 2     |
| SMBus Input Low Voltage                   | $V_{ILSMB}$            |                                                                                                                                                                    |                      |          | 0.6                  | V      |       |
| SMBus Input High Voltage                  | V <sub>IHSMB</sub>     | $V_{DDSMB} = 3.3V$ , see note 4 for $V_{DDSMB} < 3.3V$                                                                                                             | 2.1                  |          | 3.3                  | V      | 4     |
| SMBus Output Low Voltage                  | V <sub>OLSMB</sub>     | at I <sub>PULLUP</sub>                                                                                                                                             |                      |          | 0.4                  | V      |       |
| SMBus Sink Current                        | I <sub>PULLUP</sub>    | at V <sub>OL</sub>                                                                                                                                                 | 4                    |          |                      | mA     |       |
| Nominal Bus Voltage                       | V <sub>DDSMB</sub>     | Bus Voltage                                                                                                                                                        | 1.425                |          | 3.3                  | V      |       |
| SCLK/SDATA Rise Time                      | t <sub>RSMB</sub>      | (Max VIL - 0.15V) to (Min VIH + 0.15V)                                                                                                                             |                      |          | 1000                 | ns     | 1     |
| SCLK/SDATA Fall Time                      | t <sub>FSMB</sub>      | (Min VIH + 0.15V) to (Max VIL - 0.15V)                                                                                                                             |                      |          | 300                  | ns     | 1     |
| SMBus Operating<br>Frequency              | f <sub>MAXSMB</sub>    | Maximum SMBus operating frequency                                                                                                                                  |                      |          | 400                  | kHz    | 6     |

<sup>&</sup>lt;sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

<sup>&</sup>lt;sup>2</sup> Control input must be monotonic from 20% to 80% of input swing.

 $<sup>^3</sup>$  Time from deassertion until outputs are > 200 mV.

 $<sup>^{4}</sup>$  For  $V_{DDSMB} < 3.3V$ ,  $V_{IHSMB} > = 0.8xV_{DDSMB}$ .

<sup>&</sup>lt;sup>5</sup> DIF\_IN input.

<sup>&</sup>lt;sup>6</sup> The differential input clock must be running for the SMBus to be active.



# **Electrical Characteristics-DIF Low-Power HCSL Outputs**

TA = T<sub>AMB</sub>. Supply voltages per normal operation conditions; see Test Loads for loading conditions

| PARAMETER              | SYMBOL            | CONDITIONS                                                                              | MIN  | TYP  | MAX  | UNITS | NOTES |
|------------------------|-------------------|-----------------------------------------------------------------------------------------|------|------|------|-------|-------|
| Slew Rate              | dV/dt             | Scope averaging on, fast setting                                                        | 1    | 2.4  | 3.5  | V/ns  | 1,2,3 |
| Siew hate              | dV/dt             | Scope averaging on, slow setting                                                        | 0.7  | 1.7  | 2.5  | V/ns  | 1,2,3 |
| Slew Rate Matching     | ∆dV/dt            | Slew rate matching, scope averaging on                                                  |      | 9    | 20   | %     | 1,2,4 |
| Voltage High           | V <sub>HIGH</sub> | Statistical measurement on single-ended signal using oscilloscope math function. (Scope | 630  | 750  | 850  | mV    | 7     |
| Voltage Low            | $V_{LOW}$         | averaging on)                                                                           | -150 | 26   | 150  | IIIV  | 7     |
| Max Voltage            | Vmax              | Measurement on single ended signal using                                                |      | 763  | 1150 | mV    | 7     |
| Min Voltage            | Vmin              | absolute value. (Scope averaging off)                                                   | -300 | 22   |      | IIIV  | 7     |
| Vswing                 | Vswing            | Scope averaging off                                                                     | 300  | 1448 |      | mV    | 1,2   |
| Crossing Voltage (abs) | Vcross_abs        | Scope averaging off                                                                     | 250  | 390  | 550  | mV    | 1,5   |
| Crossing Voltage (var) | Δ-Vcross          | Scope averaging off                                                                     |      | 11   | 140  | mV    | 1,6   |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

# **Electrical Characteristics—Current Consumption**

TA = T<sub>AMB</sub>; Supply voltages per normal operation conditions; see Test Loads for loading conditions

| PARAMETER                | SYMBOL              | CONDITIONS                          | MIN | TYP   | MAX | UNITS | NOTES |
|--------------------------|---------------------|-------------------------------------|-----|-------|-----|-------|-------|
| Operating Supply Current | I <sub>DDA</sub>    | VDDO1.5+VDDR, at 100MHz             |     | 2.3   | 3   | mA    |       |
|                          | I <sub>DDx</sub>    | VDDx, All outputs active at 100MHz  |     | 4.5   | 6   | mA    |       |
|                          | I <sub>DDIO</sub>   | VDDIO, All outputs active at 100MHz |     | 33    | 40  | mA    |       |
| Powerdown Current        | I <sub>DDAPD</sub>  | VDDO1.5+VDDR, CKPWRGD_PD# = 0       |     | 0.4   | 1   | mA    | 2     |
|                          | I <sub>DDxPD</sub>  | VDDx, CKPWRGD_PD# = 0               |     | 0.2   | 0.6 | mA    | 2     |
|                          | I <sub>DDIOPD</sub> | VDDIO, CKPWRGD_PD# = 0              |     | 0.001 | 0.1 | mA    | 2     |

<sup>&</sup>lt;sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

<sup>&</sup>lt;sup>2</sup> Measured from differential waveform

<sup>&</sup>lt;sup>3</sup> Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

<sup>&</sup>lt;sup>4</sup> Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

<sup>&</sup>lt;sup>5</sup> Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

<sup>&</sup>lt;sup>6</sup> The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross\_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.

<sup>&</sup>lt;sup>7</sup> At default SMBus settings.

<sup>&</sup>lt;sup>2</sup> Input clock stopped.



# Electrical Characteristics-Output Duty Cycle, Jitter, Skew and PLL Characteristics

TA = T<sub>AMB</sub>. Supply voltages per normal operation conditions; see Test Loads for loading conditions

| PARAMETER              | SYMBOL                  | CONDITIONS                         | MIN  | TYP  | MAX  | UNITS | NOTES |
|------------------------|-------------------------|------------------------------------|------|------|------|-------|-------|
| Duty Cycle Distortion  | t <sub>DCD</sub>        | Measured differentially, at 100MHz | -1   | -0.2 | 0.5  | %     | 1,3   |
| Skew, Input to Output  | t <sub>pdBYP</sub>      | V <sub>T</sub> = 50%               | 2400 | 2862 | 3700 | ps    | 1     |
| Skew, Output to Output | t <sub>sk3</sub>        | V <sub>T</sub> = 50%               |      | 30   | 60   | ps    | 1,4   |
| Jitter, Cycle to Cycle | t <sub>jcy c-cy c</sub> | Additive Jitter                    |      | 0.1  | 5    | ps    | 1,2   |

<sup>&</sup>lt;sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

#### **Electrical Characteristics-Phase Jitter Parameters**

TA = T<sub>AMB.</sub> Supply voltages per normal operation conditions; see Test Loads for loading conditions

|                       |                         |                                                                                       |     |     |     | INDUSTRY |             |               |
|-----------------------|-------------------------|---------------------------------------------------------------------------------------|-----|-----|-----|----------|-------------|---------------|
| PARAMETER             | SYMBOL                  | CONDITIONS                                                                            | MIN | TYP | MAX | LIMIT    | UNITS       | Notes         |
|                       | t <sub>jphPCleG1</sub>  | PCIe Gen 1                                                                            |     | 0.1 | 5   | N/A      | ps (p-p)    | 1,2,3,5       |
|                       |                         | PCIe Gen 2 Lo Band<br>10kHz < f < 1.5MHz                                              |     | 0.1 | 0.4 | N/A      | ps<br>(rms) | 1,2,3,4,<br>5 |
|                       | t <sub>jphPCleG2</sub>  | PCIe Gen 2 High Band<br>1.5MHz < f < Nyquist (50MHz)                                  |     | 0.1 | 0.7 | N/A      | ps<br>(rms) | 1,2,3,4       |
| Additive Phase Jitter | t <sub>jphPCleG3</sub>  | PCIe Gen 3<br>(2-4MHz or 2-5MHz, CDR = 10MHz)                                         |     | 0.1 | 0.3 | N/A      | ps<br>(rms) | 1,2,3,4       |
|                       | t <sub>jphSGMIIMO</sub> | 125MHz, 1.5MHz to 10MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz |     | 200 | 250 | N/A      | fs<br>(rms) | 1,6           |
|                       | t <sub>jphSGMIIM1</sub> | 125MHz, 12kHz to 20MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz  |     | 313 | 350 | N/A      | fs<br>(rms) | 1,6           |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

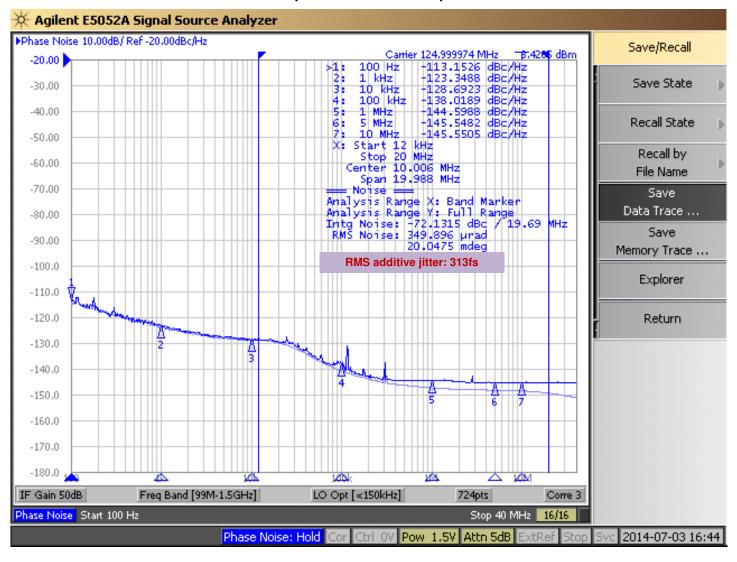
<sup>&</sup>lt;sup>2</sup> Measured from differential waveform.

<sup>&</sup>lt;sup>3</sup> Duty cycle distortion is the difference in duty cycle between the output and the input clock.

<sup>&</sup>lt;sup>4</sup> All outputs at default slew rate.

<sup>&</sup>lt;sup>2</sup> See http://www.pcisig.com for complete specs.

<sup>&</sup>lt;sup>3</sup> Sample size of at least 100K cycles. This figure extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.


<sup>&</sup>lt;sup>4</sup> For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter)^2 - (input jitter)^2].

<sup>&</sup>lt;sup>5</sup> Driven by 9FGV0831 or equivalent.

<sup>&</sup>lt;sup>6</sup> Rohde & Schwarz SMA100.



## Additive Phase Jitter Plot: 125M (12kHz to 20MHz)





#### **General SMBus Serial Interface Information**

#### **How to Write**

- · Controller (host) sends a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a stop bit

|           | Index Block Write Operation |        |                      |  |  |  |
|-----------|-----------------------------|--------|----------------------|--|--|--|
| Controll  | er (Host)                   |        | IDT (Slave/Receiver) |  |  |  |
| Т         | starT bit                   |        |                      |  |  |  |
| Slave A   | Address                     |        |                      |  |  |  |
| WR        | WRite                       |        |                      |  |  |  |
|           |                             |        | ACK                  |  |  |  |
| Beginning | g Byte = N                  |        |                      |  |  |  |
|           |                             |        | ACK                  |  |  |  |
| Data Byte | Count = X                   |        |                      |  |  |  |
|           |                             |        | ACK                  |  |  |  |
| Beginnin  | g Byte N                    |        |                      |  |  |  |
|           |                             |        | ACK                  |  |  |  |
| 0         |                             | ×      |                      |  |  |  |
| 0         |                             | X Byte | 0                    |  |  |  |
| 0         |                             | Ö      | 0                    |  |  |  |
|           |                             |        | 0                    |  |  |  |
| Byte N    | + X - 1                     |        |                      |  |  |  |
|           |                             |        | ACK                  |  |  |  |
| Р         | stoP bit                    |        |                      |  |  |  |

Note: SMBus Address is Latched on SADR pin.

#### How to Read

- · Controller (host) will send a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- · IDT clock will acknowledge
- Controller (host) will send a separate start bit
- · Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X<sub>(H)</sub> was written to Byte 8)
- · Controller (host) will need to acknowledge each byte
- · Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

|      | Index Block F   | Read O | peration             |
|------|-----------------|--------|----------------------|
| Cor  | ntroller (Host) |        | IDT (Slave/Receiver) |
| Т    | starT bit       |        |                      |
| SI   | ave Address     |        |                      |
| WR   | WRite           |        |                      |
|      |                 |        | ACK                  |
| Begi | nning Byte = N  |        |                      |
|      |                 |        | ACK                  |
| RT   | Repeat starT    |        |                      |
| SI   | ave Address     |        |                      |
| RD   | ReaD            |        |                      |
|      |                 |        | ACK                  |
|      |                 |        |                      |
|      | •               |        | Data Byte Count=X    |
|      | ACK             |        |                      |
|      |                 |        | Beginning Byte N     |
|      | ACK             |        |                      |
|      |                 | ē      | 0                    |
|      | 0               | X Byte | 0                    |
|      | 0               | ×      | 0                    |
|      | 0               |        |                      |
|      |                 |        | Byte N + X - 1       |
| N    | Not acknowledge |        |                      |
| Р    | stoP bit        |        |                      |



#### SMBus Table: Output Enable Register <sup>1</sup>

| Byte 0 | Name    | Control Function | Type 0 |         | 1       | Default |
|--------|---------|------------------|--------|---------|---------|---------|
| Bit 7  | DIF OE7 | Output Enable    | RW     | Low/Low | Enabled | 1       |
| Bit 6  | DIF OE6 | Output Enable    | RW     | Low/Low | Enabled | 1       |
| Bit 5  | DIF OE5 | Output Enable    | RW     | Low/Low | Enabled | 1       |
| Bit 4  | DIF OE4 | Output Enable    | RW     | Low/Low | Enabled | 1       |
| Bit 3  | DIF OE3 | Output Enable    | RW     | Low/Low | Enabled | 1       |
| Bit 2  | DIF OE2 | Output Enable    | RW     | Low/Low | Enabled | 1       |
| Bit 1  | DIF OE1 | Output Enable    | RW     | Low/Low | Enabled | 1       |
| Bit 0  | DIF OE0 | Output Enable    | RW     | Low/Low | Enabled | 1       |

<sup>1.</sup> A low on these bits will override the OE# pin and force the differential output Low/Low

#### SMBus Table: Output Enable and Output Amplitude Control Register

| Byte 1 | Name                                                          | Control Function                         | Туре | 0         | 1         | Default |  |
|--------|---------------------------------------------------------------|------------------------------------------|------|-----------|-----------|---------|--|
| Bit 7  |                                                               | Reserved                                 |      |           |           | 0       |  |
| Bit 6  |                                                               | Reserved                                 |      |           |           | 1       |  |
| Bit 5  | DIF OE8                                                       | DIF OE8 Output Enable RW Low/Low Enabled |      |           |           |         |  |
| Bit 4  | Reserved                                                      |                                          |      |           |           |         |  |
| Bit 3  |                                                               | Reserved                                 |      |           |           | 1       |  |
| Bit 2  |                                                               | Reserved                                 |      |           |           | 1       |  |
| Bit 1  | AMPLITUDE 1 Controls Output Amplitude RW 00 = 0.55V 01= 0.65V |                                          |      |           |           |         |  |
| Bit 0  | AMPLITUDE 0                                                   | Controls Output Amplitude                | RW   | 10 = 0.7V | 11 = 0.8V | 0       |  |

<sup>1.</sup> A low on the DIF OE bit will override the OE# pin and force the differential output Low/Low

#### SMBus Table: DIF Slew Rate Control Register

| Byte 2 | Name             | Control Function         | Туре | 0            | 1            | Default |
|--------|------------------|--------------------------|------|--------------|--------------|---------|
| Bit 7  | SLEWRATESEL DIF7 | Adjust Slew Rate of DIF7 | RW   | Slow Setting | Fast Setting | 1       |
| Bit 6  | SLEWRATESEL DIF6 | Adjust Slew Rate of DIF6 | RW   | Slow Setting | Fast Setting | 1       |
| Bit 5  | SLEWRATESEL DIF5 | Adjust Slew Rate of DIF5 | RW   | Slow Setting | Fast Setting | 1       |
| Bit 4  | SLEWRATESEL DIF4 | Adjust Slew Rate of DIF4 | RW   | Slow Setting | Fast Setting | 1       |
| Bit 3  | SLEWRATESEL DIF3 | Adjust Slew Rate of DIF3 | RW   | Slow Setting | Fast Setting | 1       |
| Bit 2  | SLEWRATESEL DIF2 | Adjust Slew Rate of DIF2 | RW   | Slow Setting | Fast Setting | 1       |
| Bit 1  | SLEWRATESEL DIF1 | Adjust Slew Rate of DIF1 | RW   | Slow Setting | Fast Setting | 1       |
| Bit 0  | SLEWRATESEL DIF0 | Adjust Slew Rate of DIF0 | RW   | Slow Setting | Fast Setting | 1       |

#### SMBus Table: DIF Slew Rate Control Register

| Byte 3 | Name             | Control Function         | Туре | 0            | 1            | Default |
|--------|------------------|--------------------------|------|--------------|--------------|---------|
| Bit 7  | Reserved         |                          |      |              |              |         |
| Bit 6  |                  | Reserved                 |      |              |              | 1       |
| Bit 5  |                  | Reserved                 |      |              |              | 0       |
| Bit 4  |                  | Reserved                 |      |              |              | 0       |
| Bit 3  |                  | Reserved                 |      |              |              | 0       |
| Bit 2  | Reserved         |                          |      |              |              |         |
| Bit 1  | Reserved         |                          |      |              |              |         |
| Bit 0  | SLEWRATESEL DIF8 | Adjust Slew Rate of DIF8 | RW   | Slow Setting | Fast Setting | 1       |

Byte 4 is Reserved and reads back 'hFF



#### SMBus Table: Revision and Vendor ID Register

| Byte 5 | Name | Control Function | Туре         | 0            | 1      | Default |
|--------|------|------------------|--------------|--------------|--------|---------|
| Bit 7  | RID3 |                  | R            |              |        | 0       |
| Bit 6  | RID2 | Revision ID      | R            | A rev = 0000 |        | 0       |
| Bit 5  | RID1 | Newsion ib       | R            | A lev =      | = 0000 | 0       |
| Bit 4  | RID0 | ]                | R            |              |        |         |
| Bit 3  | VID3 |                  | R            |              |        | 0       |
| Bit 2  | VID2 | VENDOR ID        | R            | 0001         | IDT    | 0       |
| Bit 1  | VID1 | VENDOR ID        | R 0001 = IDT |              | 0      |         |
| Bit 0  | VID0 | 1                | R            |              |        | 1       |

#### SMBus Table: Device Type/Device ID

| Byte 6 | Name         | Control Function | Туре        | 0                           | 1           | Default |
|--------|--------------|------------------|-------------|-----------------------------|-------------|---------|
| Bit 7  | Device Type1 | Davida Typa      | R           | 00 = FGx                    | 01 = DBx,   | 1       |
| Bit 6  | Device Type0 | - Device Type    | R           | 10 = DMx, $11 = DBx w/oPLL$ |             | 1       |
| Bit 5  | Device ID5   |                  | R           |                             |             | 0       |
| Bit 4  | Device ID4   | 7                | R           |                             |             | 0       |
| Bit 3  | Device ID3   | Device ID        | R           | 001001bina                  | or 00 hay   | 1       |
| Bit 2  | Device ID2   | Device ib        | Device ID R |                             | y or ob nex | 0       |
| Bit 1  | Device ID1   |                  | R           |                             |             | 0       |
| Bit 0  | Device ID0   | 7                | R           |                             |             | 1       |

#### SMBus Table: Byte Count Register

| Byte 7 | Name | Control Function       | Type | 0                      | 1                     | Default |
|--------|------|------------------------|------|------------------------|-----------------------|---------|
| Bit 7  |      | Reserved               |      |                        |                       | 0       |
| Bit 6  |      | Reserved               |      |                        |                       | 0       |
| Bit 5  |      | Reserved               |      |                        |                       | 0       |
| Bit 4  | BC4  |                        | RW   |                        |                       | 0       |
| Bit 3  | BC3  |                        | RW   | Writing to this regist | er will configure how | 1       |
| Bit 2  | BC2  | Byte Count Programming | RW   | many bytes will be r   | ead back, default is  | 0       |
| Bit 1  | BC1  |                        | RW   | = 8 b                  | ytes.                 | 0       |
| Bit 0  | BC0  |                        | RW   |                        |                       | 0       |



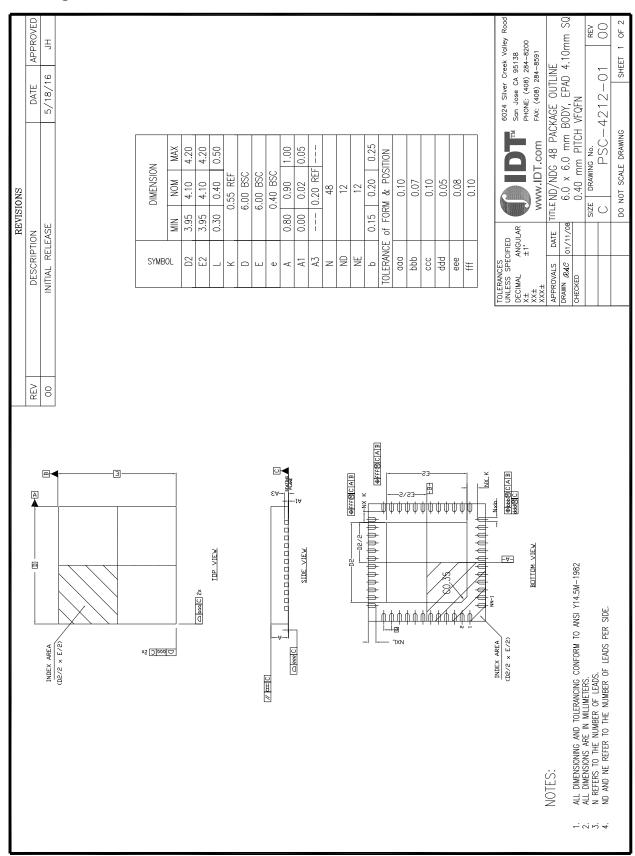
# **Marking Diagrams**

ICS
DBU0941AL
YYWW
COO
LOT



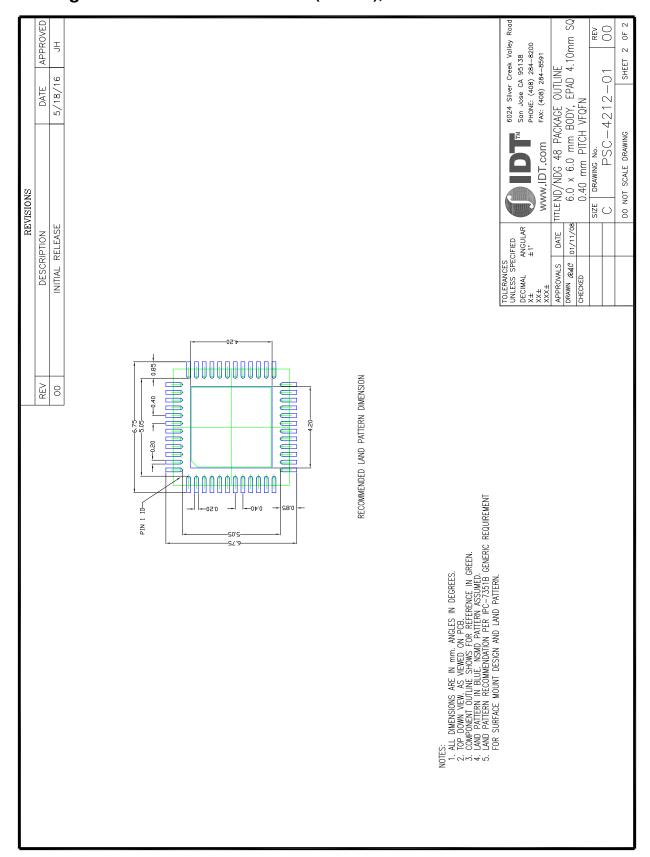
#### Notes:

- 1. "LOT" is the lot sequence number.
- 2. "COO" denotes country of origin.
- 3. YYWW is the last two digits of the year and week that the part was assembled.
- 4. Line 2: truncated part number
- 5. "L" denotes RoHS compliant package.
- 6. "I" denotes industrial temperature range device.


# **Thermal Characteristics**

| PARAMETER          | SYMBOL               | CONDITIONS                      | PKG   | TYP<br>VALUE | UNITS | NOTES |
|--------------------|----------------------|---------------------------------|-------|--------------|-------|-------|
|                    | $\theta_{JC}$        | Junction to Case                |       | 33           | °C/W  | 1     |
|                    | $\theta_{Jb}$        | Junction to Base                |       | 2.1          | °C/W  | 1     |
| Thermal Resistance | $\theta_{JA0\theta}$ | Junction to Air, still air      | NDG48 | 37           | °C/W  | 1     |
| Theimai nesistance | $\theta_{JA1}$       | Junction to Air, 1 m/s air flow | NDG46 | 30           | °C/W  | 1     |
|                    | $\theta_{JA3}$       | Junction to Air, 3 m/s air flow |       | 27           | °C/W  | 1     |
|                    | $\theta_{JA5}$       | Junction to Air, 5 m/s air flow |       | 26           | °C/W  | 1     |

<sup>&</sup>lt;sup>1</sup>ePad soldered to board




# **Package Outline and Dimensions (NDG48)**





# Package Outline and Dimensions (NDG48), cont.





# **Ordering Information**

| Part / Order Number | Shipping Packaging | Package       | Temperature   |
|---------------------|--------------------|---------------|---------------|
| 9DBU0941AKLF        | Trays              | 48-pin VFQFPN | 0 to +70° C   |
| 9DBU0941AKLFT       | Tape and Reel      | 48-pin VFQFPN | 0 to +70° C   |
| 9DBU0941AKILF       | Trays              | 48-pin VFQFPN | -40 to +85° C |
| 9DBU0941AKILFT      | Tape and Reel      | 48-pin VFQFPN | -40 to +85° C |

<sup>&</sup>quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

# **Revision History**

| Rev. | Initiator | Issue Date | Description                                                                                                                                                                                                                                                                                                                           | Page #  |
|------|-----------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Α    | RDW       | 7/15/2014  | Final update and release - front page and electrical tables.                                                                                                                                                                                                                                                                          | Various |
| В    | RDW       | 9/19/2014  | Updated SMBus Input High/Low parameters conditions, MAX values, and footnotes.                                                                                                                                                                                                                                                        | 6       |
| С    | RDW       | 4/17/2015  | Minor updates to front page text for family consistency.     Updated Clock Input Parameters table to be consistent with PCIe Vswing parameter.                                                                                                                                                                                        | 1,5     |
| D    | RDW       | 2/16/2017  | 1. Updated pins 30 and 29 from VDDA1.5 and GNDA to VDDO1.5 and GND to clearly indicate that this part has no PLL.                                                                                                                                                                                                                     | 2, 3    |
| Е    | RDW       | 3/9/2017   | <ol> <li>Removed "Bypass Mode" reference in "Output Duty Cycle" and "Phase Jitter Parameters" tables; update note 3 under Output Duty Cycle table.</li> <li>Corrected spelling errors/typos.</li> <li>Change VDDA to VDDO1.5 in Current Consumption table.</li> <li>Update Additive Phase Jitter conditions for PCle Gen3.</li> </ol> | 7,8     |

<sup>&</sup>quot;A" is the device revision designator (will not correlate with the datasheet revision).



Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.idt.com

Sales

1-800-345-7015 or 408-284-8200

Fax: 408-284-2775 www.idt.com/go/sales **Tech Support** 

www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc.. All rights reserved.