

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Four Output Differential Frequency Generator for PCIe Gen3 and QPI

9FG430

General Description:

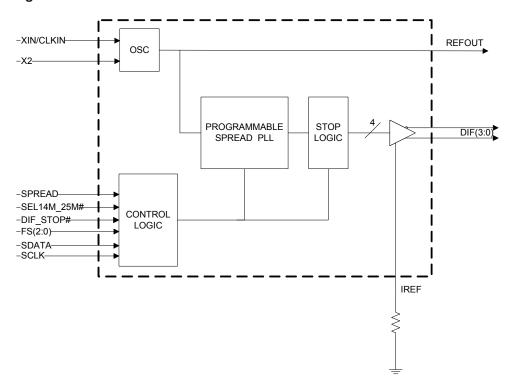
The 9FG430 is a Frequency Timing Generator that provides 4 HCSL differential output pairs. These outputs support PCI-Express Gen3, and QPI applications. The part supports Spread Spectrum and synthesizes several additional output frequencies from either a 14.31818 MHz crystal, a 25 MHz crystal or reference input clock. The 9FG430 also outputs a copy of the reference clock. Complete control of the device is available via strapping pins or via the SMBus inteface.

Recommended Application:

4 Output Differential Frequency Generator for PCIe Gen3 and QPI

Output Features:

- 4 0.7V current mode differential HCSL output pairs
- 1 3.3V LVTTL REF output


Features/Benefits:

- Pin-to-Pin with 9FG104D/Easy upgrade to PCle Gen3
- Generates common frequencies from 14.318 MHz or 25 MHz; single part supports mulitple applications
- Provides copy of reference output; eleminates need for additional crystal or oscillator
- Unused outputs may be disabled in Hi-Z; save system power
- Device may be configured by SMBus and/or strap pins; can be used in systems without SMBus

Key Specifications:

- Cycle-to-cycle jitter: < 50ps with 25MHz input
- Output-to-output skew: <50ps
- Phase jitter: PCle Gen3 < 1ps rms
- Phase jitter: QPI 9.6GB/s < 0.2ps rms
- 10 ppm synthesis error with 25MHz input and Spread Off

Functional Block Diagram

Pin Configuration

XIN/CLKIN	1	28	VDDA
X2	2	27	GNDA
VDD	3	26	IREF
GND	4	25	vFS0
REFOUT	5		vFS1
vFS2	6	23 22 21	DIF_0
DIF_3	7	4 22	DIF_0#
DIF_3#	8	9 21	VDD
VDD	9	6 20	GND
GND	10	19	DIF_1
DIF_2	11	18	DIF_1#
DIF_2#	12	17	^SEL14M_25M#
SDATA	13	16	vSPREAD
SCLK	14	15	DIF_STOP#

^ indicates internal 120K pull up v indicates internal 120K pull down

Power Groups

Pin N	umber	
VDD	GND	Description
3	4	REFOUT, Digital Inputs
9,21	10,20	DIF Outputs
28	27	IREF, Analog VDD, GND for PLL Core

Frequency Select Table

SEL14M_25M# (FS3)	FS2	FS1	FS0	OUTPUT (MHz)
0	0	0	0	100.00
0	0	0	1	125.00
0	0	1	0	133.33
0	0	1	1	166.67
0	1	0	0	200.00
0	1	0	1	266.67
0	1	1	0	333.33
0	1	1	1	400.00
1	0	0	0	100.00
1	0	0	1	125.00
1	0	1	0	133.33
1	0	1	1	166.67
1	1	0	0	200.00
1	1	0	1	266.67
1	1	1	0	333.33
1	1	1	1	400.00

Pin Description

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	XIN/CLKIN	IN	Crystal input or Reference Clock input
2	X2	OUT	Crystal output, Nominally 14.318MHz
3	VDD	PWR	Power supply, nominal 3.3V
4	GND	PWR	Ground pin.
5	REFOUT	OUT	Reference Clock output
6	vFS2	IN	Frequency select pin. This pin has an internal 120k pull down resistor
7	DIF_3	OUT	0.7V differential true clock output
8	DIF_3#	OUT	0.7V differential Complementary clock output
9	VDD	PWR	Power supply, nominal 3.3V
10	GND	PWR	Ground pin.
11	DIF_2	OUT	0.7V differential true clock output
12	DIF_2#	OUT	0.7V differential Complementary clock output
13	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
14	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
15	DIF_STOP#	IN	Active low input to stop differential output clocks.
16	vSPREAD	IN	Asynchronous, active high input to enable spread spectrum functionality. This pin
10	VOPREAD	IIN	has a 120Kohm pull down resistor.
			Select 14.31818 MHz or 25 Mhz input frequency. This pin has an internal 120kohm
17	^SEL14M_25M#	IN	pull up resistor.
			1 = 14.31818 MHz, 0 = 25 MHz
18	DIF_1#	OUT	0.7V differential Complementary clock output
19	DIF_1	OUT	0.7V differential true clock output
20	GND	PWR	Ground pin.
21	VDD	PWR	Power supply, nominal 3.3V
22	DIF_0#	OUT	0.7V differential Complementary clock output
23	DIF_0	OUT	0.7V differential true clock output
24	vFS1	IN	Frequency select pin.
25	vFS0	IN	Frequency select pin.
			This pin establishes the reference for the differential current-mode output pairs. It
26	IREF	OUT	requires a fixed precision resistor to ground. 475ohm is the standard value for
20	INCF	001	100ohm differential impedance. Other impedances require different values. See
			data sheet.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

Note:

[^] indicates internal 120K pull up

v indicates internal 120K pull down

Electrical Characteristics - Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	٧	1,2
Input Low Voltage	V_{IL}		GND-0.5			V	1
Input High Voltage	V_{IH}	Except for SMBus interface			V _{DD} +0.5V	٧	1
Input High Voltage	V _{IHSMB}	SMBus clock and data pins			5.5V	٧	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			٧	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Input/Supply/Common Parameters

TA = TCOM or TIND; Supply Voltage VDD = 3.3 V +/-5%; See Test Loads s for loading conditions.

TA = TOOM OF TIND, Oupply	Voltage VL	D = 3.3 V +/-5%; See Test Loads s for loading cor	uitions.		•		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating	T _{COM}	Commmercial range	0		70	°C	1
Temperature	T _{IND}	Industrial range	-40		85	°C	1
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		V _{DD} + 0.3	٧	1
Input Low Voltage	V_{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND - 0.3		0.8	V	1
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	1
Input Current	I _{INP}	Single-ended inputs V_{IN} = 0 V; Inputs with internal pull-up resistors V_{IN} = VDD; Inputs with internal pull-down resistors	-200		200	uA	1
Input Frequency	F _{in}	SEL14M_25M# = 0		25		MHz	1
	' in	SEL14M_25M# = 1		14.31818		MHz	1
Pin Inductance	L_{pin}				7	nH	1
	C_{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C_{INXTAL}	Crystal inputs			6	pF	1,4
	C_{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1.8	ms	1,2
Input SS Modulation Frequency	f _{MODIN}	Allowable Frequency (Triangular Modulation)	30		33	kHz	1
OE# Latency	t _{LATOE} #	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	cycles	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of control inputs			5	ns	1,2
Trise	t _R	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	V_{ILSMB}				8.0	V	1
SMBus Input High Voltage	V_{IHSMB}		2.1		V_{DDSMB}	V	1
SMBus Output Low Voltage	V_{OLSMB}	@ I _{PULLUP}			0.4	V	1
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	1
Nominal Bus Voltage	V_{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1,5

¹Guaranteed by design and characterization, not 100% tested in production.

1681D-04/04/17

² Operation under these conditions is neither implied nor guaranteed.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

⁴DIF_IN input

⁵The differential input clock must be running for the SMBus to be active

IDT® Four Output Differential Frequency Generator for PCIe Gen3 and QPI

Electrical Characteristics - DIF 0.7V Current Mode Differential Outputs

TA = TCOM or TIND; Supply Voltage VDD = 3.3 V +/-5%; See Test Loads s for loading conditions.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1		4	V/ns	1, 2, 3
Slew rate matching	ΔTrf	Slew rate matching, Scope averaging on			20	%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660		850	mV	1
Voltage Low	VLow	averaging on)	-150		150	1110	1
Max Voltage	Vmax	Measurement on single ended signal using			1150	mV	1
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300			IIIV	1
Vswing	Vswing	Scope averaging off	300			mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250		550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off			140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production. IREF = VDD/(3xR_R). For R_R = 475Ω (1%), I_{REF} = 2.32mA. $I_{OH} = 6 \text{ x } I_{REF}$ and $V_{OH} = 0.7V$ @ $Z_{O} = 50Ω$ (100Ω differential impedance).

Electrical Characteristics - Current Consumption

TA = TCOM or TIND: Supply Voltage VDD = 3.3 V +/-5%. See Test Loads for loading

Tr. Toom of this, cuppil	. onage . D						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	I _{DD3.3}	VDD, All outputs active @100MHz		80	95	mA	1
Operating Supply Current	I _{DDA3.3OP}	VDDA, All outputs active @100MHz		25	30	mA	1
Operating Supply Current	I _{DD3.3}	VDD, All outputs active @400MHz		100	120	mA	1
	I _{DDA3.3OP}	VDDA, All outputs active @400MHz		25	30	mA	1
	I _{DD3.3PD}	VDD, All differential pairs driven		75	90	mA	1
Powerdown Current	I _{DDA3.3PD}	VDDA, All differential pairs driven		25	30	mA	1
r owerdown Guirent	I _{DD3.3PDZ}	VDD, All differential pairs tri-stated		25	30	mA	1
	I _{DDA3.3PDZ}	VDDA, All differential pairs tri-stated		25	30	mA	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Output Duty Cycle, Jitter, and Skew Characterisitics

TA = TCOM or TIND; Supply Voltage VDD = 3.3 V +/-5%, See Test Loads for loading

		· · · · · · · · · · · · · · · · · ·					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45		55	%	1
Skew, Output to Output	t _{sk3}	V _T = 50%			50	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	25M input			50	ps	1,3
Jitter, Cycle to cycle	t _{jcyc-cyc}	14.318M input			60	ps	1,3

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate of Clock / falling edge rate of Clock#. It is measured in a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope uses for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

 $^{^{2}}$ I_{REF} = V_{DD}/(3xR_B). For R_B = 475 Ω (1%), I_{REF} = 2.32mA. I_{OH} = 6 x I_{REF} and V_{OH} = 0.7V @ Z_O=50 Ω .

 $^{^{2}}$ I_{REF} = V_{DD}/(3xR_R). For R_R = 475 Ω (1%), I_{REF} = 2.32mA. I_{OH} = 6 x I_{REF} and V_{OH} = 0.7V @ Z_O=50 Ω .

³ Measured from differential waveform

⁴ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

Electrical Characteristics - Phase Jitter Parameters

TA = T_{COM} or T_{IND:} Supply Voltage VDD = 3.3 V +/-5%, See Test Loads for loading conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
	t _{iphPCleG1}	PCIe Gen 1			86	ps (p-p)	1,2,3,6
		PCIe Gen 2 Lo Band			3	ps	1,2,6
	+	10kHz < f < 1.5MHz			3	(rms)	1,2,0
Phase Jitter, PCI Express	t _{jphPCleG2}	PCIe Gen 2 High Band			3.1	ps	1,2,6
		1.5MHz < f < Nyquist (50MHz)			0.1	(rms)	1,2,0
	t _{jphPCleG3}	PCIe Gen 3			1	ps	1,2,4,5,
		(PLL BW of 2-4MHz, CDR = 10MHz)			'	(rms)	6
		QPI & SMI			0.5	ps	1,5,6
		(100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)			0.5	(rms)	1,5,6
Phase Jitter, QPI/SMI	+	QPI & SMI			0.3	ps	1,5,6
	^T jphQPI_SMI	(100MHz, 8.0Gb/s, 12UI)			0.5	(rms)	1,3,0
		QPI & SMI			0.0	ps	156
		(100MHz, 9.6Gb/s, 12UI)		0.	0.2	(rms)	1,5,6

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - REF-14.318/25 MHz

TA = TCOM or TIND; Supply Voltage VDD = 3.3 V +/-5%, See Test Loads for loading

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values		0		ppm	1
Clock period	T _{period}	14.318MHz output nominal		69.8413		ns	1,2
Clock period	T _{period}	25.000MHz output nominal		40		ns	1,2
Output High Voltage	V_{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	1
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.4	V	1
Output High Current	I _{OH}	V_{OH} @MIN = 1.0 V, V_{OH} @MAX = 3.135 V	-29		-23	mA	1
Output Low Current	I _{OL}	V_{OL} @MIN = 1.95 V, V_{OL} @MAX = 0.4 V	29		27	mA	1
Rise/Fall Time	t _{rf1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5	0.8	2	ns	1
Duty Cycle	d _{t1}	$V_{T} = 1.5 \text{ V}$	45		55	%	1
Jitter	t _{jcyc-cyc}	VT = 1.5 V		250	400	ps	1

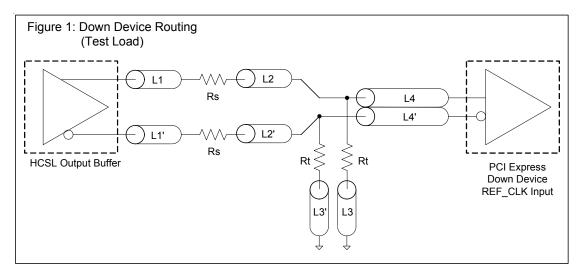
¹Guaranteed by design and characterization, not 100% tested in production.

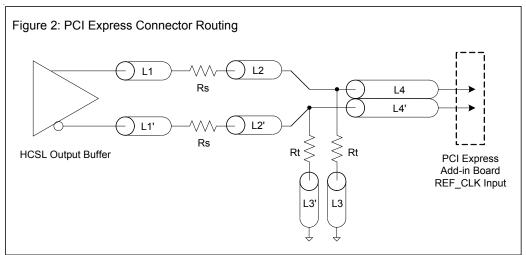
² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final radification by PCI SIG.

⁵ Calculated from Intel-supplied Clock Jitter Tool v 1.6.3

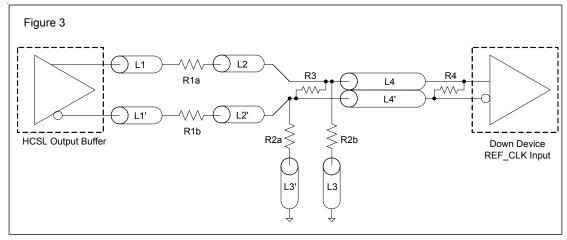

⁶ Applies to all differential outputs


² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is at 14.31818 or 25.00 MHz

Output Termination and Layout Information								
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure					
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1					
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1					
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1					
Rs	33	ohm	1					
Rt	49.9	ohm	1					

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



	Termination for LVDS and other Common Differential Signals (figure 3)										
Vdiff Vp-p Vcm R1 R2 R3 R4							Note				
0.45v	0.22v	1.08	33	150	100	100					
0.58	0.28	0.6	33	78.7	137	100					
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible				
0.60	0.3	1.2	33	174	140	100	Standard LVDS				

R1a = R1b = R1

R2a = R2b = R2

Termination for (Cable AC Couple	ed Application (figure 4)				
Component	Value	Note				
R5a, R5b	8.2K 5%					
R6a, R6b	1K 5%					
Cc	0.1 μF					
Vcm	0.350 volts					

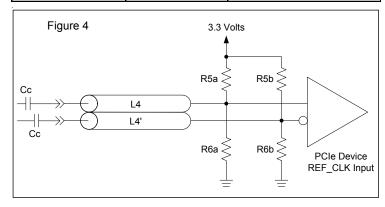
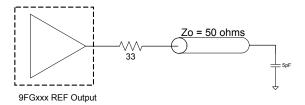



Figure 5. REF Output Test Load

Differential Clock Tolerances x1 = 25MHz

Clock Periods - Differential Outputs with Spread Spectrum Disabled

		ynthesis Center Error Freq. (ppm) MHz			Measure	ement Win	dow				
SSC OFF			1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
or SSC +/- 0.25% Center Spread	Error		-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short- Term Average Max	+c2c jitter AbsPer Max	Units	Notes
	0	100.00	9.95000		10.00000	10.00000	10.00000		10.05000	ns	1,2
	0	125.00	7.95000		8.00000	8.00000	8.00000		8.05000	ns	1,2
	0	133.33	7.45000		7.50000	7.50000	7.50000		7.55000	ns	1,2
DIF	10	166.67	5.94994		5.99994	6.00000	6.00006		6.05006	ns	1,2
DIF	0	200.00	4.95000		5.00000	5.00000	5.00000		5.05000	ns	1,2
	6	266.67	3.69998		3.74998	3.75000	3.75002		3.80002	ns	1,2
	10	333.33	2.94997		2.99997	3.00000	3.00003		3.05003	ns	1,2
	0	400.00	2.45000		2.50000	2.50000	2.50000		2.55000	ns	1,2

Clock Periods - Differential Outputs with Spread Spectrum Enabled

		Center Freq. MHz			Measure	ement Win	dow				
SSC ON	Synthesis Error (ppm)		1 Clock	1us	0.1s	0.1s	0.1s	1us 1 Clock			
-0.5% Down Spread			-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short- Term Average Max	+c2c jitter AbsPer Max	Units	Notes
	96	99.75	9.94906	9.99906	10.02406	10.02506	10.02603	10.05103	10.10103	ns	1,2
	19	124.69	7.94925	7.99925	8.01925	8.02005	8.02020	8.04020	8.09020	ns	1,2
	96	133.00	7.44930	7.49930	7.51805	7.51880	7.51952	7.53827	7.58827	ns	1,2
DIF	10	166.25	5.94943	5.99943	6.01443	6.01504	6.01510	6.03010	6.08010	ns	1,2
DIF	96	199.50	4.94953	4.99953	5.01203	5.01253	5.01301	5.02551	5.07551	ns	1,2
	-98	266.00	3.69965	3.74965	3.75902	3.75940	3.75903	3.76841	3.81841	ns	1,2
	10	332.50	2.94972	2.99972	3.00722	3.00752	3.00755	3.01505	3.06505	ns	1,2
	96	399.00	2.44977	2.49977	2.50602	2.50627	2.50651	2.51276	2.56276	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² All ppm specifications are guaranteed with the assumption that the REF output is tuned to the exact target XTAL frequency.

Differential Clock Tolerances, x1 = 14.31818MHz

Clock Periods - Differential Outputs with Spread Spectrum Disabled

	Synthesis Error (ppm)				Measure	ement Win	dow				
SSC OFF			1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
or SSC +/- 0.25% Center Spread			-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short- Term Average Max	Short- Term AbsPer Average Max		Notes
	35	100.00	9.94965		9.99965	10.00000	10.00035		10.05035	ns	1,2
	-114	125.00	7.95091		8.00091	8.00000	7.99909		8.04909	ns	1,2
	35	133.33	7.44974		7.49974	7.50000	7.50026		7.55026	ns	1,2
DIF	-104	166.67	5.95062		6.00062	6.00000	5.99937		6.04937	ns	1,2
DIF	35	200.00	4.94983		4.99983	5.00000	5.00018		5.05018	ns	1,2
	42	266.67	3.69984		3.74984	3.75000	3.75016		3.80016	ns	1,2
	-104	333.33	2.95031		3.00031	3.00000	2.99969		3.04969	ns	1,2
	35	400.00	2.44991		2.49991	2.50000	2.50009		2.55009	ns	1,2

Clock Periods - Differential Outputs with Spread Spectrum Enabled

		S Center Freq. MHz			Measure	ement Win	dow				
SSC ON	Synthesis Error (ppm)		1 Clock	1us	0.1s	0.1s	0.1s	1us 1 Clock			
-0.5% Down Spread			-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short- Term Average Max	+c2c jitter AbsPer Max	Units	Notes
	199	99.75	9.94906	9.99906	10.02406	10.02506	10.02706	10.05206	10.10206	ns	1,2
	-100	124.69	7.94925	7.99925	8.01925	8.02005	8.01925	8.03925	8.08925	ns	1,2
	199	133.00	7.44930	7.49930	7.51805	7.51880	7.52029	7.53904	7.58904	ns	1,2
DIF	10	166.25	5.94943	5.99943	6.01443	6.01504	6.01510	6.03010	6.08010	ns	1,2
DIF	199	199.50	4.94953	4.99953	5.01203	5.01253	5.01353	5.02603	5.07603	ns	1,2
	-140	266.00	3.69965	3.74965	3.75902	3.75940	3.75887	3.76825	3.81825	ns	1,2
	10	332.50	2.94972	2.99972	3.00722	3.00752	3.00755	3.01505	3.06505	ns	1,2
	199	399.00	2.44977	2.49977	2.50602	2.50627	2.50676	2.51301	2.56301	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² All ppm specifications are guaranteed with the assumption that the REF output is tuned to the exact target XTAL frequency.

General SMBus serial interface information for the 9FG430

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address DC (H)
- IDT clock will acknowledge
- Controller (host) sends the begining byte location = N
- IDT clock will acknowledge
- Controller (host) sends the data byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address DC $_{ ext{(H)}}$
- IDT clock will acknowledge
- Controller (host) sends the begining byte location = N
- IDT clock will acknowledge
- · Controller (host) will send a separate start bit.
- Controller (host) sends the read address DD_(H)
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N + X -1
- IDT clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Ind	ex Block W	/rit	e Operation		
Cor	ntroller (Host)		IDT (Slave/Receiver)		
Т	starT bit				
Slave	e Address DC _(H)				
WR	WRite				
			ACK		
Begi	nning Byte = N				
		ACK			
Data	Byte Count = X				
			ACK		
Begir	ning Byte N				
			ACK		
	\Q	ţ			
	\Q	X Byte	\Q		
	\Q	×	\Q		
	•		\Q		
Byte	e N + X - 1				
	-		ACK		
Р	stoP bit				

Ind	ex Block Rea	ad	Operation			
Con	troller (Host)	ID	T (Slave/Receiver)			
Т	starT bit					
Slave	Address DC _(H)					
WR	WRite					
		ACK				
Begir	nning Byte = N					
			ACK			
RT	Repeat starT					
Slave	Address DD _(H)					
RD	ReaD					
			ACK			
		Data Byte Count = X				
	ACK					
			Beginning Byte N			
	ACK					
		/te	\Q			
	♦	X Byte	\Q			
	♦	×	♦			
	\Q					
			Byte N + X - 1			
N	Not acknowledge					
Р	stoP bit					

SMBus Table: Device Control Register, READ/WRITE ADDRESS (DC/DD)

Byte 0	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	17		FS3 ¹	RW			Pin 17
Bit 6	6	FS2 ¹			See Frequency	Selection Table,	Pin 6
Bit 5	24		FS1 ¹	RW Page 1			Pin 24
Bit 4	25		FS0 ¹	RW		Pin 25	
Bit 3	16	Spre	ead Enable ¹	RW	Off	On	Pin 16
Bit 2	-		Enable Software Control of Frequency, Spread Enable (Spread Type always Software Control)			Software Select	0
Bit 1		DIF_STOP# drive mode			Driven	Hi-Z	0
Bit 0		SPR	EAD TYPE	RW	Down	Center	0

Notes:

1. These bits reflect the state of the corresponding pins at power up, but may be written to if Byte 0, bit 2 is set to '1'. FS3 is the SEL14M_25M# pin.

SMBus Table: Output Enable Register

Byte 1	Pin #	Name	Control Function	Туре	0	1	Default				
Bit 7	-		Reserved								
Bit 6	-	DIF_3 EN	Output Enable	RW	Disable	Enable	1				
Bit 5	-	DIF_2 EN	Output Enable	RW	Disable	Enable	1				
Bit 4	-		Reserved				1				
Bit 3	-		Reserved				1				
Bit 2	-	DIF_1 EN	Output Enable	RW	Disable	Enable	1				
Bit 1	-	DIF_0 EN	Output Enable	RW	Disable	Enable	1				
Bit 0	-		Reserved				1				

SMBus Table: Output Stop Control Register

Byte 2	Pin #	Name	Control Function	Туре	0	1	Default	
Bit 7	-		Reserved				0	
Bit 6	-	DIF_3 STOP EN	Free Run/ Stop Enable	RW	Free-run	Stop-able	0	
Bit 5	-	DIF_2 STOP EN	Free Run/ Stop Enable	RW	Free-run	Stop-able	0	
Bit 4	-		Reserved					
Bit 3	-		Reserved				0	
Bit 2	-	DIF_1 STOP EN	Free Run/ Stop Enable	RW	Free-run	Stop-able	0	
Bit 1	-	DIF_0 STOP EN	Free Run/ Stop Enable	RW	Free-run	Stop-able	0	
Bit 0	-		Reserved				0	

SMBus Table: Frequency Select Readback Register

Byte 3	Pin #	Name	Control Function	Туре	0	1	Default	
Bit 7	27	SEL14M_25M# ¹ (FS3)	State of pin 17	R	See Frequency	Soloction Table	Pin 17	
Bit 6	6	FS2 ¹	State of pin 6	R	Pag	Pin 6		
Bit 5	44	FS1 ¹	State of pin 24	R		Pin 24		
Bit 4	45	FS0 ¹	State of pin 25	R			Pin 25	
Bit 3	16	SPREAD ¹	State of pin 26	R	Off	On	Pin 16	
Bit 2			Reserved			<u> </u>		
Bit 1			Reserved			0		
Bit 0			Reserved				0	

Notes:

1. These bits reflect the state of the corresponding pins, regardless of whether software programming is enabled or not.

SMBus Table: Vendor & Revision ID Register

Byte 4	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	RID3		R	-	-	0
Bit 6	-	RID2	REVISION ID	R	-	-	0
Bit 5	-	RID1	REVISION ID	R	-	-	0
Bit 4	-	RID0	Ī	R	-	-	0
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2	VENDOD ID	R	-	-	0
Bit 1	-	VID1	VENDOR ID	R	-	-	0
Bit 0	-	VID0		R	-	-	1

SMBus Table: DEVICE ID

Byte 5	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	DID7		R	-	-	0
Bit 6	-	DID6		R	-	-	0
Bit 5	-	DID5		R	-	-	0
Bit 4	-	DID4	Device ID = 01 hex	R	-	-	0
Bit 3	-	DID3	Device ID = 01 flex	R	-	-	0
Bit 2	-	DID2		R	-	-	0
Bit 1	-	DID1		R	-	-	0
Bit 0	-	DID0		R	-	-	1

SMBus Table: Byte Count Register

Byte 6	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	BC7		RW	-	-	0
Bit 6	-	BC6		RW	-	-	0
Bit 5	-	BC5	Writing to this register will	RW	-	-	0
Bit 4	-	BC4	configure how many bytes will	RW	-	-	0
Bit 3	-	BC3	be read back, default is 07 = 7	RW	-	-	0
Bit 2	-	BC2	bytes.	RW	-	-	1
Bit 1	-	BC1		RW	-	-	1
Bit 0	-	BC0		RW	-	-	1

IDT® Four Output Differential Frequency Generator for PCle Gen3 and QPI

1681D-04/04/17

SMBus Table: Reserved Register

Byte 7	Pin #	Name	Control Function	Туре	0	1	Default	
Bit 7	-		Reserved				0	
Bit 6	-		Reserved					
Bit 5	-		Reserved					
Bit 4	-		Reserved					
Bit 3	-		Reserved					
Bit 2	-		Reserved				0	
Bit 1	-		Reserved					
Bit 0	-		Reserved				0	

SMBus Table: Reserved Register

Byte 8	Pin #	Name	Control Function	Туре	0	1	Default	
Bit 7	-		Reserved				0	
Bit 6	-		Reserved				0	
Bit 5	-		Reserved					
Bit 4	-		Reserved					
Bit 3	-		Reserved				0	
Bit 2	-		Reserved					
Bit 1	-		Reserved					
Bit 0	-		Reserved				0	

SMBus Table: M/N Programming Enable

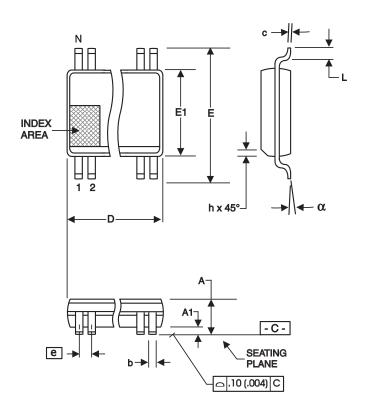
Byte 9	Pin #	Name	Control Function	Туре	0	1	Default	
Bit 7	-	M/N_Enable	M/N Prog. Enable	RW	Disable	Enable	0	
Bit 6	-		Reserved					
Bit 5	5	REFOUT_En	EFOUT_En REFOUT Enable RW Disable Enable					
Bit 4	-		Reserved					
Bit 3	-		Reserved				0	
Bit 2	-		Reserved				0	
Bit 1	-		Reserved					
Bit 0	-		Reserved				0	

SMBus Table: PLL Frequency Control Register

Byte 10	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	PLL N Div8	N Divider Prog bit 8	RW	The decimal rep	Х	
Bit 6	-	PLL N Div9	N Divider Prog bit 9	RW	and N Divider in B		
Bit 5	-	PLL M Div5		RW	configure the PLL		Х
Bit 4	-	PLL M Div4		RW	Default at power Byte 0 Rom table.	Х	
Bit 3	-	PLL M Div3	M Divider Programming	RW	= fXTAL x [N		Х
Bit 2	-	PLL M Div2	bit (5:0)	RW	[MDiv(5:0)+2]. Th	· , -	Х
Bit 1	-	PLL M Div1		RW	need to program these resgisters		Х
Bit 0	-	PLL M Div0		RW	for standard	frequencies.	Χ

SMBus Table: PLL Frequency Control Register

Byte 11	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	PLL N Div7		RW	The decimal rep	resentation of M	Х
Bit 6	-	PLL N Div6		RW	and N Divider in B		
Bit 5	-	PLL N Div5	N.B	RW	configure the PLL		Х
Bit 4	-	PLL N Div4	N Divider Programming Byte11 bit(7:0) and Byte10	RW	Default at power Byte 0 Rom table.	•	Х
Bit 3	-	PLL N Div3	bit(7:6)	RW	= fXTAL x [N		Х
Bit 2	-	PLL N Div2	2(1.13)	RW	[MDiv(5:0)+2]. Th	· , -	Х
Bit 1	-	PLL N Div1		RW	need to program	•	Х
Bit 0	-	PLL N Div0		RW	for standard	frequencies.	Х


SMBus Table: PLL Spread Spectrum Control Register

Byte 12	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	PLL SSP7		RW	These Spread S	Х	
Bit 6	-	PLL SSP6		RW	Byte 12 and 13 will program the		Х
Bit 5	-	PLL SSP5		RW		age of PLL. The	Х
Bit 4	-	PLL SSP4	Spread Spectrum	RW	user does not	Х	
Bit 3	-	PLL SSP3	Programming bit(7:0)	RW	these settings unless non- standard spread amounts are required. The part defaults to - 0.5% spread when spread is		Х
Bit 2	-	PLL SSP2		RW			Х
Bit 1	-	PLL SSP1		RW			Х
Bit 0	-	PLL SSP0		RW	enal	oled.	Х

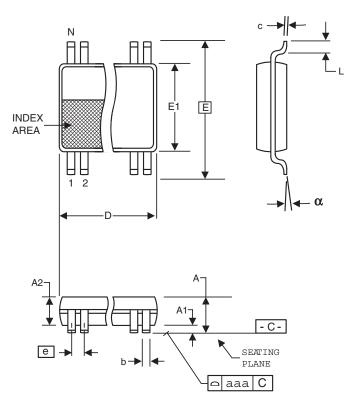
SMBus Table: PLL Spread Spectrum Control Register

Byte 13	Pin #	Name	Control Function	Туре	0	1	Default	
Bit 7	-		Reserved				0	
Bit 6	-	PLL SSP14		RW	These Spread S	Х		
Bit 5	-	PLL SSP13		RW	Byte 12 and 13	Х		
Bit 4	-	PLL SSP12		RW	spread pecenta user does not	Х		
Bit 3	-	PLL SSP11	Spread Spectrum Programming bit(14:8)	RW	these settings		Х	
Bit 2	-	PLL SSP10	3 - 1 - 1	RW	•	standard spread amounts are required. The part defaults to -		
Bit 1	-	PLL SSP9		RW			Х	
Bit 0	-	PLL SSP8		RW	enal	oled.	Х	

28-Pin SSOP Package Drawing and Dimensions

209 mil SSOP

	In Millimeters		In Inches		
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		2.00		.079	
A1	0.05		.002		
A2	1.65	1.85	.065	.073	
b	0.22	0.38	.009	.015	
С	0.09	0.25	.0035	.010	
D	SEE VARIATIONS		SEE VARIATIONS		
E	7.40	8.20	.291	.323	
E1	5.00	5.60	.197	.220	
е	0.65 BASIC		0.0256	0.0256 BASIC	
L	0.55	0.95	.022	.037	
N	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	


VARIATIONS

N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
28	9.90	10.50	.390	.413

Reference Doc.: JEDEC Publication 95, MO-150

10-0033

28-Pin TSSOP Package Drawing and Dimensions

4.40 mm. Body, 0.65 mm. Pitch TSSOP

	(173 m	il) (25.6 r	nil)		
	In Millimeters		In Inches		
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007	.012	
С	0.09	0.20	.0035	.008	
D	SEE VARIATIONS		SEE VARIATIONS		
Е	6.40 BASIC		0.252 BASIC		
E1	4.30	4.50	.169	.177	
е	0.65 BASIC		0.0256 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAF	SEE VARIATIONS	
α	0°	8°	0°	8°	
aaa	-	0.10		.004	

VARIATIONS

N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
28	9.60	9.80	.378	.386

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9FG430AFLF	Tubes	28-pin SSOP	0 to +70°C
9FG430AFLFT	Tape and Reel	28-pin SSOP	0 to +70°C
9FG430AFILF	Tubes	28-pin SSOP	-40 to +85°C
9FG430AFILFT	Tape and Reel	28-pin SSOP	-40 to +85°C
9FG430AGLF	Tubes	28-pin TSSOP	0 to +70°C
9FG430AGLFT	Tape and Reel	28-pin TSSOP	0 to +70°C
9FG430AGILF	Tubes	28-pin TSSOP	-40 to +85°C
9FG430AGILFT	Tape and Reel	28-pin TSSOP	-40 to +85°C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Issue Date	Who	Description	Page #
0.1	7/13/2010		New datasheet.	i age ii
Α	7/13/2010		Release	
B 7/20/2010	7/00/0010 DI	7/20/2010 IBDWI	1. Added PPM tables to DS for both 25M and 14.318M inputs	
	7/20/2010		2. Added Test load figures	
C 8/25/2010			Updated/reformatted Electrical Tables	
			2. Corrected Features/Benefits and General Description	
	8/25/2010 RD\	RDW	3. Updated pull up ^ and pull down v indicators.	1, Various
			4. Updated termination figures to include Fig. 5 for REF output, merged test	
			load figures into these figures.	
D	4/4/2017	RDW	1. Corrected Byte 5 Device ID from 43 hex to 01 hex	13

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

408-284-6578 www.idt.com/go/support

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 **United States**

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, IDT and its subsidiaries in the United States and other countries.