imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low Skew Dual Bank DDR I/II Fan-out Buffer

Description

Dual DDR I/II fanout buffer for VIA Chipset

Output Features

- Low skew, fanout buffer
- SMBus for functional and output control
- Single bank 1-6 differential clock distribution
- 1 pair of differential feedback pins for input to output synchronization
- Supports up to 2 DDR DIMMs
- 266MHz (DDRI 533) output frequency support
- 400MHz (DDRII 800) output frequency support
- Programmable skew through SMBus
- Individual output control programmable through SMBus

Key Specifications

- OUTPUT OUTPUT skew: <100ps
- Output Rise and Fall Time for DDR outputs: 650ps 950ps
- DUTY CYCLE: 47% 53%
- 28-pin SSOP/TSSOP package
- RoHS compliant packaging

Funtional Block Diagram

Pin Configuration

AVDD2.5	1		28	GND	
AGND	2		27	VDDQ2.5/1.8	
BUF_INT	3		26	AVDD2.5	
BUF_INC	4		25	AGND	
DDRT0	5	(0	24	DDRT5	
DDRC0	6	36	23	DDRC5	
DDRT1	7	D D	22	GND	
DDRC1	8	60	21	VDDQ2.5/1.8	
GND	9	ŭ	20	DDRT4	
VDDQ2.5/1.8	10	—	19	DDRC4	
FB_OUTT	11		18	DDRT3	
FB_OUTC	12		17	DDRC3	
DDRT2	13		16	SDATA	
DDRC2	14		15	SCLK	
28-SSOP & TSSOP					

DATASHEET

ICS9P936

Pin Description

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
1	AVDD2.5	PWR	2.5V Analog Power pin for Core PLL
2	AGND	PWR	Analog Ground pin for Core PLL
3	BUF_INT	IN	True Buffer In signal for memory outputs.
4	BUF_INC	IN	Complementary Buffer In signal for memory outputs.
5	DDRT0	OUT	-40
6	DDRC0	OUT	"Complementary" Clock of differential pair output.
7	DDRT1	OUT	"True" Clock of differential pair output.
8	DDRC1	OUT	"Complementary" Clock of differential pair output.
9	GND	PWR	Ground pin.
10	VDDQ2.5/1.8	PWR	Power supply, nominal 2.5V or 1.8V for DDR or DDR 2 outputs respectively
11	FB_OUTT	OUT	True single-ended feedback output, dedicated external feedback. It switches at the same frequency as other DDR outputs.
12	FB_OUTC	OUT	Complementary single-ended feedback output, dedicated external feedback. It switches at the same frequency as other DDR outputs.
13	DDRT2	OUT	"True" Clock of differential pair output.
14	DDRC2	OUT	"Complementary" Clock of differential pair output.
15	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
16	SDATA	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
17	DDRC3	OUT	"Complementary" Clock of differential pair output.
18	DDRT3	OUT	"True" Clock of differential pair output.
19	DDRC4	OUT	"Complementary" Clock of differential pair output.
20	DDRT4	OUT	"True" Clock of differential pair output.
21	VDDQ2.5/1.8	PWR	Power supply, nominal 2.5V or 1.8V for DDR or DDR 2 outputs respectively
22	GND	PWR	Ground pin.
23	DDRC5	OUT	"Complementary" Clock of differential pair output.
24	DDRT5	OUT	"True" Clock of differential pair output.
25	AGND	PWR	Analog Ground pin for Core PLL
26	AVDD2.5	PWR	2.5V Analog Power pin for Core PLL
27	VDDQ2.5/1.8	PWR	Power supply, nominal 2.5V or 1.8V for DDR or DDR 2 outputs respectively
28	GND	PWR	Ground pin.

Absolute Max

Supply Voltage	-0.5V to 3.6V
Logic Inputs	GND -0.5 V to V _{DD} +0.5 V or 3.6V, whichever is less
Ambient Operating Temperature	0°C to +70°C
Case Temperature	115°C
Storage Temperature	-65°C to +150°C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters (VDDQ2.5/1.8 = 1.8V +/- 0.1V)

				SPE	С	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Current	I _{IH}	$V_1 = V_{DDQ}$ or GND	-40			μA
Input Low Current	I	$V_{I} = V_{DDQ}$ or GND			10	μA
Operating Supply	IDDAVDD2.5	$R_L = 120\Omega, C_L = 12pf @ 266MHz$		23	26	mA
Current	IDDVDDQ2.5/1.8	$R_L = 120\Omega, C_L = 12pf @ 266MHz$		164	180	mA
Input Clamp Voltage	V _{IK}	$V_{DDQ} = 1.8V \text{ lin} = -18\text{mA}$			-1.2	V
High-level output voltage	V _{OH}	I _{OH} = -9 mA	1.1			v
Low-level output voltage	V _{OL}	I _{OL} =9 mA			0.6	V
Input Capacitance	C _{IN}	$V_{I} = GND \text{ or } V_{DDQ}$	2	3	4	pF
Output Capacitance	Cout	$V_{OUT} = GND \text{ or } V_{DDQ}$	2	3	4	pF
Input clock slew rate	t _{sl(i)}	Input clock	1	2.5	4	V/ns

 $T_A = 0 - 70^{\circ}C$; Supply Voltage AVDD = 2.5V +/- 0.2V(unless otherwise stated)

Recommended Operating Condition (VDDQ2.5/1.8 = 1.8V +/- 0.1V) (see note1)

 $T_A = 0 - 70^{\circ}C$; Supply Voltage AVDD = 2.5V+/-0.2V (unless otherwise stated)

			SPECIFICATION			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Low level input voltage	V _{IL}	BUF_INT, BUF_INC			$0.35 \times V_{DDQ}$	V
High level input voltage	V _{IH}	BUF_INT, BUF_INC	$0.65 \times V_{DDQ}$			V
DC input signal voltage (note 2)	V _{IN}		-0.3		$V_{DDQ} + 0.3$	V
Differential input signal	V	DC - BUF_INT, BUF_INC	0.3		$V_{DDQ} + 0.4$	V
voltage (note 3)	v _{ID}	AC - BUF_INT, BUF_INC	0.6		$V_{DDQ} + 0.4$	V
Output differential cross- voltage (note 4)	V _{ox}		V _{DDQ} /2 - 0.1		V _{DDQ} /2 + 0.1	v
Input differential cross- voltage (note 4)	V _{IX}		V _{DDQ} /2 - 0.15	V _{DDQ} /2	V _{DDQ} /2 + 0.15	V

1. Unused inputs must be held high or low to prevent them from floating.

2. DC input signal voltage specifies the allow able DC excursion of differential input.

3. Differential inputs signal voltages specifies the differential voltage [VTR-VCP] required for switching, where VTR is the true input level and VCP is the complimentary input level.

4. Differential cross-point voltage is expected to track variations of VDD and is the voltage at which the differential signal must be changed.

Timing Requirements VDDQ2.5/1.8 = 1.8 V +/- 0.1V

 $T_A = 0 - 70^{\circ}C$ Supply Voltage AVDD2.5 = 2.5V+/-0.2V (unless otherwise stated)

			SP	ECIFICATI	ON
PARAMETER	SYMBOL	CONDITIONS	-40	MAX	UNITS
Max clock frequency	freq _{op}		125	400	MHz
Application Frequency Range	freq _{App}		160	400	MHz
Input clock duty cycle	d _{tin}		40	60	%
CLK stabilization	T _{STAB}			15	μs

Switching Characteristics (VDDQ2.5/1.8 = 1.8V +/- 0.1V) (see note 1)

 $T_A = 0 - 70^{\circ}C$; Supply Voltage AVDD = 2.5V+/-0.2V, VDDQ2.5/1.8 = 1.8 V +/- 0.1V (unless otherwise stated)

				SPECIF	ICATION	١
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Period jitter	T _{jit (per)}	Period jitter	-40		40	ps
Half-period jitter	T _(jit_hper)	Half period jitter	-60		60	ps
Cycle to Cycle	T _{cyc} -T _{cyc}	Cycle to Cycle jitter	-40		40	ps
Dynamic Phase Offset	T _(DPO)		-50		50	ps
Static Phase Offset	T _(SPO)		-50	0	50	ps
Output to Output Skew	t _{skew}	DDR(0:5)			40	ps
Output Duty Cycle	t _{duty}		47		53	ps
Output clock slew rate	t _{sl(i)}	Measured from 20% to 80% of VDDQ	1.5		3	V/ns

1. Switching characteristics guaranteed for operating frequency range

Electrical Characteristics - Input/Supply/Common Output Parameters (VDDQ2.5/1.8 = 2.5V +/- 0.2V)

				SPE	C	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Current	I _{IH}	$V_{I} = V_{DD}$ or GND	-10			μA
Input Low Current	IIL	$V_1 = V_{DD}$ or GND			10	μA
Operating Supply	IDDAVDD2.5	$R_L = 120\Omega$, $C_L = 12pf$ @ 200MHz		20	23	mA
Current	IDDVDDQ2.5/1.8	$R_L = 120\Omega, C_L = 12pf @ 200MHz$		220	250	mA
Input Clamp Voltage	V _{IK}	$V_{DDQ} = 2.5V$, lin = -18mA			-1	V
High-level output voltage	V _{OH}	I _{OH} = -12 mA	1.7			V
Low-level output voltage	V _{OL}	I _{OL} = 12 mA			0.6	V
Input Capacitance	C _{IN}	$V_I = GND \text{ or } V_{DDQ}$	2	3	4	pF
Output Capacitance	C _{OUT}	$V_{OUT} = GND \text{ or } V_{DDQ}$	2	3	4	pF
Input clock slew rate	t _{sl(i)}	Input clock	1	2.5	4	V/ns

 $T_A = 0 - 70^{\circ}C$; Supply Voltage AVDD = 2.5V+/-0.2V (unless otherwise stated)

Recommended Operating Condition (VDDQ2.5/1.8 = 2.5V +/- 0.2V) (see note1)

 $T_A = 0 - 70^{\circ}C$; Supply Voltage AVDD = 2.5V+/-0.2V (unless otherwise stated)

				SPECIFIC	ATION	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Low level input voltage	V _{IL}	BUF_INT, BUF_INC			V _{DDQ} /2 - 0.18	V
High level input voltage	V _{IH}	BUF_INT, BUF_INC	$V_{DDQ}/2 + 0.18$			V
DC input signal voltage (note 2)	V _{IN}		-0.3		V _{DDQ} + 0.3	V
Differential input signal	V _{ID}	DC - BUF_INT, BUF_INC	0.36		$V_{DDQ} + 0.6$	V
voltage (note 3)		AC - BUF_INT, BUF_INC	0.7		V _{DDQ} + 0.6	V
Output differential cross- voltage (note 4)	V _{ox}		V _{DDQ} /2 - 0.15		$V_{DDQ}/2 + 0.15$	V
Input differential cross- voltage (note 4)	V _{IX}		V _{DDQ} /2 - 0.2	V _{DDQ} /2	V _{DDQ} /2 + 0.2	v

1. Unused inputs must be held high or low to prevent them from floating.

2. DC input signal voltage specifies the allow able DC excursion of differential input.

3. Differential inputs signal voltages specifies the differential voltage [VTR-VCP] required for switching, where VTR is the true input level and VCP is the complimentary input level.

4. Differential cross-point voltage is expected to track variations of VDD and is the voltage at which the differential signal must be changed.

Timing Requirements VDDQ2.5/1.8 = 2.5V +/- 0.2V

 $T_A = 0 - 70^{\circ}C$ Supply Voltage AVDD2.5 = 2.5V+/-0.2V (unless otherwise stated)

			SP	ECIFICATI	ON
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Max clock frequency	freq _{op}		45	500	MHz
Application Frequency Range	freq _{App}		95	233	MHz
Input clock duty cycle	d _{tin}		40	60	%
CLK stabilization	T _{STAB}			15	μs

Switching Characteristics (VDDQ2.5/1.8 = 2.5V +/- 0.2V) (see note 1)

 $T_A = 0 - 70^{\circ}C$; Supply Voltage AVDD = 2.5V+/-0.2V, VDDQ2.5/1.8 = 2.5 V +/- 0.2V (unless otherwise stated)

				SPECIF	ICATION	١
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Period jitter	T _{jit (per)}	Period jitter	-60		60	ps
Half-period jitter	T _(jit_hper)	Half period jitter	-75		75	ps
Cycle to Cycle Jitter	T _{cyc} -T _{cyc}	Cycle to Cycle jitter	-60		60	ps
Static Phase Offset	T _(SPO)		-50	0	50	ps
Output to Output Skew	T _{skew}	DDR(0:5)			40	ps
Output Duty Cycle	t _{duty}		47		53	ps
Output clock slew rate	t _{sl(o)}	Measured from 20% to 80% of VDDQ	1.5		4	V/ns

1. Switching characteristics guaranteed for operating frequency range

General I²C serial interface information

The information in this section assumes familiarity with I^2C programming. For more information, contact ICS for an I^2C programming application note.

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D4(H)
- ICS clock will *acknowledge*
- Controller (host) sends a dummy command code
- ICS clock will *acknowledge*
- · Controller (host) sends a dummy byte count
- ICS clock will acknowledge
- Controller (host) starts sending first byte (Byte 0) through byte 6
- ICS clock will acknowledge each byte one at a

time.

• Controller (host) sends a Stop bit

How to Write:					
Controller (Host)	ICS (Slave/Receiver)				
Start Bit					
Address					
D4 _(H)					
	ACK				
Dummy Command Code					
	ACK				
Dummy Byte Count					
	ACK				
Byte 0					
	ACK				
Byte 1					
	ACK				
Byte 2					
	ACK				
Byte 3					
	ACK				
Byte 4					
	ACK				
Byte 5					
	ACK				
Byte 6					
	ACK				
Byte 7					
	ACK				
Stop Bit					

Notes:

- 1. The ICS clock generator is a slave/receiver, I²C component. It can read back the data stored in the latches for verification. **Read-Back will support Intel PIIX4 "Block-Read" protocol**.
- 2. The data transfer rate supported by this clock generator is 100K bits/sec or less (standard mode)
- 3. The input is operating at 3.3V logic levels.
- 4. The data byte format is 8 bit bytes.
- 5. To simplify the clock generator I²C interface, the protocol is set to use only "**Block-Writes**" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued.
- 6. At power-on, all registers are set to a default condition, as shown.

IDT[™]/ICS[™] Low Skew Dual Bank DDR I/II Fan-out Buffer

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the read address D5 (H)
- ICS clock will *acknowledge*
- ICS clock will send the byte count
- Controller (host) acknowledges
- ICS clock sends first byte (Byte 0) through byte
 7
- Controller (host) will need to acknowledge each byte
- · Controller (host) will send a stop bit

How to Read:					
Controller (Host)	ICS (Slave/Receiver)				
Start Bit					
Address					
D5 _(H)					
	ACK				
	Byte Count				
ACK					
	Byte 0				
ACK					
	Byte 1				
ACK					
	Byte 2				
ACK					
	Byte 3				
ACK					
	Byte 4				
ACK					
	Byte 5				
ACK					
	Byte 6				
ACK					
	Byte 7				
Stop Bit					

I²C Table: Output Control Register

Ву	rte 7	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	-	BUFF_IN_T/C	Frequency Detect	RW	OFF	ON	1
Bit 6	-	-	FB_OUT_T/C	FB_OUT Control	RW	Disable	Enable	1
Bit 5	-	-	DDR_T5/C5	Output Control	RW	Disable	Enable	1
Bit 4	-	-	DDR_T4/C4	Output Control	RW	Disable	Enable	1
Bit 3	-	-	DDR_T3/C3	Output Control	RW	Disable	Enable	1
Bit 2	-	-	DDR_T2/C2	Output Control	RW	Disable	Enable	1
Bit 1		-	DDR_T1/C1	Output Control	RW	Disable	Enable	1
Bit 0		-	DDR_T0/C0	Output Control	RW	Disable	Enable	1

I²C Table: Byte Count Register

Ву	te 8	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7		-	BC7		RW			0
Bit 6		-	BC6		RW			
Bit 5		-	BC5		RW	Writing to this register will configure how many bytes will be read back, default is Oh = 15 bytes		0
Bit 4		-	BC4	Byte Count	RW			0
Bit 3		-	BC3	Programming b(7:0)	RW			1
Bit 2		-	BC2		RW			1
Bit 1		-	BC1]	RW			1
Bit 0	-	-	BC0		RW			1

I²C Table: Group Skew Control Register

By	te 19	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-		DDR_CSkw3		RW	0000 = 0	1101 = 600	0
Bit 6	-		DDR_CSkw2	DDR_C Skew Control	RW	0100 = 150	1110 = 750	0
Bit 5	-		DDR_CSkw1	(also see table1)	RW	1000 = 300	1111 = 900	0
Bit 4	-		DDR_CSkw0		RW	1100 = 450	N/A	0
Bit 3	-		Reserved	Reserved	RW	Reserved	Reserved	0
Bit 2	-		Reserved	Reserved	RW	Reserved	Reserved	0
Bit 1	-		FBOUTSkw1	FB_OUT Skew Control	RW	00 = 0	10 = 500	0
Bit 0	-		FBOUTSkw0	(also see table 2)	RW	01 = 250	11 = 750	0

I²C Table: Group Skew Control Register

Byt	te 20	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-		DDR_TSkw3		RW	0000 = 0	1101 = 600	0
Bit 6	-		DDR_TSkw2	DDR_T Skew Control	RW	0100 = 150	1110 = 750	0
Bit 5	-		DDR_TSkw1	(also see table1)	RW	1000 = 300	1111 = 900	0
Bit 4	-		DDR_TSkw0	1	RW	1100 = 450	N/A	0
Bit 3	-		Reserved	Reserved	RW	Reserved	Reserved	0
Bit 2	-		Reserved	Reserved	RW	Reserved	Reserved	0
Bit 1	-		Reserved	Reserved	RW	Reserved	Reserved	0
Bit 0	-		Reserved	Reserved	RW	Reserved	Reserved	0

Note: Bytes not shown are reserved and should not be altered.

28-pin SSOP Package Drawing and Dimensions

	In Millimeters		In Inches		
SYMBOL	COMMON I	DIMENSIONS	COMMON [DIMENSIONS	
	MIN	MAX	MIN	MAX	
A		2.00		.079	
A1	0.05		.002		
A2	1.65	1.85	.065	.073	
b	0.22	0.38	.009	.015	
С	0.09	0.25	.0035	.010	
D	SEE VARIATIONS		SEE VA	RIATIONS	
E	7.40	8.20	.291	.323	
E1	5.00	5.60	.197	.220	
е	0.65	BASIC	0.0256	6 BASIC	
L	0.55	0.95	.022	.037	
N	SEE VARIATIONS		SEE VA	RIATIONS	
α	0°	8°	0°	8°	

VARIATIONS

NI	D mm.		D (inch)	
IN	MIN	MAX	MIN	MAX
28	9.90	10.50	.390	.413

Reference Doc.: JEDEC Publication 95, MO-150

10-0033

209 mil SSOP

28-pin TSSOP Package Drawing and Dimensions

(173 mil) (25.6 mil)					
	In Milli	meters	In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON D	IMENSIONS	
	MIN	MAX	MIN	MAX	
А		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007	.012	
С	0.09	0.20	.0035	.008	
D	SEE VAF	RIATIONS	SEE VARIATIONS		
E	6.40 BASIC		0.252	BASIC	
E1	4.30	4.50	.169	.177	
е	0.65 BASIC		0.0256	BASIC	
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAF	RIATIONS	
α	0°	8°	0°	8°	
aaa		0.10		.004	

4.40 mm. Body, 0.65 mm. Pitch TSSOP (173 mil) (25.6 mil)

VARIATIONS

Ν	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
28	9.60	9.80	.378	.386

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9P936AFLF	Tubes	28-pin SSOP	0 to +70°C
9P936AFLFT	Tape and Reel	28-pin SSOP	0 to +70°C
9P936AGLF	Tubes	28-pin TSSOP	0 to +70°C
9P936AGLFT	Tape and Reel	28-pin TSSOP	0 to +70°C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. "A" denotes the revision designator (will not correlate to datasheet revision).

Revision History

Rev.	Issue Date	Description	Page #
0.1	3/23/2005	Updated Electrical Characteristics	5-9
0.2	4/1/2005	Updated Skew programming bytes and I2c programming address	3, 10
0.3	9/12/2005	Updated LF Ordering Information	11
0.4	9/14/2005	Added TSSOP Ordering Information.	12
0.5	11/13/2006	Updated I2C.	3
0.6	4/5/2007	Updated Switching Characteristics.	6
0.7	6/26/2007	Updated Max Clock Frequency.	1, 7, 10
Α	4/8/2009	Released to final.	
в	11/12/2009	 Updated all electrical tables to specify VDDQ = 1.8V and 2.5V. Updated ordering information table Updated pinout and pin descriptions 	Various
С	12/2/2009	 Corrected Byte 19/20 default to 00 hex. Corrected typos in electrical tables, made formatting improvements for readability. 	

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

408-284-6578 pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA