: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Sensitive Two-Wire Field-Programmable Chopper-Stabilized Unipolar Hall-Effect Switches

Features and Benefits

- Chopper stabilization
- Low switchpoint drift over operating temperature range
- Low sensitivity to stress
- Field programmable for optimized switchpoints
- On-chip protection
- Supply transient protection
- Reverse-battery protection
- On-board voltage regulator
- 3.5 to 24 V operation

Packages: 3 pin SOT23W (suffix LH), and 3 pin SIP (suffix UA)

Description

The A1180, A1181, A1182, and A1183 devices are sensitive, two-wire, unipolar, Hall effect switches. The operate point, B_{OP}, can be field-programmed, after final packaging of the device and placement into the application. This advanced feature allows the optimization of the device switching performance, by effectively accounting for variations caused by mounting tolerances for the device and the target magnet.

This family of devices are produced on the Allegro MicroSystems advanced BiCMOS wafer fabrication process, which implements a patented, high-frequency, chopperstabilization technique that achieves magnetic stability and eliminates the offsets that are inherent in single-element devices exposed to harsh application environments. Commonly found in a number of automotive applications, the A1180-83 family of devices are utilized in sensing: seat track position, seat belt buckle presence, hood/trunk latching, and shift selector position.
Two-wire unipolar switches are particularly advantageous in price-sensitive applications, because they require one less

Continued on the next page...

Functional Block Diagram

Sensitive Two-Wire Field-Programmable Chopper-Stabilized Unipolar Hall Effect Switches

Description (continued)

wire than the more traditional open-collector output switches. Additionally, the system designer gains inherent diagnostics because output current normally flows in either of two narrowlyspecified ranges. Any output current level outside of these two ranges is a fault condition. The A1180-83 family of devices also features on-chip transient protection, and a Zener clamp to protect against overvoltage conditions on the supply line.

The output currents of the A1181 and A1183 switch high in the presence of a south polarity magnetic field of sufficient strength; and switch Low otherwise, including when there is no significant magnetic field present. The A1180 and A1182 have inverted out-
put current levels: switching Low in the presence of a south polarity magnetic field of sufficient strength, and HIGH otherwise. The devices also differ in their specified low current supply levels. Both devices are offered in two package styles: LH, a SOT-23W miniature low-profile package for surface-mount applications, and UA, a three-lead ultramini Single Inline Package (SIP) for through-hole mounting. Each package is available in a lead (Pb) free version (suffix, $-T$) with 100% matte tin plated leadframe.

Factory-programmed versions are also available. Refer to: A1140, A1141, A1142, A1143, A1145, and A1146.

Selection Guide

Part Number	Packing ${ }^{1}$	Mounting	$\begin{gathered} \text { Ambient, } \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Output South (+) Field ${ }^{2}$	Supply Current at Low Output, $I_{C c(L)}(\mathrm{mA})$
A1180ELHET-T ${ }^{3}$	7-in. reel, 3000 pieces/reel	Surface mount	-40 to 85	Low	2 to 5
A1180LUA T4	Bulk, 500 pieces/bag	SIP through hole			
A1182ELHET-T ${ }^{4}$	7-in. reel, 3000 pieces/reel	Surface mount	-40 to 85	Low	5 to 6.9
A1182EUA T4	Bulk, 500 pieces/bag	SIP through hole			
A1182LLHET-T ${ }^{4}$	7-in. reel, 3000 pieces/reel	Surface mount	-40 to 150		
A1182LUA T4	Bulk, 500 pieces/bag	SIP through hole			
A1183ELHLT-T ${ }^{4}$	7-in. reel, 3000 pieces/reel	Surface mount	-40 to 85	High	
A1183EUA T4	Bulk, 500 pieces/bag	SIP through hole			
A1183LLHET-T4	7-in. reel, 3000 pieces/reel	Surface mount	-40 to 150		
A1183LUA T4	Bulk, 500 pieces/bag	SIP through hole			

${ }^{1}$ Contact Allegro for additional packing options.
${ }^{2}$ South (+) magnetic fields must be of sufficient strength.
${ }^{3}$ This variant is in production, however, it has been deemed Pre-End of Life. The product is approaching end of life. Within a minimum of 6 months, the device will enter its final, Last Time Buy, order phase. Status change: January 31, 2011. Suggested replacement: A1190LLHLX-T.
${ }^{4}$ Variant is in production but has been determined to be NOT FOR NEW DESIGN. This classification indicates that sale of the variant is currently restricted to existing customer applications. The variant should not be purchased for new design applications because obsolescence in the near future is probable. Samples are no longer available. Status change: January 31, 2011.

Absolute Maximum Ratings

Characteristic	Symbol	Notes	Rating	Units
Supply Voltage	V_{CC}		28	V
Reverse Supply Voltage	$\mathrm{V}_{\mathrm{RCC}}$		-18	V
Magnetic Flux Density	B		Unlimited	G
Operating Ambient Temperature	T_{A}	Range E	-40 to 85	${ }^{\circ} \mathrm{C}$
		Range L	-40 to 150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}}(\max)$		165	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-65 to 170	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS over the operating voltage and temperature range, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Supply Voltage ${ }^{1}$	V_{CC}	Device powered on	3.5	-	24	V
Supply Current ${ }^{2}$	$\mathrm{I}_{\mathrm{CC}(\mathrm{L})}$		2	-	5	mA
		$B>B_{O P}$ for A1182; $B<B_{R P}$ for $A 1183$	5	-	6.9	mA
	$\mathrm{I}_{\mathrm{CC}(\mathrm{H})}$	$B>B_{O P}$ for A1181, A1183 $B<B_{R P}$ for A1180, A1182	12	-	17	mA
Supply Zener Clamp Voltage	$\mathrm{V}_{\mathrm{Z} \text { (supply) }}$	$\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}(\mathrm{L})(\max)}+3 \mathrm{~mA} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	28	-	40	V
Supply Zener Clamp Current	$\mathrm{I}_{\text {(supply) }}$	$\mathrm{V}_{\mathrm{Z} \text { (supply) }}=28 \mathrm{~V}$	-	-	$\begin{aligned} & \mathrm{I}_{\mathrm{CC}(\mathrm{~L})(\max)} \\ & +3 \mathrm{~mA} \end{aligned}$	mA
Reverse Supply Current	$\mathrm{I}_{\text {RCC }}$	$\mathrm{V}_{\mathrm{RCC}}=-18 \mathrm{~V}$	-	-	-1.6	mA
Output Slew Rate ${ }^{3}$	di/dt	No bypass capacitor; capacitance of the oscilloscope performing the measurement $=20 \mathrm{pF}$	-	36	-	$\mathrm{mA} / \mu \mathrm{s}$
Chopping Frequency	f_{C}		-	200	-	kHz
Power-On Time ${ }^{4}$	$\mathrm{t}_{\text {on }}$	After factory trimming; with and without bypass capacitor ($\mathrm{C}_{\mathrm{BYP}}=0.01 \mu \mathrm{~F}$)	-	-	25	$\mu \mathrm{s}$
Power-On State ${ }^{5,6}$	POS	$\mathrm{t}_{\text {on }} \leq \mathrm{t}_{\text {on(max })} ; \mathrm{V}_{\text {cC }}$ slew rate $\geq 25 \mathrm{mV} / \mu \mathrm{s}$	-	HIGH	-	-

${ }^{1} \mathrm{~V}_{\text {CC }}$ represents the generated voltage between the VCC pin and the GND pin.
${ }^{2}$ Relative values of B use the algebraic convention, where positive values indicate south magnetic polarity, and negative values indicate north magnetic polarity; therefore greater B values indicate a stronger south polarity field (or a weaker north polarity field, if present).
${ }^{3}$ Measured without bypass capacitor between VCC and GND. Use of a bypass capacitor results in slower current change.
${ }^{4}$ Measured with and without bypass capacitor of $0.01 \mu \mathrm{~F}$. Adding a larger bypass capacitor causes longer Power-On Time.
${ }^{5}$ POS is defined as true only with a $V_{C C}$ slew rate of $25 \mathrm{mV} / \mu \mathrm{s}$ or greater. Operation with a $V_{C C}$ slew rate less than $25 \mathrm{mV} / \mu \mathrm{s}$ can permanently harm device performance.
${ }^{6} \mathrm{POS}$ is undefined for $\mathrm{t}>\mathrm{t}_{\text {on }}$ or $\mathrm{B}_{\mathrm{RP}}<\mathrm{B}<\mathrm{B}_{\mathrm{OP}}$.

MAGNETIC CHARACTERISTICS ${ }^{1}$ over the operating voltage and temperature range, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Programmable Operate Point Range	BoPrange	$\begin{aligned} & \mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}(\mathrm{H})} \text { for } \mathrm{A} 1180 \text { and } \mathrm{A} 1182 \\ & \mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}(\mathrm{~L})} \text { for A1181 and A1183 } \end{aligned}$	60	-	200	G
Initial Operate Point Range	$\mathrm{B}_{\text {OPinit }}$	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$	-	33	60	G
Switchpoint Step Size ${ }^{2}$	$\mathrm{B}_{\text {RES }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4	8	12	G
Number of Programming Bits	-	Switchpoint setting	-	5	-	Bit
		Programming locking	-	1	-	Bit
Temperature Drift of B_{OP}	$\Delta \mathrm{B}_{\mathrm{OP}}$		-	-	± 20	G
Hysteresis	$\mathrm{B}_{\mathrm{HYS}}$	$\mathrm{B}_{\mathrm{HYS}}=\mathrm{B}_{\mathrm{OP}}-\mathrm{B}_{\mathrm{RP}}$	5	15	30	G

${ }^{1}$ Relative values of B use the algebraic convention, where positive values indicate south magnetic polarity, and negative values indicate north magnetic polarity; therefore greater B values indicate a stronger south polarity field (or a weaker north polarity field, if present).
${ }^{2}$ The range of values specified for $B_{R E S}$ is a maximum, derived from the cumulative programming bit errors.

Sensitive Two-Wire Field-Programmable Chopper-Stabilized Unipolar Hall Effect Switches

Characteristic Data

A1180, A1181,
A1182, and A1183

Sensitive Two-Wire Field-Programmable Chopper-Stabilized Unipolar Hall Effect Switches

Device Qualification Program

Contact Allegro for information.

EMC (Electromagnetic Compatibility) Requirements
Contact your local representative for EMC results.

Test Name	Reference Specification
ESD - Human Body Model	AEC-Q100-002
ESD - Machine Model	AEC-Q100-003
Conducted Transients	ISO 7637-2
Direct RF Injection	ISO 11452-7
Bulk Current Injection	ISO 11452-4
TEM Cell	ISO 11452-3

A1180, A1181,
A1182, and A1183

Sensitive Two-Wire Field-Programmable Chopper-Stabilized Unipolar Hall Effect Switches

THERMAL CHARACTERISTICS may require derating at maximum conditions, see application information

Characteristic	Symbol	Test Conditions*	Value	Units
Package Thermal Resistance	$\mathrm{R}_{\theta \mathrm{JA}}$	Package LH, 1-layer PCB with copper limited to solder pads	228	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Package LH, 2-layer PCB with 0.463 in. ${ }^{2}$ of copper area each side connected by thermal vias	110	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Package UA, 1-layer PCB with copper limited to solder pads	165	${ }^{\circ} \mathrm{C} / \mathrm{W}$

*Additional thermal information available on Allegro Web site.

Power Derating Curve

Power Dissipation versus Ambient Temperature

Sensitive Two-Wire Field-Programmable Chopper-Stabilized Unipolar Hall Effect Switches

Functional Description

Operation

The output, I_{CC}, of the A1180 and A1182 devices switch low after the magnetic field at the Hall element exceeds the operate point threshold, B_{OP}. When the magnetic field is reduced to below the release point threshold, B_{RP}, the device output goes high. The differences between the magnetic operate and release point is called the hysteresis of the device, $\mathrm{B}_{\mathrm{HYS}}$. This built-

(A) A1180 and A1182
in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise. The A1181 and A1183 devices switch with opposite polarity for similar B_{OP} and B_{RP} values, in comparison to the A 1180 and A1183 (see figure 1).

(B) A1181 and A1183

Figure 1. Alternative switching behaviors are available in the A118x device family. On the horizontal axis, the B+ direction indicates increasing south polarity magnetic field strength, and the B- direction indicates decreasing south polarity field strength (including the case of increasing north polarity). A1182, and A1183

\author{

Sensitive Two-Wire Field-Programmable Chopper-Stabilized Unipolar Hall Effect Switches

}

Chopper Stabilization Technique

A limiting factor for switchpoint accuracy when using Hall effect technology is the small signal voltage developed across the Hall element. This voltage is proportionally small relative to the offset that can be produced at the output of the Hall element device. This makes it difficult to process the signal and maintain an accurate, reliable output over the specified temperature and voltage range.

Chopper stabilization is a unique approach used to minimize Hall offset on the chip. The Allegro patented technique, dynamic quadrature offset cancellation, removes key sources of the output drift induced by temperature and package stress. This offset reduction technique is based on a signal modulation-demodulation process. The undesired offset signal is separated from the magnetically induced signal in the frequency domain through modulation. The subsequent demodulation acts as a modulation process for the offset causing the magnetically induced signal to recover its original spectrum at base band while the DC offset becomes a high frequency signal. Then, using a low-pass filter, the signal passes while the modulated DC offset is suppressed.

The chopper stabilization technique uses a 200 kHz high frequency clock. For demodulation process, a sample-and-hold
technique is used, where the sampling is performed at twice the chopper frequency $(400 \mathrm{KHz})$. The sampling demodulation process produces higher accuracy and faster signal processing capability. Using this chopper stabilization approach, the chip is desensitized to the effects of temperature and stress. This technique produces devices that have an extremely stable quiescent Hall output voltage, is immune to thermal stress, and has precise recoverability after temperature cycling. This technique is made possible through the use of a BiCMOS process which allows the use of low-offset and low-noise amplifiers in combination with high-density logic integration and sample-and-hold circuits.

The repeatability of switching with a magnetic field is slightly affected using a chopper technique. The Allegro high frequency chopping approach minimizes the affect of jitter and makes it imperceptible in most applications. Applications that may notice the degradation are those that require the precise sensing of alternating magnetic fields such as ring magnet speed sensing. For those applications, Allegro recommends the "low jitter" family of digital devices.

Figure 2. Chopper stabilization circuit (dynamic quadrature offset cancellation)

Sensitive Two-Wire Field-Programmable Chopper-Stabilized Unipolar Hall Effect Switches

Application Information

For additional general application information, visit the Allegro MicroSystems Web site at www. allegromicro.com.

Typical Application Circuit

The A118x family of devices must be protected by an external bypass capacitor, $\mathrm{C}_{\mathrm{BYP}}$, connected between the supply, VCC, and the ground, GND, of the device. $\mathrm{C}_{\mathrm{BYP}}$ reduces both external noise and the noise generated by the chopper-stabilization function. As shown in figure 3 , a $0.01 \mu \mathrm{~F}$ capacitor is typical.

Installation of $\mathrm{C}_{\mathrm{BYP}}$ must ensure that the traces that connect it to the A118x pins are no greater than 5 mm in length.
All high-frequency interferences conducted along the supply lines are passed directly to the load through $\mathrm{C}_{\mathrm{BYP}}$, and it serves only to protect the A118x internal circuitry. As a result, the load ECU (electronic control unit) must have sufficient protection, other than $\mathrm{C}_{\mathrm{BYP}}$, installed in parallel with the A 118 x .
A series resistor on the supply side, R_{S} (not shown), in combination with $\mathrm{C}_{\mathrm{BYP}}$, creates a filter for EMI pulses. (Additional information on EMC is provided on the Allegro MicroSystems Web site.)
When determining the minimum V_{CC} requirement of the A 118 x device, the voltage drops across R_{S} and the ECU sense resistor, $\mathrm{R}_{\text {SENSE }}$, must be taken into consideration. The typical value for $\mathrm{R}_{\text {SENSE }}$ is approximately 100Ω.

Figure 3. Typical application circuit

Power Derating

The device must be operated below the maximum junction temperature of the device, $\mathrm{T}_{\mathrm{J}(\max)}$. Under certain combinations of peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the application. This section presents a procedure for correlating factors affecting operating T_{J}. (Thermal data is also available on the Allegro MicroSystems Web site.)
The Package Thermal Resistance, $R_{\theta \mathrm{JA}}$, is a figure of merit summarizing the ability of the application and the device to dissipate heat from the junction (die), through all paths to the ambient air. Its primary component is the Effective Thermal Conductivity, K , of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, $\mathrm{R}_{\theta \mathrm{JC}}$, is relatively small component of $R_{\theta J \mathrm{JA}}$. Ambient air temperature, T_{A}, and air motion are significant external factors, damped by overmolding.
The effect of varying power levels (Power Dissipation, P_{D}), can be estimated. The following formulas represent the fundamental relationships used to estimate T_{J}, at P_{D}.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{D}}=\mathrm{V}_{\mathrm{IN}} \times \mathrm{I}_{\mathrm{IN}} \tag{1}
\end{equation*}
$$

$$
\Delta \mathrm{T}=\mathrm{P}_{\mathrm{D}} \times \mathrm{R}_{\theta \mathrm{JA}} \text { (2) }
$$

$$
\begin{equation*}
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\Delta \mathrm{T} \tag{3}
\end{equation*}
$$

For example, given common conditions such as: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=4 \mathrm{~mA}$, and $\mathrm{R}_{\theta \mathrm{JA}}=140^{\circ} \mathrm{C} / \mathrm{W}$, then:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=\mathrm{V}_{\mathrm{CC}} \times \mathrm{I}_{\mathrm{CC}}=12 \mathrm{~V} \times 4 \mathrm{~mA}=48 \mathrm{~mW} \\
& \Delta \mathrm{~T}=\mathrm{P}_{\mathrm{D}} \times \mathrm{R}_{\theta \mathrm{JA}}=48 \mathrm{~mW} \times 140^{\circ} \mathrm{C} / \mathrm{W}=7^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\Delta \mathrm{T}=25^{\circ} \mathrm{C}+7^{\circ} \mathrm{C}=32^{\circ} \mathrm{C}
\end{aligned}
$$

A worst-case estimate, $\mathrm{P}_{\mathrm{D}(\max)}$, represents the maximum allowable power level ($\left.\mathrm{V}_{\mathrm{CC}(\max)}, \mathrm{I}_{\mathrm{CC}(\max)}\right)$, without exceeding $\mathrm{T}_{\mathrm{J}(\max)}$, at a selected $R_{\theta J \mathrm{~A}}$ and T_{A}.

Example: Reliability for V_{CC} at $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$, package UA , using minimum-K PCB.

Observe the worst-case ratings for the device, specifically:
$\mathrm{R}_{\theta J \mathrm{~A}}=165^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{T}_{\mathrm{J}(\text { max })}=165^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}(\max)}=24 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{CC}(\max)}=17 \mathrm{~mA}$.
Calculate the maximum allowable power level, $\mathrm{P}_{\mathrm{D}(\max)}$. First, invert equation 3 :

$$
\Delta \mathrm{T}_{\max }=\mathrm{T}_{\mathrm{J}(\max)}-\mathrm{T}_{\mathrm{A}}=165^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}=15^{\circ} \mathrm{C}
$$

This provides the allowable increase to T_{J} resulting from internal power dissipation. Then, invert equation 2 :

$$
\mathrm{P}_{\mathrm{D}(\max)}=\Delta \mathrm{T}_{\max } \div \mathrm{R}_{\theta \mathrm{JA}}=15^{\circ} \mathrm{C} \div 165^{\circ} \mathrm{C} / \mathrm{W}=91 \mathrm{~mW}
$$

Finally, invert equation 1 with respect to voltage:

$$
\mathrm{V}_{\mathrm{CC}(\text { est })}=\mathrm{P}_{\mathrm{D}(\max)} \div \mathrm{I}_{\mathrm{CC}(\max)}=91 \mathrm{~mW} \div 17 \mathrm{~mA}=5 \mathrm{~V}
$$

The result indicates that, at T_{A}, the application and device can dissipate adequate amounts of heat at voltages $\leq \mathrm{V}_{\mathrm{CC}(\text { est) }}$.
Compare $\mathrm{V}_{\mathrm{CC}(\text { est) }}$ to $\mathrm{V}_{\mathrm{CC}(\text { max })}$. If $\mathrm{V}_{\mathrm{CC}(\text { est) }} \leq \mathrm{V}_{\mathrm{CC}(\text { max })}$, then reliable operation between $V_{C C(\text { est })}$ and $V_{C C(\text { max })}$ requires enhanced $R_{\theta J A}$. If $V_{C C(\text { est })} \geq V_{C C(\text { max })}$, then operation between $V_{C C(\text { est })}$ and $\mathrm{V}_{\mathrm{CC}(\text { max })}$ is reliable under these conditions.

A1180, A1181, A1182, and A1183

Sensitive Two-Wire Field-Programmable Chopper-Stabilized Unipolar Hall Effect Switches

Programming Protocol

The operate switchpoint, B_{OP}, can be field-programmed. To do so, a coded series of voltage pulses through the VCC pin is used to set bitfields in onboard registers. The effect on the device output can be monitored, and the registers can be cleared and set repeatedly until the required B_{OP} is achieved. To make the setting permanent, bitfield-level solid state fuses are blown, and finally, a device-level fuse is blown, blocking any further coding. It is not necessary to program the release switchpoint, B_{RP}, because the difference between B_{OP} and B_{RP}, referred to as the hysteresis, $\mathrm{B}_{\mathrm{HYS}}$, is fixed.
The range of values between $\mathrm{B}_{\mathrm{OP}(\min)}$ and $\mathrm{B}_{\mathrm{OP}(\max)}$ is scaled to 31 increments. The actual change in magnetic flux (G) represented by each increment is indicated by $\mathrm{B}_{\text {RES }}$ (see the Operating Characteristics table; however, testing is the only method for verifying the resulting B_{OP}). For programming, the 31 increments are individually identified using 5 data bits, which are physically represented by 5 bitfields in the onboard registers. By setting these bitfields, the corresponding calibration value is programmed into the device.
Three voltage levels are used in programming the device: a low voltage, V_{PL}, a minimum required to sustain register settings; a mid-level voltage, V_{PM}, used to increment the address counter in the device; and a high voltage, V_{PH}, used to separate sets of V_{PM} pulses (when short in duration) and to blow fuses (when long in duration). A fourth voltage level, essentially 0 V , is used to clear the registers between pulse sequences. The pulse values are shown in the Programming Protocol Characteristics table and in figure 4.

Figure 4. Pulse amplitudes and durations

Abstract

Additional information on device programming and programming products is available on www. allegromicro.com. Programming hardware is available for purchase, and programming software is available free of charge.

Code Programming. Each bitfield must be individually set. To do so, a pulse sequence must be transmitted for each bitfield that is being set to 1 . If more than one bitfield is being set to 1 , all pulse sequences must be sent, one after the other, without allowing V_{CC} to fall to zero (which clears the registers).

The same pulse sequence is used to provisionally set bitfields as is used to permanently set bitfield-level fuses. The only difference is that when provisionally setting bitfields, no fuse-blowing pulse is sent at the end of the pulse sequence.

PROGRAMMING PROTOCOL CHARACTERISTICS, over operating temperature range, unless otherwise noted

Characteristic	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Programming Voltage ${ }^{1}$	V_{PL}	Minimum voltage range during programming	4.5	5.0	5.5	V
	V_{PM}		11.5	12.5	13.5	V
	V_{PH}		25.0	26.0	27.0	V
Programming Current ${ }^{2}$	$\mathrm{I}_{\text {PP }}$	$\mathrm{t}_{\mathrm{r}}=11 \mu \mathrm{~s} ; 5 \mathrm{~V} \rightarrow 26 \mathrm{~V} ; \mathrm{C}_{\mathrm{BYP}}=0.1 \mu \mathrm{~F}$	-	190	-	mA
Pulse Width	$\mathrm{t}_{\mathrm{d}(0)}$	OFF time between programming bits	20	-	-	$\mu \mathrm{s}$
	$\mathrm{t}_{\mathrm{d}(1)}$	Pulse duration for enable and addressing sequences	20	-	-	$\mu \mathrm{s}$
	$\mathrm{t}_{\mathrm{d}(\mathrm{P})}$	Pulse duration for fuse blowing	100	300	-	$\mu \mathrm{s}$
Pulse Rise Time	t_{r}	$\mathrm{V}_{P L}$ to $\mathrm{V}_{P M} ; \mathrm{V}_{P L}$ to $\mathrm{V}_{P H}$	5	-	20	$\mu \mathrm{s}$
Pulse Fall Time	t_{f}	$\mathrm{V}_{P M}$ to $\mathrm{V}_{P L} ; \mathrm{V}_{\mathrm{PH}}$ to V_{PL}	5	-	100	$\mu \mathrm{s}$

[^0]
Sensitive Two-Wire Field-Programmable Chopper-Stabilized Unipolar Hall Effect Switches

The pulse sequences consist of the following groups of pulses:

1. An enable sequence.
2. A bitfield address sequence.
3. When permanently setting the bitfield, a long V_{PH} fuse-blowing pulse. (Note: Blown bit fuses cannot be reset.)
4. When permanently setting the bitfield, the level of V_{CC} must be allowed to drop to zero between each pulse sequence, in order to clear all registers. However, when provisionally setting bitfields, V_{CC} must be maintained at V_{PL} between pulse sequences, in order to maintain the prior bitfield settings while preparing to set additional bitfields.

Bitfields that are not set are evaluated as zeros. The bitfield-level fuses for 0 value bitfields are never blown. This prevents inad-
vertently setting the bitfield to 1 . Instead, blowing the devicelevel fuse protects the 0 bitfields from being accidentally set in the future.

When provisionally trying the calibration value, one pulse sequence is used, using decimal values. The sequence for setting the value 5_{10} is shown in figure 5 .

When permanently setting values, the bitfields must be set individually, and 5_{10} must be programmed as binary 101 . Bit 3 is set to $1\left(000100_{2}\right.$, which is $\left.4_{10}\right)$, then bit 1 is set to $1\left(000001_{2}\right.$, which is 1_{10}). Bit 2 is ignored, and so remains 0 .Two pulse sequences for permanently setting the calibration value 5 are shown in figure 6. The final V_{PH} pulse is maintained for a longer period, enough to blow the corresponding bitfield-level fuse.

Figure 5. Pulse sequence to provisionally try calibration value 5 .

Figure 6. Pulse sequence to permanently encode calibration value 5 (101 binary, or bitfield address 3 and bitfield address 1).

Enabling Addressing Mode. The first segment of code is a keying sequence used to enable the bitfield addressing mode. As shown in figure 7 , this segment consists of one short $V_{\text {PH }}$ pulse, one $V_{P M}$ pulse, and one short $V_{P H}$ pulse, with no supply interruptions. This sequence is designed to prevent the device from being programmed accidentally, such as by noise on the supply line.

Address Selection. After addressing mode is enabled, the target bitfield address, is indicated by a series of V_{PM} pulses, as shown in figure 8.

Figure 7. Addressing mode enable pulse sequence

Figure 8. Pulse sequence to select addresses

Lock Bit Programming. After the desired B_{OP} calibration value is programmed, and all of the corresponding bitfield-level fuses are blown, the device-level fuse should be blown. To do so, the lock bit (bitfield address 32) should be encoded as 1 and have its fuse blown. This is done in the same manner as permanently setting the other bitfields, as shown in figure 9 .

Figure 9. Pulse sequence to encode lock bit

Sensitive Two-Wire Field-Programmable Chopper-Stabilized Unipolar Hall Effect Switches

Package LH, 3-Pin (SOT-23W)

Pin-out Drawings

Package UA, 3-pin SIP

Package LH, 3-pin SOT

1. VCC
2. No connection
3. GND

4. GND
5. VCC
6. GND
7. GND

Sensitive Two-Wire Field-Programmable Chopper-Stabilized Unipolar Hall Effect Switches

Package UA, 3-Pin SIP

Copyright ©2004-2011, Allegro MicroSystems, Inc.
Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.
Allegro's products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

For the latest version of this document, visit our website:
www.allegromicro.com

[^0]: ${ }^{1}$ Programming voltages are measured at the VCC pin.
 ${ }^{2} \mathrm{~A}$ bypass capacitor with a minimum capacitance of $0.1 \mu \mathrm{~F}$ must be connected from VCC to the GND pin of the A118x device in order to provide the current necessary to blow the fuse.

