

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Document Number: A3G18H500-04S Rev. 0, 05/2017

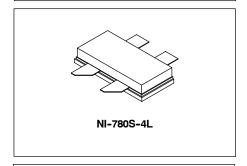
RF Power GaN Transistor

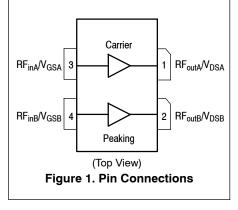
This 107 W asymmetrical Doherty RF power GaN transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 1805 to 1880 MHz.

This part is characterized and performance is guaranteed for applications operating in the 1805 to 1880 MHz band. There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

1800 MHz

Typical Doherty Single-Carrier W-CDMA Performance: V_{DD} = 48 Vdc,
 I_{DQA} = 200 mA, V_{GSB} = -5 Vdc, P_{out} = 107 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.


Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
1805 MHz	15.3	58.4	7.1	-31.9
1840 MHz	15.4	57.7	7.0	-33.2
1880 MHz	15.4	57.7	6.7	-33.8


Features

- · High terminal impedances for optimal broadband performance
- Advanced high performance in-package Doherty
- Able to withstand extremely high output VSWR and broadband operating conditions

A3G18H500-04SR3

1805-1880 MHz, 107 W AVG., 48 V AIRFAST RF POWER GAN TRANSISTOR

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	125	Vdc
Gate-Source Voltage	V _{GS}	-8, 0	Vdc
Operating Voltage	V _{DD}	0 to +55	Vdc
Maximum Forward Gate Current @ T _C = 25°C	I _{GMAX}	25	mA
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +225	°C
Absolute Maximum Junction Temperature (1)	T _{MAX}	275	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance by Infrared Measurement, Active Die Surface-to-Case Case Temperature 76°C, P _D = 94.2 W	R _{θJC} (IR)	0.60 (2)	°C/W
Thermal Resistance by Finite Element Analysis, Junction-to-Case Case Temperature 76°C, P _D = 94.2 W	R _{θJC} (FEA)	1.02 (3)	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1B
Charge Device Model (per JESD22-C101)	C3

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

. 71						
Characteristic	·	Symbol	Min	Тур	Max	Unit
Off Characteristics (4)						
Drain-Source Breakdown Voltage (V _{GS} = -8 Vdc, I _D = 24.3 mAdc) (V _{GS} = -8 Vdc, I _D = 35.1 mAdc)	Carrier Peaking	V _{(BR)DSS}	150 150		_	Vdc
On Characteristics - Side A, Carrier						
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 24.3 mAdc)		V _{GS(th)}	-3.8	-3.0	-2.3	Vdc
Gate Quiescent Voltage (V _{DD} = 48 Vdc, I _D = 200 mAdc, Measured in Functional Test)		V _{GSA(Q)}	-3.6	-3.0	-2.3	Vdc
Gate-Source Leakage Current (V _{DS} = 0 Vdc, V _{GS} = -5 Vdc)		I _{GSS}	−7.5	_	_	mAdc
On Characteristics - Side B, Peaking						
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 20 mAdc)		V _{GS(th)}	-3.8	-3.3	-2.3	Vdc
Gate-Source Leakage Current (V _{DS} = 0 Vdc, V _{GS} = -5 Vdc)		I _{GSS}	-7.7	_	_	mAdc

- 1. Functional operation above 225°C has not been characterized and is not implied. Operation at T_{MAX} (275°C) reduces median time to failure by an order of magnitude; operation beyond T_{MAX} could cause permanent damage.
- 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
- 3. $R_{\theta,JC}$ (FEA) must be used for purposes related to reliability and limitations on maximum junction temperature. MTTF may be estimated by the expression MTTF (hours) = $10^{[A+B/(T+273)]}$, where T is the junction temperature in degrees Celsius, A = -10.3 and B = 8260.
- 4. Each side of device measured separately.

(continued)

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit

Functional Tests $^{(1,2)}$ (In NXP Doherty Test Fixture, 50 ohm system) $V_{DD} = 48$ Vdc, $I_{DQA} = 200$ mA, $V_{GSB} = -5$ Vdc, $P_{out} = 107$ W Avg., f = 1840 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ± 5 MHz Offset. [See note on correct biasing sequence.]

Power Gain	G _{ps}	14.5	15.4	17.5	dB
Drain Efficiency	η_{D}	53.0	57.7	_	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	6.3	7.0	=	dB
Adjacent Channel Power Ratio	ACPR	_	-33.2	-29.0	dBc

Load Mismatch (In NXP Test Fixture, 50 ohm system) I_{DQA} = 200 mA, V_{GSB} = -5 Vdc, f = 1840 MHz, 12 μsec(on), 10% Duty Cycle

VSWR 10:1 at 55 Vdc, 575 W Pulsed CW Output Power	No Device Degradation
(3 dB Input Overdrive from 417 W Pulsed CW Rated Power)	

Typical Performance ⁽²⁾ (In NXP Doherty Test Fixture, 50 ohm system) V_{DD} = 48 Vdc, I_{DQA} = 200 mA, V_{GSB} = -5 Vdc, 1805–1880 MHz Bandwidth

P _{out} @ 3 dB Compression Point (3)	P3dB	_	537	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 1805–1880 MHz bandwidth)	Φ	_	-15	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	200	_	MHz
Gain Flatness in 75 MHz Bandwidth @ P _{out} = 107 W Avg.	G _F	_	0.3	_	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	_	0.009	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	ΔP1dB	_	0.004	_	dB/°C

Table 5. Ordering Information

Device	Tape and Reel Information	Package
A3G18H500-04SR3	R3 Suffix = 250 Units, 32 mm Tape Width, 13-inch Reel	NI-780S-4L

- 1. Part internally input matched.
- 2. Measurements made with device in an asymmetrical Doherty configuration.
- 3. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors

Turning the device ON

- 1. Set V_{GS} to -5 V
- 2. Turn on V_{DS} to nominal supply voltage (48 V)
- 3. Increase V_{GS} until I_{DS} current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce V_{GS} down to $-5\ V$
- 3. Reduce V_{DS} down to 0 V (Adequate time must be allowed for V_{DS} to reduce to 0 V to prevent severe damage to device.)
- 4. Turn off V_{GS}

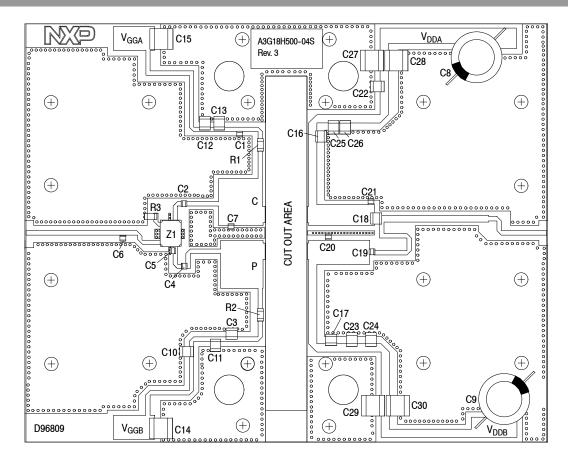


Figure 2. A3G18H500-04SR3 Test Circuit Component Layout

Table 6. A3G18H500-04SR3 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C2	10 pF Chip Capacitor	GQM2195C2E100JB12	Murata
C3, C16, C17	10 pF Chip Capacitor	ATC100B100GT500XT	ATC
C4, C19	15 pF Chip Capacitor	GQM2195C2E150JB12	Murata
C5	0.9 pF Chip Capacitor	GQM2195C2ER90BB12	Murata
C6	0.8 pF Chip Capacitor	GQM2195C2ER80BB12	Murata
C7, C21	0.6 pF Chip Capacitor	GQM2195C2ER60BB12	Murata
C8, C9	470 μF, 63 V Electrolytic Capacitor	MCGPR63V477M13X26-RH	Multicomp
C10, C11, C12, C13, C22, C23, C24, C25, C26	10 μF Chip Capacitor	C3225X7S1H106K	TDK
C14, C15, C27, C28, C29, C30	10 μF Chip Capacitor	C5750X7S2A106M	TDK
C18	3 pF Chip Capacitor	ATC100B3R0BT500XT	ATC
C20	1.3 pF Chip Capacitor	GQM2195C2E1R3BB12	Murata
R1, R2	3.3 Ω, 1/4 W Chip Resistor	CRCW08053R30FKEA	Vishay
R3	50 Ω , 8 W Termination Chip Resistor	C8A50Z4A	Anaren
Z1	1800-2200 MHz Band, 90°, 2 dB Directional Coupler	X3C20F1-02S	Anaren
PCB	Rogers RO4350B, 0.020", ε _r = 3.66	D96809	MTL

TYPICAL CHARACTERISTICS — 1805-1880 MHz

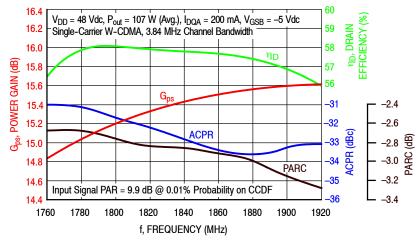


Figure 3. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 107 Watts Avg.

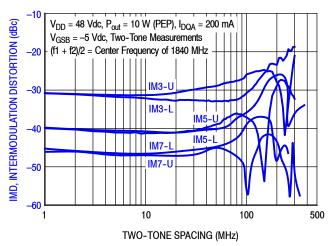


Figure 4. Intermodulation Distortion Products versus Two-Tone Spacing

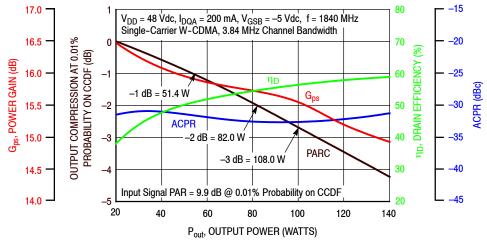


Figure 5. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

A3G18H500-04SR3

TYPICAL CHARACTERISTICS — 1805–1880 MHz

Figure 6. Single-Carrier W-CDMA Power Gain, Drain Efficiency and ACPR versus Output Power

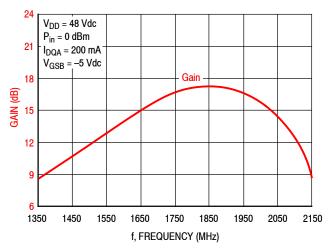


Figure 7. Broadband Frequency Response

Table 7. Carrier Side Load Pull Performance — Maximum Power Tuning

 V_{DD} = 48 Vdc, I_{DQA} = 250 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

				Max Output Power				
			P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)
1805	2.56 – j6.80	2.88 + j6.46	4.22 – j7.66	17.9	53.3	215	60.6	– 9
1840	3.18 – j7.25	3.29 + j6.72	4.33 – j8.32	17.8	53.2	210	58.6	-9
1880	3.88 – j7.65	3.69 + j6.85	4.43 – j8.45	17.8	53.0	201	58.1	-9

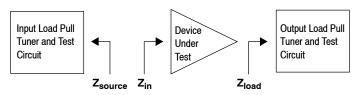
				Ma	x Output Power					
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
1805	2.56 – j6.80	2.63 + j6.74	5.40 – j8.08	16.2	54.2	265	65.1	-11		
1840	3.18 – j7.25	3.01 + j7.11	5.30 – j8.38	16.2	54.1	256	63.9	-12		
1880	3.88 – j7.65	3.52 + j7.35	5.88 – j9.20	16.2	54.0	251	62.5	-12		

⁽¹⁾ Load impedance for optimum P1dB power.

Table 8. Carrier Side Load Pull Performance — Maximum Efficiency Tuning

 V_{DD} = 48 Vdc, I_{DQA} = 250 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

				ency						
			P1dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
1805	2.56 – j6.80	2.52 + j6.98	3.66 – j4.40	19.4	51.8	151	71.3	-23		
1840	3.18 – j7.25	2.81 + j7.53	3.39 – j4.12	19.6	51.0	126	70.5	-26		
1880	3.88 – j7.65	3.38 + j7.76	3.61 – j4.65	19.5	51.1	130	68.1	-25		


			Max Drain Efficiency								
				P3dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)			
1805	2.56 - j6.80	2.23 + j7.22	3.93 – j4.40	17.5	52.6	181	75.4	-29			
1840	3.18 – j7.25	2.63 + j7.72	4.03 – j4.47	17.6	52.4	175	74.3	-29			
1880	3.88 – j7.65	3.25 + j8.11	4.53 – j5.02	17.7	52.5	176	72.2	-27			

⁽¹⁾ Load impedance for optimum P1dB efficiency.

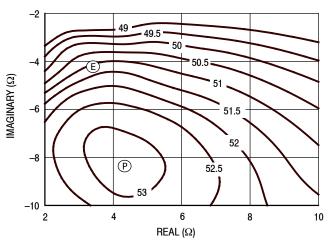
 Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

A3G18H500-04SR3

⁽²⁾ Load impedance for optimum P3dB power.


Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

⁽²⁾ Load impedance for optimum P3dB efficiency.

P1dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 1840 MHz

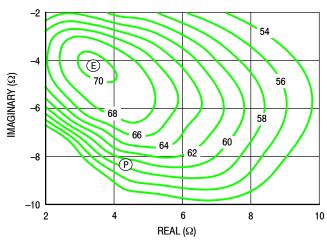
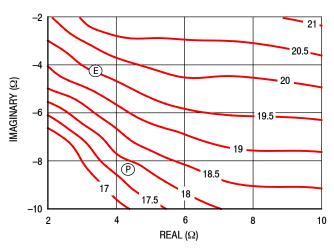



Figure 8. P1dB Load Pull Output Power Contours (dBm)

Figure 9. P1dB Load Pull Efficiency Contours (%)

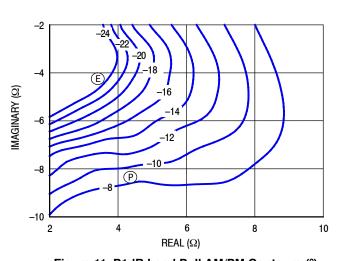
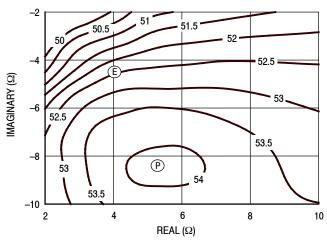


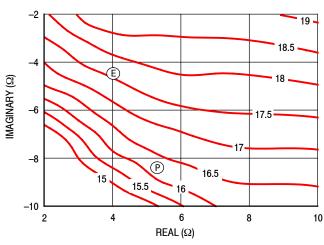
Figure 10. P1dB Load Pull Gain Contours (dB)


Figure 11. P1dB Load Pull AM/PM Contours (°)

NOTE: (P) = Maximum Output Power

(E) = Maximum Drain Efficiency

Gain
Drain Efficiency
Linearity
Output Power


P3dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 1840 MHz

-2 -4 -4 -72 -70 -8 -8 -10 2 4 66 66 66 66 68 10 REAL (Ω)

Figure 12. P3dB Load Pull Output Power Contours (dBm)

Figure 13. P3dB Load Pull Efficiency Contours (%)

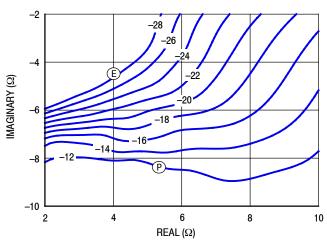


Figure 14. P3dB Load Pull Gain Contours (dB)

Figure 15. P3dB Load Pull AM/PM Contours (°)

NOTE: P = Maximum Output Power

(E) = Maximum Drain Efficiency

GainDrain EfficiencyLinearityOutput Power

Table 9. Peaking Side Load Pull Performance — Maximum Power Tuning

 V_{DD} = 48 Vdc, V_{GSB} = 3.1 Vdc, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

				Max Output Power							
				P1dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)			
1805	1.66 – j6.38	1.51 + j6.91	1.79 – j4.63	17.7	54.8	302	54.5	-13			
1840	2.64 - j7.07	2.11 + j7.34	2.06 – j4.97	17.8	54.7	297	54.3	-13			
1880	2.30 – j7.54	2.13 + j7.92	2.01 – j5.25	17.8	54.6	292	53.2	-13			

		ax Output Pov	Output Power								
				P3dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)			
1805	1.66 – j6.38	1.37 + j6.95	2.61 – j5.42	16.0	56.0	398	58.7	-13			
1840	2.64 - j7.07	2.02 + j7.47	2.86 – j5.78	15.9	55.8	378	56.4	-13			
1880	2.30 - j7.54	2.02 + j8.07	2.87 – j5.92	16.1	55.6	365	56.8	-13			

⁽¹⁾ Load impedance for optimum P1dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

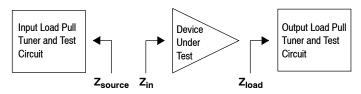
Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 10. Peaking Side Load Pull Performance — Maximum Efficiency Tuning

 V_{DD} = 48 Vdc, V_{GSB} = 3.1 Vdc, Pulsed CW, 10 $\mu sec(on)$, 10% Duty Cycle

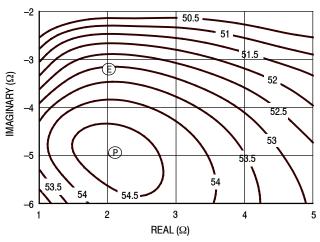
				Max Drain Efficiency						
			P1dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
1805	1.66 – j6.38	1.46 + j7.24	1.79 – j3.09	19.3	53.1	203	63.1	-25		
1840	2.64 - j7.07	2.04 + j7.76	2.02 – j3.16	19.3	53.0	200	63.8	-25		
1880	2.30 – j7.54	2.06 + j8.33	2.04 – j3.54	19.5	53.1	203	62.0	-24		


			Max Drain Efficiency								
				P3dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)			
1805	1.66 – j6.38	1.38 + j7.43	2.15 – j2.96	17.7	53.9	247	69.4	-32			
1840	2.64 - j7.07	1.93 + j8.02	2.37 – j3.17	17.6	54.1	256	68.9	-30			
1880	2.30 - j7.54	2.01 + j8.60	2.52 – j3.41	17.9	54.0	250	67.1	-30			

⁽¹⁾ Load impedance for optimum P1dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.


Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

⁽²⁾ Load impedance for optimum P3dB power.

⁽²⁾ Load impedance for optimum P3dB efficiency.

P1dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 1840 MHz

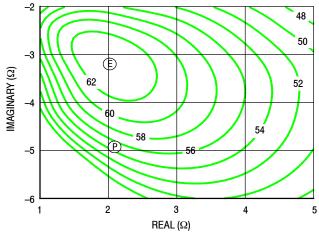
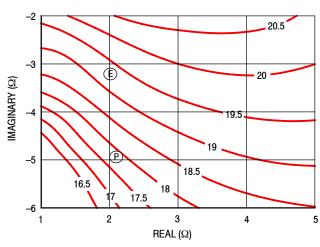
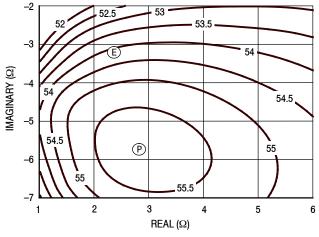



Figure 16. P1dB Load Pull Output Power Contours (dBm)

Figure 17. P1dB Load Pull Efficiency Contours (%)



Figure 18. P1dB Load Pull Gain Contours (dB)


Figure 19. P1dB Load Pull AM/PM Contours (°)

NOTE: (P) = Maximum Output Power

(E) = Maximum Drain Efficiency

Gain
Drain Efficiency
Linearity
Output Power

P3dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 1840 MHz

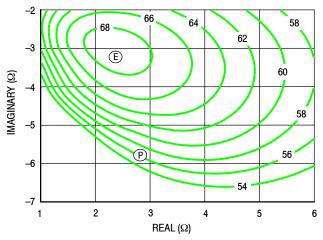
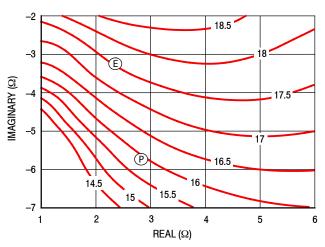



Figure 20. P3dB Load Pull Output Power Contours (dBm)

Figure 21. P3dB Load Pull Efficiency Contours (%)

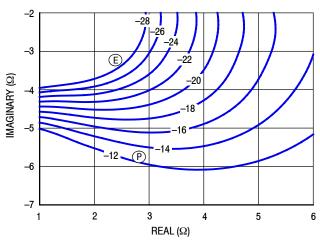
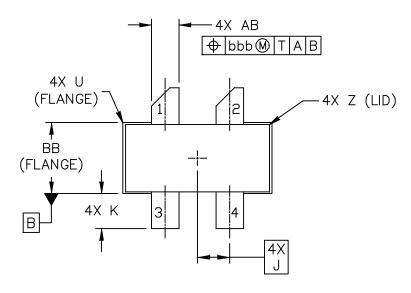
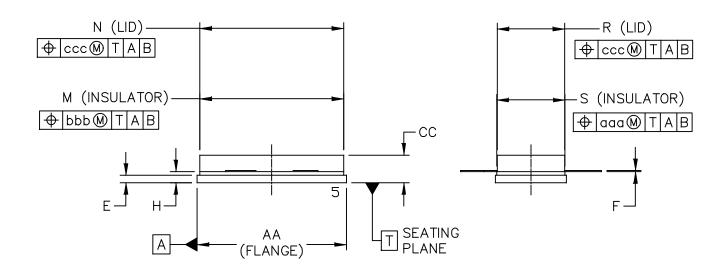


Figure 22. P3dB Load Pull Gain Contours (dB)

Figure 23. P3dB Load Pull AM/PM Contours (°)

NOTE: P = Maximum Output Power


E = Maximum Drain Efficiency


- Gain - Drain Efficiency

Linearity

- Output Power

PACKAGE DIMENSIONS

0	NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	MECHANICAL OUTLINE		T TO SCA	ALE
TITLE:			DOCUMEN	NT NO: 98ASA10718D	RE\	/: C
	NI-780S-4L	-	STANDAF	RD: NON-JEDEC		
			SOT1826	- 1	01 AUG	2016

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DELETED
- 4. DIMENSION H IS MEASURED .030 (0.762) AWAY FROM FLANGE TO CLEAR EPOXY FLOW OUT PARALLEL TO DATUM B.

	IN	CH	MIL	LIMETER			INCH	MILI	_IME	TER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN		MAX	
AA	.805	.815	20.45	20.70	U		.040			1.02	
BB	.382	.388	9.70	9.86	Z		.030			0.76	
CC	.125	.170	3.18	4.32	AB	. 145	. 155	3. 68	_	3. 94	
E	.035	.045	0.89	1.14							
F	.003	.006	0.08	0.15	aaa		.005	0.127			
Н	.057	.067	1.45	1.70	bbb		.010		0.254	4	
J	. 175	BSC	4.	44 BSC	ccc		.015	0.381		l	
K	.170	.210	4.32	5.33							
M	.774	.786	19.61	20.02							
N	.772	.788	19.61	20.02							
R	.365	.375	9.27	9.53							
S	.365	.375	9.27	9.52							
(NDUCTORS N. V. IS RESERVED		MECHANICA	L 0U1	LINE	PRINT VERS	SION NOT	ТО	SCALE	
TITL	TITLE:						DOCUMENT NO: 98ASA10718D REV: C				
	NI-780S-4L						STANDARD: NON-JEDEC				
						S0T1826-1 01 AUG 2016				G 2016	

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

• .s2p File

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2017	Initial release of data sheet

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.

