Ehipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation,and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Automotive, Programmable Stepper Driver

FEATURES AND BENEFITS DESCRIPTION

- Peak motor current up to \pm 1.4 A, 28 V
- Low R_{DS(on)} outputs, 0.5 Ω source and sink, typical
- Automatic current decay mode detection/selection
- Mixed, Fast, and Slow current decay modes
- Synchronous rectification for low power dissipation
- Internal OVLO, UVLO, and Thermal Shutdown circuitry
- Crossover-current protection
- Short circuit, and open load diagnostics
- Hot and cold thermal warning
- Stall detect features
- SPI-compatible or simple Step and Direction motion control
- Highly configurable via SPI-compatible serial interface

APPLICATIONS

- Automotive stepper motors
- Engine management
- Headlamp positioning

PACKAGE:

28-Pin TSSOP with Exposed Thermal Pad (suffix LP)

The A4980 is a flexible microstepping motor driver with built-in translator for easy operation. It is a single-chip solution, designed to operate bipolar stepper motors in full-, half-, quarter- and sixteenth-step modes, at up to 28 V and \pm 1.4 A. The A4980 can be controlled by simple Step and Direction inputs, or through the SPI-compatible serial interface that also can be used to program many of the integrated features and to read diagnostic information.

The current regulator can be programmed to operate in fixed off-time or fixed frequency PWM, with several decay modes to reduce audible motor noise and increase step accuracy. In addition the phase current tables can be programmed via the serial interface to create unique microstep current profiles to further improve motor performance for specific applications.

The current in each phase of the motor is controlled through a DMOS full bridge, using synchronous rectification to improve power dissipation. Internal circuits and timers prevent crossconduction and shoot-through, when switching between highside and low-side drives.

The outputs are protected from short circuits, and features for low load current and stalled rotor detection are included. Chip-level protection includes: hot and cold thermal warnings, overtemperature shutdown, and overvoltage and undervoltage lockout.

The A4980 is supplied in a 28-pin TSSOP power package with an exposed thermal pad (package type LP). This package is lead (Pb) free with 100% matte-tin leadframe plating.

Typical Applications

A4980 *Automotive, Programmable Stepper Driver*

SPECIFICATIONS

Selection Guide

*Contact Allegro™ for additional packing options

Absolute Maximum Ratings With respect to GND

Thermal Characteristics may require derating at maximum conditions

*Additional thermal information available on the Allegro website

Functional Block Diagram

Pin-out Diagram and Terminal List Table

Pin-out Diagram

Terminal List Table

ELECTRICAL CHARACTERISTICS^{1,2}; valid at T₁ = $-40\degree$ **C to 150°C V₁** $\mathbf{I} = 6$ to 28 V, $\mathbf{V}_{\mathbf{I}} = 3$ to 5.5 V; unless otherwise noted

Continued on the next page…

ELECTRICAL CHARACTERISTICS1,2 (continued): valid at T^J = –40°C to 150°C, VBB = 6 to 28 V, VDD = 3 to 5.5 V; unless otherwise noted

Continued on the next page…

ELECTRICAL CHARACTERISTICS1,2 (continued): valid at T^J = –40°C to 150°C, VBB = 6 to 28 V, VDD = 3 to 5.5 V; unless otherwise noted

1For input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin. 2All references to "VBB" apply to VBBA and VBBB.

³Function is correct but parameters are not guaranteed above or below the general limits (6 to 28 V). Outputs not operational above V_{BBOV} or below V_{REGUVL}. V_{REGUVL} is effective only after VBB voltage has exceeded the V_{BBUV} threshold for the first time. 4Assumes 4 MHz clock.

5Current Trip Point Error is the difference between actual current trip point and the target current trip point, referred to maximum full scale (100%) current: E_{itrip} = 100 × [I_{trip}(actual) – I_{trip}(target)] / I_{fullscale} (%).

6Ensured by design and characterization.

FUNCTIONAL DESCRIPTION

The A4980 is an automotive stepper motor driver suitable for high temperature applications such as headlamp bending and leveling, throttle control, and gas recirculation control. It is also suitable for other low current stepper applications such as air conditioning and venting. It provides a highly flexible microstepping motor driver that can be configured via the SPI-compatible serial interface. It can be controlled with simple Step and Direction inputs, for high speed stepping applications, or directly through the serial interface by writing a step change value.

The two DMOS full bridges are capable of driving bipolar stepper motors in full-, half-, quarter-, eighth- and sixteenth-step modes, at up to 28 V and \pm 1.4 A. The current in each phase of the stepper motor is regulated by a peak detect PWM current control scheme that can be programmed to operate in fixed off-time or fixed frequency. Several decay modes can be selected to reduce audible motor noise and increase step accuracy. In addition the phase current tables, which default to a sinusoidal current profile, can be programmed via the serial interface to create unique microstep current profiles to further improve motor performance for specific applications.

The outputs are protected from short circuits, and features for open load and stalled rotor detection are included. Chip level protection includes hot and cold thermal warning, overtemperature shutdown, and overvoltage and undervoltage lockout.

Pin Functions

VBBA, VBBB Main motor supply and chip supply for internal regulators and charge pump. VBBA and VBBB should be connected together and each decoupled to ground with a low ESR electrolytic capacitor and a good ceramic capacitor.

Note: Any reference to "VBB" in this specification is defined as applying to both VBBA and VBBB.

CP1, CP2 Pump capacitor connection for charge pump. Connect a 100 nF (50 V) ceramic capacitor between CP1 and CP2.

VCP Above-supply voltage for high-side drive. A 100 nF (16 V) ceramic capacitor should be connected between VCP and VBB to provide the pump storage reservoir.

VDD Logic supply. Compatible with 3.3 V and 5 V logic. Should be decoupled to ground with a 100 nF (10 V) ceramic capacitor.

VREG Regulated supply for bridge gate drive. Should be decoupled to ground with a 220 nF (10 V) ceramic capacitor.

AGND Analog reference ground. Quiet return for measurement and input references. Connect to PGND (see Layout section).

PGND Digital and power ground. Connect to supply ground and AGND (see Layout section).

OAP, OAM Motor connection for phase A. Positive motor phase current direction is defined as flowing from OAM to OAP.

OBP, OBM Motor connection for phase B. Positive motor phase current direction is defined as flowing from OBM to OBP.

SENSA Phase A current sense. Connect sense resistor between SENSA and PGND.

SENSB Phase B current sense. Connect sense resistor between SENSB and PGND.

REF Reference input to set absolute maximum current level for both phases. Defaults to internal reference when tied to VDD.

STEP Step logic input. Motor advances on rising edge. Filtered input with hysteresis.

DIR Direction logic input. Direction changes on the next STEP rising edge. When high, the Phase Angle Number is increased on the rising edge of STEP. Has no effect when using the serial interface. Filtered input with hysteresis.

MS0 Microstep resolution select input.

MS1 Microstep resolution select input.

RESETn Resets faults when pulsed low. Forces low-power shutdown (sleep) when held low for more than the Reset Shutdown Width, t_{RSD} . Can be pulled to VBB with 30 kΩ resistor.

ENABLE Controls activity of bridge outputs. When held low, deactivates the outputs, that is, turns off all output bridge FETs. Internal logic continues to follow input commands.

SDI Serial data input. 16-bit serial word input MSB first.

SDO Serial data output. High impedance when STRn is high. Outputs bit 15 of the diagnostic registers (Fault Register 0 and Fault Register 1), the Fault Register flag, as soon as STRn goes low.

SCK Serial interface clock. Data is latched in from SDI on the rising edge of the SCK clock signal. There must be 16 rising edges per write and SCK must be held high when STRn changes.

STRn Serial data strobe and serial access enable. When STRn is high any activity on SCK or SDI is ignored, and SDO is high impedance allowing multiple SDI slaves to have common SDI, SCK, and SDO connections.

DIAG Diagnostic output. Function selected via the serial interface, setting Configuration Register 1. Default is Fault output.

OSC With bit 13 in Configuration Register 1 set to 0, either connect this pin to AGND to use the internal oscillator running at the default frequency of 4 MHz, or connect a resistor to VDD to set the internal oscillator frequency. (The approximate frequency is calculated from:

$$
f_{OSC} = 10\,000 \,/(48\,R_{OSC} - 20)
$$

where $f_{\rm OSC}$ is the internal oscillator frequency in MHz, and $R_{\rm OSC}$ is the value, in $kΩ$ of the resistor between OSC and VDD.)

If bit 13 in Configuration Register 1 is set to 1, then OSC is the input for an external system clock, which must have a frequency between 3 and 5 MHz. In this mode a watchdog is provided to detect loss of the system clock. If the OSC pin remains high or low for more than the watchdog time, t_{WD} , 1 µs typical, then the Fault Register flag (bit 15 in the diagnostic registers) is set and the outputs are disabled until the clock restarts.

Driving a Stepper Motor

A two-phase stepper motor is made to rotate by sequencing the relative currents in each phase. In its simplest form, each phase is simply fully energized in turn by applying a voltage to the winding. For more precise control of the motor torque over temperature and voltage ranges, current control is required. For efficiency this is usually accomplished using pulse width modulation (PWM) techniques. In addition current control also allows the relative current in each phase to be controlled, providing more precise control over the motor movement and hence improvements in torque ripple and mechanical noise. Further details of stepper motor control are provided in Appendix A.

For bipolar stepper motors the current direction is significant, so the voltage applied to each phase must be reversible. This requires the use of a full bridge (also known as an H-bridge) which can switch each phase connection to supply or to ground.

PHASE CURRENT CONTROL

In the A4980, current to each phase of the two-phase bipolar stepper motor is controlled through a low impedance N-channel DMOS full bridge. This allows efficient and precise control of the phase current using PWM switching. The full-bridge configuration provides full control over the current direction during the PWM on-time, and over the current decay mode during the PWM off-time. Due to the flexibility of the A4980 these control techniques can be completely transparent to the user or can be partially- or fully-programmed through the serial interface.

Each leg (high-side, low-side pair) of a bridge is protected from shoot-through by a fixed dead time. This is the time between switching off one FET and switching on the complementary FET. Cross-conduction is prevented by lock-out logic in each driver pair.

The phase currents and in particular the relative phase currents are defined in the Phase Current table (Table 7). This table defines the two phase currents at each microstep position. For each of the two phases, the currents are measured using a sense resistor, R_S, with voltage feedback to the respective SENSx pin. The target current level is defined by the voltage from the digitalto-analog converter (DAC) for that phase. The sense voltage is amplified by a fixed gain and compared to the output of the DAC.

There are two types of *maximum current*: the absolute maximum, I_{SMAX} , the maximum possible current defined by the sense resistor and the reference input; and the phase maximum, I_{PMAX} , the maximum current delivered to a motor phase.

The absolute maximum current, I_{SMAX} , is defined as:

$$
I_{SMAX} = V_{REF}/(16 \times R_S)
$$

where V_{REF} is the voltage at the REF pin, and R_S is the sense resistor value.

The phase maximum, I_{PMAX} , is the 100% reference level for the phase current table and may be a fraction of the absolute maximum current, I_{SMAX} , depending on the value of the MXI0 and MXI1 bits in Configuration Register 0.

For example:

- if $R_S = 180$ m Ω and $V_{REF} = 2$ V, then $I_{SMAX} = 694$ mA
- if MXI1= 1 and MXI0 = 0, then I_{PMAX} = 520 mA

The actual current delivered to each phase at each Step Angle Number is determined by the value of I_{PMAX} and the contents of the Phase Current table. For each phase, the value in the table is passed to the DAC, which uses I_{PMAX} as the reference 100% level (code 63) and reduces the current target depending on the DAC code. The output from the DAC is used as the input to the current comparators.

The current comparison is ignored at the start of the PWM on-time for a duration referred to as the *blank time*. The blank time is necessary to prevent any capacitive switching currents from causing a peak current detection.

The PWM on-time starts at the beginning of each PWM period. The current rises in the phase winding until the sense voltage reaches the required current level. At this point the PWM off-time

starts and the bridge is switched into one of two decay modes, slow decay or fast decay:

- Slow decay is most effective when the current is rising from step to step. and it occurs when the phase winding is effectively shorted by switching-on either both high-side FETs or both low-side FETs in the full bridge.
- Fast decay is most effective when the current is falling from step to step, and it occurs when the voltage on the phase is reversed.

One disadvantage of fast decay is the increased current ripple in the phase winding. However, this can be reduced while maintaining good current control, by using a short time of fast decay followed by slow decay for the remainder of the PWM off-time. This technique is commonly referred to as *mixed* decay.

The A4980 provides two methods to determine the PWM frequency: fixed off-time and fixed frequency. At power-up the default mode is fixed off-time. Fixed frequency can be selected through the serial interface. Fixed off-time provides a marginal improvement in current accuracy over a wide range of current levels. Fixed frequency provides a fixed fundamental frequency to allow more precise supply filtering for EMC reduction. In both cases the PWM off-time will not be present if the peak current limit is not attained during the PWM on-time.

PHASE CURRENT TABLE

The relative phase currents are defined by the Phase Current table. This table contains 64 lines and is addressed by the Step Angle Number, where Step Angle Number 0 corresponds to 0° or 360°. The Step Angle Number is generated internally by the step sequencer, which is controlled either by the STEP and DIR inputs or by the step change value from the serial input. The Step Angle Number determines the motor position within the 360° electrical cycle and a sequence of Step Angle Numbers determines the motor movement. Note that there are four full mechanical steps per 360° electrical cycle.

Each line of the Phase Current table (table 7) has a 6-bit value per phase to set the DAC level for that phase, plus an additional bit per phase to determine the current direction for that phase. The Step Angle Number sets the electrical angle of the stepper motor

in one-sixteenth microsteps, approximately equivalent to electrical steps of 5.625°.

On first power-up or after a VDD power-on reset, the Phase Current table values are reset to define a sinusoidal current profile and the Step Angle Number is set to 8, equivalent to the electrical cycle 45° position. This position is defined as the "home" position. The maximum current in each phase, I_{PMAX} , is defined by the sense resistor and the Maximum Current setting (bits MXI[0..1]) in Configuration Register 0. The phase currents for each entry in the Phase Current table are expressed as a percentage of this maximum phase current.

When using the STEP and DIR inputs to control the stepper motor, the A4980 automatically increases or decreases the Step Angle Number according to the step sequence associated with the selected step mode. The default step mode, reset at powerup or after a power on reset, is full step. half-, quarter-, and sixteenth-step sequences are also available when using the STEP and DIR inputs, and are selected using the logical OR of the MS0 and MS1 inputs and the MS0 and MS1 bits in Configuration Register 0. The eighth-step sequence is shown in the Phase Current table for reference only.

When using the serial interface to control the stepper motor, a step change value (6-bit) is input through the serial interface to increase or decrease the step angle. The step change value is a two's complement (2'sC) number, where a positive value increases the step angle and a negative value decreases the Step Angle Number. A single step change in the Step Angle Number is equivalent to a single one-sixteenth microstep. Therefore, for correct motor movement, the step change value should be restricted to no greater than 16 steps, positive or negative.

This facility enables full control of the stepper motor at any microstep resolution up to and including sixteenth-step, plus the ability to change microstep resolution "on-the-fly" from one microstep to the next.

In both control input method cases, the resulting Step Angle Number is used to determine the phase current value and current direction for each phase, based on the Phase Current table. The decay mode is determined by the position in the Phase Current table and the intended direction of rotation of the motor.

Diagnostics

The A4980 integrates a number of diagnostic features to protect the driver and load as far as possible from fault conditions and extreme operating environments. At the system level the supply voltages and chip temperature are monitored. A number of these features automatically disable the current drive to protect the outputs and the load. Others only provide an indication of the likely fault status, as shown in the Fault table (Table 1). A single diagnostic output pin (DIAG) can be programmed through the serial interface to provide several different internal signals. At power-up, or after a power-on-reset the DIAG pin outputs a simple Fault Output flag which will be low if a fault is present. The Fault Output flag remains low while the fault is present or if one of the latched faults (for example, a bridge short circuit) has been detected and the outputs disabled.

Alternative to the Fault Output flag, the DIAG output can be programmed via the serial interface to output: the stall detect signal, which goes low when a stall is detected; the phase A PWM-on signal, which is high during the phase A PWM on-time; or an analog signal indicating the silicon temperature.

If required, specific fault information can be determined by reading the diagnostic registers (see Serial Interface section).

The first bit (bit 15) in both diagnostic registers contains a common Fault Register flag which will be high if any of the fault bits in either register has been set. This allows a fault condition to be detected using the serial interface, by simply taking STRn low. As soon as STRn goes low the fist bit in the diagnostic registers can be read to determine if a fault has been detected at any time

Table 1. Fault Table

since the last diagnostic registers reset. In all cases the fault bits in the diagnostic registers are latched and only cleared after a diagnostic registers reset.

Note that the Fault Register flag in the diagnostic registers, does not provide the same function as the Fault Output flag on the DIAG pin. The Fault Output flag on the DIAG pin provides an indication that either a fault is present or the outputs have been disabled due to a short circuit fault. The Fault Register flag simply provides an indication that a fault has occurred since the last diagnostic registers reset and has been latched.

At the system level the supply voltages and chip temperature are monitored.

SUPPLY VOLTAGE MONITORS

The logic supply, the motor supply, and the regulator output are monitored: the motor supply for overvoltage, and the regulator output and logic supply for undervoltage.

- If the motor supply voltage, V_{BBA} and V_{BBB} , goes above the VBB overvoltage threshold, the A4980 will disable the outputs and indicate the fault. When the motor supply voltage goes below the VBB overvoltage threshold, the outputs will be re-enabled and the fault flag removed. The fault bits in the diagnostic registers remain set until cleared by a diagnostic registers reset.
- If the motor supply voltage, V_{BBA} and V_{BBB} , goes below the VBB undervoltage threshold, the A4980 will indicate the fault and reduce the VREG undervoltage threshold to the low level. When the motor supply voltage goes above the VBB undervoltage threshold, the VREG undervoltage threshold will be increased to the high level and the fault flag removed. The fault bits in the diagnostic registers remain set until cleared by a diagnostic registers reset.
- If the output of the internal regulator, V_{REG} , goes below the VREG undervoltage threshold, the A4980 will disable the outputs and indicate the fault. When the regulator output rises above the VREG undervoltage threshold, the outputs will be re-enabled and the fault flag removed. The fault bits in the diagnostic registers remain set until cleared by a diagnostic registers reset.
- If the logic supply voltage, V_{DD} , goes below the VDD undervoltage threshold, then the outputs will be immediately disabled. When the logic supply rises above the VDD undervoltage threshold, the outputs will be enabled.

• If the logic supply voltage, V_{DD} , goes below the VDD Power-On Reset Threshold, a power-on reset will take place and all registers will be reset to their default state. The fault bits in the diagnostic registers remain set until cleared by a diagnostic registers reset.

Note that both the VREG undervoltage monitor and the V_{BB} undervoltage monitor indicate a fault by using the same fault bit, UV, in both Fault registers. The state of the UV fault bit is determined by the logical OR of the fault output from these two undervoltage monitors.

The VREG undervoltage threshold level is determined by the state of the VBB undervoltage monitor. If V_{BB} falls enough to create a VBB undervoltage fault, then the VREG threshold is reduced to the low level, V_{REGUVL} . When V_{BB} is above the VBB undervoltage threshold, the VREG undervoltage threshold is set to the high level, V_{REGUVH} . This allows the A4980 to continue to drive a stepper motor with a motor supply (VBB) voltage as low as 3.5 V without disabling the outputs. By retaining the higher threshold (when V_{BB} is above the VBB undervoltage threshold), the A4980 also provides protection for its outputs from excessive power dissipation during a high voltage transient on VBB when an independent VREG undervoltage condition is present.

Note that the point at which the A4980 stops driving the motor is always less than 3.5 V. The maximum value for the low-level VREG undervoltage threshold is 3.15 V, and for the VREG dropout, it is 200 mV. This means that the VREG undervoltage will never occur until V_{BB} falls below 3.3 V, giving a 200 mV margin for noise. Typically the VREG undervoltage will occur when V_{BB} drops below 3.1 V. The A4980 will continue with full PWM current control and all output fault detection down to the point at which the VREG undervoltage fault occurs.

Figures 3 and 4 show how the undervoltage thresholds change when a typical cold crank transient occurs.

The standard, ISO7637 Pulse 4, is shown for reference in Figure 3. The V_{BB} transient shown (solid line) is lower than the standard ISO pulse due to the forward voltage of a reverse polarity protection diode and switching transients.

Figure 4 provides more detail around the time that the VBB undervoltage is detected. It shows the V_{REG} voltage following below the V_{BB} voltage by the maximum offset voltage of the V_{REG} regulator. Typically this dropout will be less than the 200 mV shown.

When V_{BB} drops below the falling VBB undervoltage threshold, V_{BBUV} (at 1.2 ms and 5.6 V in figure 4), the VREG undervoltage threshold, V_{REGUV} , drops from 4.8 V (V_{REGUVH} typical) to 3.0 V $(V_{REGUVL}$ typical). At the same time, the VBB undervoltage threshold increases by the threshold hysteresis, 760 mV (typical), the UV fault bit in the diagnostic registers is set, and the fault flag is active.

Figure 4: Expanded View of Figure 3

This state remains until V_{BB} increases above the rising VBB undervoltage threshold (at 127 ms and 6.4 V in figure 3). At this point the VREG undervoltage threshold is increased back to the high threshold value of 4.8 V (V_{REGUVH} typical), and the reverse hysteresis is applied to the VBB undervoltage threshold causing it to drop back to the falling level of 5.5 V (V_{BBUV} typical). The Fault flag goes inactive but the UV fault bit remains set in the Fault registers until cleared by a diagnostic registers reset.

When a power-on reset occurs, or the A4980 is activated from sleep mode by taking RESETn high, then the VREG undervoltage threshold is initially set to the high level, V_{REGUVH} . (A power-on reset occurs when power is first applied or the logic supply, VDD, drops below the VDD power-on reset threshold, V_{DDPOR}.) The threshold will remain at the high level, irrespective of the state of $V_{\rm BR}$, until the VBB voltage has exceeded the undervoltage threshold for the first time. After this has happened, the VREG undervoltage threshold is then determined by the state of the VBB undervoltage monitor output. When applying power or when activating from sleep mode the outputs should remain inactive for at least the Wakeup from Reset Time, t_{EN} , to allow the internal charge pump and regulator to reach their full operating state.

The VBB and VREG undervoltage monitor system is designed to allow the A4980 to continue operating safely during the extreme motor supply voltage drop caused by cold cranking with a weak battery when a reverse battery protection diode is also present. During low voltage transients the A4980 will continue to step a motor. However, current control will not achieve the same accuracy as specified with a motor supply voltage greater than 7 V. In fact a low motor supply voltage may not provide sufficient drive to allow the motor current to reach its normal operating level, especially if the motor is rotating and a back EMF is present. It is therefore recommended that when a VBB undervoltage condition is indicated, the motor is held stationary. This will help ensure that the motor does not slip and that the system retains some degree of control over the motor position, thus avoiding the need to recalibrate the motor position.

The output drive FETs of the A4980 remain protected from short circuits down to the VREG undervoltage level. However, the overcurrent thresholds cannot be guaranteed to meet the precision specified at higher supply voltage. In addition the open load detection may indicate a fault and the stall detection is not likely to correctly identify a motor stall condition when VBB is below the VBB undervoltage level.

TEMPERATURE MONITORS

Three specific temperature thresholds are provided: a hot warning, a cold warning, and an overtemperature shutdown. In addition, the analog internal signal used to determine the chip temperature can be selected in Configuration Register 1 as the output on the DIAG pin through the serial interface. The analog scale is $T_I \approx (V_{DIAG} - V_{TO}) / A_T$.

Hot Warning

If the chip temperature rises above the Hot Temperature Warning Threshold, T_{JWH} , the Fault flag will go low and the Hot Warning bits will be set in the diagnostic registers. No action will be taken by the A4980. When the temperature drops below the Hot Temperature Warning Threshold, the Fault flag will go high but the Hot Warning bits remain set in the diagnostic registers until reset.

Cold Warning

If the chip temperature falls below the Cold Temperature Warning Threshold, T_{JWC} , the Fault flag will go low and the Cold Warning bits will be set in the diagnostic registers. No action will be taken by the A4980. When the temperature rises above the Cold Temperature Warning Threshold, the Fault flag will go high but the Cold Warning bits remain set in the diagnostic registers until reset.

Overtemperature Shutdown

If the chip temperature rises above the Overtemperature Shutdown Threshold, T_{IF} , the Fault flag will go low and the Thermal Shutdown bits will be set in the diagnostic registers. The A4980 will disable the outputs to try to prevent a further increase in the chip temperature. When the temperature drops below the Overtemperature Shutdown Threshold, the Fault flag will go high but the Thermal Shutdown bits remain set in the diagnostic register until reset.

BRIDGE OUTPUT AND DIAGNOSTICS

The A4980 includes monitors that can detect a short to supply or a short to ground at the motor phase connections. These conditions are detected by monitoring the current from the motor phase connections through the bridge to the motor supply and to ground.

Low current comparators and timers are provided to help detect possible open load conditions.

Short to Supply

A short from any of the motor connections to the motor supply (VBBA or VBBB) is detected by monitoring the voltage across the low-side current sense resistor in each bridge. This gives a direct measurement of the current through the low side of the bridge.

When a low-side FET is in the On state, the voltage across the sense resistor, under normal operating conditions, should never be more than the Maximum Sense Voltage, V_{SMAX} . In this state, an overcurrent is determined to exist when the voltage across the sense resistor exceeds the Low-Side Overcurrent Sense Voltage, V_{OCL} , typically $2 \times V_{\text{SMAX}}$. This overcurrent must be continuously present for at least the Overcurrent Fault Delay, t_{SCT} , before the short fault is confirmed by setting the relevant bit in FAULT0 and driving the DIAG output low if the Fault Output flag is selected. The output is switched off and remains off until a fault reset occurs.

Note that the sense resistor cannot distinguish which low-side FET is in an overcurrent state. So, if more than one low-side FET is active when the fault is detected, for example during low-side recirculation with synchronous rectification, then the shorted connection is determined from the internal PWM state.

The actual overcurrent that V_{OCL} represents is determined by the value of the sense resistor and is typically $2 \times I_{\text{SMAX}}$.

Short to Ground

A short from any of the motor connections to ground is detected by directly monitoring the current through each of the high-side FETs in each bridge.

When a high-side FET is in the On state the maximum current is typically always less than 1 A. In this state, an overcurrent is determined to exist when the current through the active high-side FET exceeds the High-Side Overcurrent Threshold, I_{OCH} .

This overcurrent must be present for at least the Overcurrent Fault Delay, t_{SCT} , before the short fault is confirmed by setting the relevant bit in FAULT0 and driving the DIAG output low if the Fault Output flag is selected. The output is switched off and remains off until a fault reset occurs.

Note that when a short to ground is present the current through the high-side FET is limited to the High-Side Current Limit, I_{LIMH} , during the Overcurrent Fault Delay, t_{SCT} . This prevents large negative transients at the phase output pins when the outputs are switched off.

Shorted Load

A short across the load is indicated by concurrent short faults on both high side and low side.

Short Fault Blanking

All overcurrent conditions are ignored for the duration of the Overcurrent Fault Delay, t_{SCT} . The short detection delay timer is started when an overcurrent first occurs. If the overcurrent is still present at the end of the short detection delay time then a short fault will be generated and latched. If the overcurrent goes away before the short detection delay time is complete, then the timer is reset and no fault is generated.

This prevents false short detection caused by supply and load transients. It also prevents false short detections resulting from current transients generated by the motor or wiring capacitance when a FET is first switched on.

Short Fault Reset and Retry

When a short circuit has been detected all outputs for the faulty phase are disabled until the next occurrence of: the next rising edge on the STEP input, the RESETn input is pulsed low, or until the diagnostic registers are reset by writing to one of the registers through the serial interface. At the next STEP command or after a fault reset, the Fault Register flag is cleared, the outputs are reenabled, and the voltage across the FET is resampled. Note that the diagnostic registers are not cleared by the rising edge of the STEP input.

While the fault persists the A4980 will continue this cycle, enabling the outputs for a short period then disabling the outputs. This allows the A4980 to handle a continuous short circuit without damage. If, while stepping rapidly, a short circuit appears and no action is taken, the repeated short circuit current pulses will eventually cause the temperature of the A4980 to rise and an overtemperature fault will occur.

Open Load Detection

Open load conditions are detected by monitoring the phase current when the phase DAC value is greater than 31. The Open Load Current Threshold, I_{OL} , is defined by the OL0 and OL1 bits in the Run register as a percentage of the maximum (100%) phase current, I_{PMAX} , defined in the Phase Current table. The 100% level in the Phase Current table is defined by the sense resistor value and the contents of the MXI0 and MXI1 bits in Configuration Register 0.

For example:

- if $R_S = 180$ m Ω and $V_{REF} = 2$ V, then $I_{SMAX} = 694$ mA
- if $MXI1 = 1$ and $MXI0 = 0$, then $I_{PMAX} = 520$ mA
- if OL1=0 and OL0=1, then I_{OL} = 156 mA

The open load current monitor is only active after a blank time from the start of a PWM cycle. An open load can only be detected if the DAC value for the phase is greater than 31 and the current has not exceeded the Open Load Current Threshold for more than 15 PWM cycles.

The A4980 continues to drive the bridge outputs under an open load condition and clears the Fault Register flag as soon as the phase current exceeds the Open Load Current Threshold or the DAC value is less than 32. The diagnostic registers retain the open load fault bits, OLA and OLB, and will not be cleared until RESETn is pulsed low or one of the diagnostic registers is written through the serial interface.

Stall Detection

For all motors it is possible to determine the mechanical state of the motor by monitoring the back-EMF (BEMF) generated in the motor phase windings. A stalled motor condition is when the phase currents are being sequenced to step the motor but the motor remains stationary. This can be due to a mechanical blockage such as an end stop or the step sequence exceeding the motor capability for the attached load.

A PWM monitor feature is included in the A4980 to assist in detecting the stall condition of the stepper motor. This feature uses the effect of the BEMF on the current rise time by comparing the PWM count during the current rise quadrant to determine the point at which a stall occurs. Reliable stall detection in a simple stepper driver is only possible by combining the PWM monitor with a continuous step sequence at a sufficiently high step rate.

When a motor is running normally, at speed, the BEMF, generated by the magnetic poles in the motor passing the phase windings, acts against the supply voltage and reduces the rise rate of the phase current, as shown in Figure 5. The PWM current control does not activate until the current reaches the set trip level for the microstep position. When a motor is stopped, as in a stall condition, the BEMF is reduced. This allows the current to rise to the limit faster and the PWM current control to activate sooner. Assuming a constant step rate and motor load this results in an increase in the number of PWM cycles for each step of the motor.

The A4980 uses this difference to detect a motor changing from continuous stepping to a stalled condition.

The PWM monitor feature assumes the following factors:

- The motor must be stepping fast enough for the BEMF to reduce the phase current slew rate. Stall detection reliability improves as the current slew rate reduces.
- The motor is not being stepped in full step mode.

Although stall detection cannot be guaranteed when using the integrated features of the A4980, good stall detection reliability can be achieved by careful selection of motor winding resistance and inductance, motor speed, count difference, stall detection scheme, and by conforming to the above requirements.

The A4980 includes circuits to allow the PWM monitor to operate in two ways: compare opposite phases and compare each phase.

Figure 5: Effect of Stall Condition onCcurrent Rise

• Stall detection scheme: compare opposite phases

The default stall detection scheme in the A4980, selected when STS[1..0] = 00, is the *compare opposite phases* scheme.

When this scheme is selected, two PWM counters, one for each phase, accumulate the number of PWM cycles when the phase current is stepped from zero to full-scale current. At the end of each phase current rise, the counter for that phase is compared to the count result for the previous current rise in the opposite phase, as shown in Figure 6. If the difference is greater than the PWM count difference in the CONFIG1 register (CD[3:0]), then the ST bit in the diagnostic registers is set. In addition, if the ST signal is selected as the output on the DIAG pin, then the pin will go low.

• Stall detection scheme: compare each phase

In some motors the winding differences can cause false stall detection. This can be overcome by changing the comparison cir-

cuits to operate on each phase independently. The *compare each phase* scheme is selected when $STS[1..0] = 01$.

When this scheme is selected, two PWM counters, one for each phase, accumulate the number of PWM cycles when the phase current is stepped from zero to full-scale current. At the end of each phase current rise, the counter for that phase is compared to the count result for the previous current rise in the same phase, as shown in Figure 7. If the difference is greater than the PWM count difference in the CONFIG1 register (CD[7:0]), then the ST bit in the diagnostic registers is set. In addition, if the ST signal is selected as the output on the DIAG pin, then the pin will go low.

In addition to using the integrated features of the A4980, it is also possible to perform stall detection by examining the PWM on-time for a single phase using an external microcontroller. In the A4980 the PWM-on signal for phase A can be selected as the output on the DIAG pin by using the serial interface.

Figure 6: Stall Detect by PWM Count Comparing Opposite Phases, STS[1..0] = 00

Figure 7: Stall Detect by PWM Count Comparing Each Phase Independently, STS[1..0] = 01

SERIAL INTERFACE DESCRIPTION

A three wire synchronous serial interface, compatible with SPI, can be used to configure and control all the features of the A4980. A fourth wire can be used to provide diagnostic feedback. The registers that are accessible through the serial interface are defined in Table 2.

The A4980 can be operated without using the serial interface, by using the default configuration and control register settings and the STEP and DIR logic inputs for motor control. However, application-specific configurations are only possible by setting the appropriate register bits through the serial interface. In addition to setting the configuration bits, the serial interface can also be used to control the motor directly.

The serial interface timing requirements are specified in the Electrical Characteristics table, and illustrated in Figure 1.

Writing to Configuration and Control Registers

When writing to the serial register, data is received on the SDI pin and clocked through a shift register on the rising edge of the clock signal input on the SCK pin. STRn is normally held high, and is only brought low to initiate a serial transfer. No data is clocked through the shift register when STRn is high, thus allowing multiple SDI slave units to use common SDI, SCK, and SDO connections. Each independent slave requires a dedicated STRn connection.

The serial data word has 16 bits, MSB input first. After 16 data bits have been clocked into the shift register, STRn must be taken high to latch the data into the selected register. When this occurs, the internal control circuits act on the new configuration and control data, and the diagnostic registers are reset.

Table 2: Serial Register Definition*

Diagnostic Registers (Read)

*Power-on reset value shown below each input register bit.

If there are more than 16 rising edges on SCK, or if STRn goes high and there are fewer than 16 rising edges on SCK, the write will be cancelled without writing data to the configuration and control registers. In addition the diagnostic registers will not be reset. Instead the FF bit will be set to 1 in the diagnostic registers, to indicate a data transfer error.

The first two bits of the serial word are used to select the register to be written. This provides access to four writable registers:

- The Configuration registers are used for system configuration: CONFIG0 for system parameters, and CONFIG1 for system and diagnostic parameters.
- The RUN register contains motor drive settings used to control the motor movement and phase current.
- The fourth writable register, TBLLD, is used for diagnostic configuration and to program the phase current table.

READING FROM DIAGNOSTIC REGISTERS

In addition to the writable registers there are two diagnostic registers. The first eight (most significant) bits of both diagnostic registers contain the same flags, only the last eight (least significant) bits differ, as follows:

- FAULT0 contains the short-circuit fault flags
- FAULT1 contains the present Step Angle Number

Each time a configuration and control register is written, one of the diagnostic registers can be read, MSB first, on the serial output pin, SDO (see timing in Figure 1). FAULT1 is made the active register for serial transfer and output on SDO only while CONFIG1 is being written, that is, only when the first bit of the input word is 0 and the second bit is 1. FAULT0 is the active register for serial transfer and output on SDO during writes to any other configuration or control register.

When STRn goes low to start a serial write, SDO comes out of its high impedance state and outputs the serial register Fault Register flag. This allows the main controller to poll the A4980 through the serial interface to determine if a fault has been detected. If no faults have been detected then the serial transfer may be terminated without generating a serial read fault by ensuring that SCK remains high while STRn is low. When STRn goes high the transfer will be terminated and SDO will go into its high impedance state.

Configuration and Run Registers

These registers are used for system configuration and motor control. Access is described in the section Writing to Configuration and Control Registers, above.

CONFIG0 sets certain system parameters, and CONFIG1 sets system and diagnostic output selection parameters. The RUN register contains motor drive settings used to control the motor movement and phase current.

Phase Table Load Register

This is one of the configuration and control registers, accessed when both address bits are 1, and can be used to write a sequence of values to the phase current table in the A4980. This allows the current at each Step Angle Number to be tailored to suit the microstep current profile requirements of a specific motor. In most cases this feature will not be required and the default sinusoidal profile will suffice. However for some motor /load combinations, altering the current profile can improve torque ripple, resulting in lower mechanical vibration and noise.

Although the phase current table contains 64 entries for each of two phases, only 16 distinct values are required. These 16 values correspond to one quadrant of the table for a single phase, and they are repeated for the other three quadrants and again for the four quadrants of the other phase. So each of the 16 values written to the Phase Table Load register are written to 8 locations in the phase current table.

The 16 values must be entered by sequential writes to the Phase Table Load register. The first write to the register after writing to any other register, or after a reset (RESETn pulse low or poweron), puts that value, PT[5..0], into the first phase table address, a 6-bit field defined as PT(0). Subsequent writes put values into successive addresses: $PT(1)$, $PT(2)$, and so forth up to $PT(15)$. After the sixteenth value has been written, no more values are accepted and any writes to the Phase Table Load register are ignored. As each value is received, it is effectively distributed to all eight required locations in the phase current table.

An optional simple odd parity scheme is included to provide some measure of error checking, if required. Each 6-bit value can be supplemented with an additional parity bit, PTP, to ensure an odd number of 1s in the transmission. This is checked by the A4980 and if a the number of 1s in the value plus parity bit is not

odd, the FF bit will be set and the SDO pin will go high the next time STRn is taken low, indicating a parity error. That data will still be written to the next phase table value address; it is incumbent upon the external controller to take action, if required.

If the write sequence is broken (by a reset, by writing to another register, or by a data transfer error) before the sequence has been completed, then the phase table value address will be reset to PT(0). If it is required to load the table, then the entire 16-value sequence must be sent.

After loading, although the phase current table is volatile, a reset using a low pulse on the RESETn pin does not corrupt the table. The table is only reset to default values on a power-on reset.

The Phase Table Load register also contains the diagnostic parameter used to select the stall detection scheme, STS[1..0]. When writing to the Phase Table Load register to set the STS[1..0] bits, the remaining bits in the serial transfer, PT[5..0], must match the phase table value for the first phase table address, PT(0). Before re-writing the STS[1..0] bits, a write to another register is required to ensure that the phase table value address is reset to PT(0).

Diagnostic Registers

The diagnostic registers comprise two read-only fault data registers. Access is described in the section Reading from Diagnostic Registers, above.

The diagnostic registers contain fault flags for each fault condition and are reset to all 0s on the completion of each serial access. They are also reset to all 0s each time the RESETn input is low for longer than the Reset Pulse Width, t_{RST} . FAULT0 is set to all 1s at power-up or after a power-on reset. This indicates to the external controller that a power-on reset has taken place and all registers have been reset. Note that a power-on reset only occurs when power is first applied or the logic supply, VDD, drops below the VDD power-on reset threshold, V_{DDPOR} .

Power-on reset function is not affected by the state of the motor supply or V_{REG} .

The first bit in both registers is the Fault Register flag, FF. This is high if any bits in FAULT0 are set, or if a serial write error or parity error has occurred.

A4980 *Automotive, Programmable Stepper Driver*

Configuration Register 0
SYR Synchronous rectific

SYR Synchronous rectification

SYR	Synchronous Rectification	Default
	Diode recirculation	
	Synchronous	

MS[1..0] Microstep mode for external STEP input control

MS ₁	MSO	Microstep Mode	Default
		Full Step	
		Half Step	
		Quarter Step	
		Sixteenth Step	

MXI[1..0] Max phase current as a percentage of I_{SMAX}

PFD[2..0] Fast decay time for mixed decay Assumes 4-MHz clock

PFD ₂	PFD1	PFD ₀	Fast Decay Time	Default
0			$2 \mu s$	
0			$3 \mu s$	
0			$4 \mu s$	
0			$6 \mu s$	
		ი	$8 \mu s$	
			$10 \mu s$	
			$14 \mu s$	
			$20 \mu s$	

TBK[1..0] Blank Time

Assumes 4-MHz clock

TBK1	TBK0	Blank Time	Default
		$1 \mu s$	
		$1.5 \,\mathrm{\mu s}$	
		$2.5 \,\mu s$	
		$3.5 \,\mu s$	

TOF[2..0] Off time (only valid when PWM bit = 0) Replaces FRQ bits Assumes 4-MHz clock

TOF ₂	TOF ₁	TOF ₀	Off Time	Default
0			$20 \mu s$	
0	0		$24 \mu s$	
0			$28 \mu s$	
0			$32 \mu s$	
	Ω		$36 \mu s$	
			$40 \mu s$	
			$44 \mu s$	
			$48 \mu s$	

FRQ[2..0] Frequency (only valid when PWM bit = 1) Replace TOF bits Assumes 4-MHz clock

PWM PWM configuration

A4980 *Automotive, Programmable Stepper Driver*

Configuration Register 1 Run Register

Overcurrent fault delay

TSC[1..0] Assumes 4-MHz clock

CD[7..0] Default to 8 PWM count difference for ST detection

DIAG[1..0] Selects signal routed to DIAG output

EN Phase current enable

OR with ENABLE pin

HLR Selects slow decay and brake recirculation path

SLEW Slew rate control

BRK Brake enable

DCY[1..0] Decay mode selection

SC[5..0] Step change number

2's complement format Positive value increases Step Angle Number Negative value decreases Step Angle Number

Table Load Register Fault Register 0

PTP Parity bit (odd parity) PT(0..15)[5..0] Phase Table Value

Table Load Register Mapping

STS[1..0] Selects stall detection scheme

Fault Register 1

- TW0 Temperature diagnostic
- OV Overvoltage on VBB detected
- UV Undervoltage on VREG or VBB detected
- ST Stall detected
- OLB Open load detected on phase B
- OLA Open load detected on phase A
- SA[5..0] Step Angle Number read back

TW[1..0] Temperature diagnostic

APPLICATION INFORMATION

Motor Movement Control

The A4980 provides two independent methods to control the movement of a stepper motor. The simpler is the Step and Direction method, which only requires two control signals to control the stepper motor in either direction. The other method is through the serial interface, which provides more flexible control capability. Both methods can be used together (although it is not common), provided the timing restrictions of the STEP input in relation to the STRn input are preserved.

PHASE TABLE AND PHASE DIAGRAM

The key to understanding both of the available control methods lies in understanding the Phase Current table (Table 7). This table contains the relative phase current magnitude and direction for each of the two motor phases at each microstep position. The maximum resolution of the A4980 is one-sixteenth microstep. That is 16 microsteps per full step. There are 4 full steps per electrical cycle, so the phase current table has 64 microstep entries. The entries are numbered from 0 to 63. This number represents the phase angle within the full 360° electrical cycle and is called the Step Angle Number. This is illustrated in figure 8.

Figure 8. A4980 Phase Current Table as a Phase Diagram Values shown are referred to as the Step Angle Number

Figure 8 shows the contents of the phase current table as a phase diagram. The phase B current, I_B , from the phase current table, is plotted on horizontal axis and the phase A current, I_A , is plotted on the vertical axis. The resultant motor current at each microstep is shown as numbered radial arrows. The number shown corresponds to the one-sixteenth microstep Step Angle Number in the phase current table.

Figure 9 shows an example of calculating the resultant motor current magnitude and angle for step number 28. The target is to have the magnitude of the resultant motor current be 100% at all microstep positions. The relative phase currents from the phase current table are:

$$
I_A = 37.50\%
$$

$$
I_B = -92.19\%
$$

Assuming a full scale (100%) current of 1A means that the two phase currents are:

$$
I_A = 0.3750 A
$$

$$
I_B = -0.9219 A
$$

The magnitude of the resultant will be the square root of the sum of the squares of these two currents:

$$
|I_{28}| = \sqrt{I_A^2 + I_B^2} = \sqrt{0.1406 + 0.8499} = 0.9953
$$
 (A)

So the resultant current magnitude is 99.53% of full scale. This

Figure 9: Calculation of Resultant Motor Current

is within 0.5% of the target (100%) and is well within the \pm 5% accuracy of the A4980.

The reference angle, zero degrees (0°) , within the full electrical cycle (360°), is defined as the angle where I_B is at +100% and I_A is zero. Each full step is represented by 90° in the electrical cycle so each one-sixteenth microstep is: 90°/16 steps = 5.625°. The target angle of each microstep position with the electrical cycle is determined by the product of the Step Angle Number and the angle for a single microstep. So for the example of Figure 9:

$$
\alpha_{28(TARGET)} = 28 \times 5.625^{\circ} = 157.5^{\circ}
$$

The actual angle is calculated using basic trigonometry as:

$$
\alpha_{28(ACTUAL)} = 180 + \tan^{-1} \left(\frac{I_{A28}}{I_{B28}} \right)
$$

$$
= 180 + (-22.1) = 157.9^{\circ}
$$

So the angle error is only 0.4°. Equivalent to about 0.1% error in 360° and well within the current accuracy of the A4980.

Note that each phase current in the A4980 is defined by a 6-bit DAC. This means that the smallest resolution of the DAC is $100 / 64 = 1.56\%$ of the full scale, so the A4980 cannot produce a resultant motor current of exactly 100% at each microstep. Nor can it produce an exact microstep angle. However, as can be seen from the calculations above, the results for both are well within the specified accuracy of the A4980 current control. The resultant motor current angle and magnitude are also more than precise enough for all but the highest precision stepper motors.

With the phase current table, control of a stepper motor is simply a matter of increasing or decreasing the Step Angle Number to move around the phase diagram of Figure 8. This can be in predefined multiples using the STEP input, or it can be variable using the serial interface.

USING STEP AND DIRECTION CONTROL

The STEP input moves the motor at the microstep resolution defined by the two microstep select variables, MS0 and MS1, logic levels. The DIR input defines the motor direction. These inputs define the output of a translator which determines the required Step Angle Number in the phase current table. The MS0 and MS1 can be set to select full step, half step, quarter step, or sixteenth step microstepping as follows:

MS0 and MS1 can be accessed through the serial interface or directly on pins 13 and 12 respectively. The values of MS0 and MS1 are defined as the logical OR of the logic level on the input pins and the value in Configuration Register 0. The bits in the register default to 0 so if the serial interface is not used then MS0 and MS1 are defined by the input pins alone. If only the serial interface is used to set the microstep resolution, then the MS0 and MS1 logic input pins should be tied low to ensure that the register retains full control over all resolutions. Note that the microstep select variables, MS0 and MS1, are only used with the STEP input; they can be ignored if the motor is fully controlled through the serial interface.

In sixteenth step mode the translator simply increases or decreases the Step Angle Number on each rising edge of the STEP input, depending on the logic state of the DIR input. In the other three microstep resolution modes the translator outputs specific Step Angle Numbers as defined in the phase current table.

Full step uses four of the entries in the phase current table. These are 8, 24, 40, and 56 as shown in Figure 10. Note that the four positions selected for full step are not the points at which only one current is active, as would be the case in a simple on-off full step driver. There are two advantages in using these positions rather than the single full current positions. With both phases active, the power dissipation is shared between two drivers. This slightly improves the ability to dissipate the heat generated and reduces the stress on each driver.

The second reason is that the holding torque is slightly improved because the forces holding the motor are mainly rotational rather than mainly radial.

Half step uses eight of the entries in the phase current table. These are 0, 8, 16, 24, 32, 40, 48, and 56 as shown in Figure 11.

Quarter step uses sixteen of the entries in the phase current table. These are 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, and 60 as shown in Figure 12.

In half step and in quarter step, the single phase active positions are used to preserve symmetry. However, if the motor is required

