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SX Family FPGAs

Leading Edge Performance
• 320 MHz Internal Performance
• 3.7 ns Clock-to-Out (Pin-to-Pin)
• 0.1 ns Input Setup
• 0.25 ns Clock Skew

Specifications
• 12,000 to 48,000 System Gates
• Up to 249 User-Programmable I/O Pins
• Up to 1,080 Flip-Flops
• 0.35 µ CMOS

Features
• 66 MHz PCI
• CPLD and FPGA Integration
• Single-Chip Solution
• 100% Resource Utilization with 100% Pin Locking
• 3.3 V and 5.0 V Operation with 5.0 V Input Tolerance
• Very Low Power Consumption
• Deterministic, User-Controllable Timing
• Unique In-System Diagnostic and Debug Capability

with Silicon Explorer II
• Boundary Scan Testing in Compliance with IEEE

Standard 1149.1 (JTAG)
• Secure Programming Technology Prevents Reverse

Engineering and Design Theft


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SX Product Profile
Device A54SX08 A54SX16 A54SX16P A54SX32

Capacity
Typical Gates
System Gates

8,000
12,000

16,000
24,000

16,000
24,000

32,000
48,000

Logic Modules
Combinatorial Cells

768
512

1,452
924

1,452
924

2,880
1,800

Register Cells (Dedicated Flip-Flops) 256 528 528 1,080

Maximum User I/Os 130 175 175 249

Clocks 3 3 3 3

JTAG Yes Yes Yes Yes

PCI – – Yes –

Clock-to-Out 3.7 ns 3.9 ns 4.4 ns 4.6 ns

Input Setup (external) 0.8 ns 0.5 ns 0.5 ns 0.1 ns

Speed Grades Std, –1, –2, –3 Std, –1, –2, –3 Std, –1, –2, –3 Std, –1, –2, –3

Temperature Grades C, I, M C, I, M C, I, M C, I, M

Packages (by pin count)
PLCC
PQFP
VQFP
TQFP
PBGA
FBGA

84
208
100

144, 176
–

144

–
208
100
176

–
–

–
208
100

144, 176
–
–

–
208

–
144, 176
313, 329

–

v3.2



SX Family FPGAs

ii v3.2

Ordering Information  

Plastic Device Resources  

Part Number 
     A54SX08 = 12,000 System Gates 
     A54SX16 = 24,000 System Gates 
   A54SX16P = 24,000 System Gates 
     A54SX32 = 48,000 System Gates

Speed Grade 
  Blank = Standard Speed 
        –1 = Approximately 15% Faster than Standard 
        –2 = Approximately 25% Faster than Standard 
        –3 = Approximately 35% Faster than Standard

Package Type 
       BG = Ball Grid Array
       PL = Plastic Leaded Chip Carrier 
       PQ = Plastic Quad Flat Pack 
       TQ = Thin (1.4 mm) Quad Flat Pack 
       VQ = Very Thin (1.0 mm) Quad Flat Pack 
       FG = Fine Pitch Ball Grid Array (1.0 mm)

Package Lead Count

Application (Temperature Range) 
 Blank = Commercial (0 to +70˚C) 
         I = Industrial (–40 to +85˚C) 
       M = Military (–55 to +125˚C) 
      PP = Pre-production

A54SX16 P 2 PQ 208

Blank = Not PCI Compliant 
       P = PCI Compliant

G

Lead-Free Packaging
 Blank = Standard Packaging
 G = RoHS Compliant Packaging

–

Device 

User I/Os (including clock buffers)

PLCC 
84-Pin

VQFP
100-Pin

PQFP
208-Pin

TQFP
144-Pin

TQFP
176-Pin

PBGA 
313-Pin

PBGA 
329-Pin

FBGA 
144-Pin

A54SX08 69 81 130 113 128 – – 111

A54SX16 – 81 175 – 147 – – –

A54SX16P – 81 175 113 147 – – –

A54SX32 – – 174 113 147 249 249 –

Note: Package Definitions (Consult your local Actel sales representative for product availability):

PLCC = Plastic Leaded Chip Carrier
PQFP = Plastic Quad Flat Pack
TQFP = Thin Quad Flat Pack

VQFP = Very Thin Quad Flat Pack
PBGA = Plastic Ball Grid Array

FBGA = Fine Pitch (1.0 mm) Ball Grid Array
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SX Family FPGAs

General Description
The Actel SX family of FPGAs features a sea-of-modules
architecture that delivers device performance and
integration levels not currently achieved by any other
FPGA architecture. SX devices greatly simplify design
time, enable dramatic reductions in design costs and
power consumption, and further decrease time to
market for performance-intensive applications.

The Actel SX architecture features two types of logic
modules, the combinatorial cell (C-cell) and the register
cell (R-cell), each optimized for fast and efficient
mapping of synthesized logic functions. The routing and
interconnect resources are in the metal layers above the
logic modules, providing optimal use of silicon. This
enables the entire floor of the device to be spanned with
an uninterrupted grid of fine-grained, synthesis-friendly
logic modules (or “sea-of-modules”), which reduces the
distance signals have to travel between logic modules. To
minimize signal propagation delay, SX devices employ
both local and general routing resources. The high-speed
local routing resources (DirectConnect and FastConnect)
enable very fast local signal propagation that is optimal
for fast counters, state machines, and datapath logic.
The general system of segmented routing tracks allows
any logic module in the array to be connected to any
other logic or I/O module. Within this system,
propagation delay is minimized by limiting the number
of antifuse interconnect elements to five (90 percent of
connections typically use only three antifuses). The
unique local and general routing structure featured in
SX devices gives fast and predictable performance,
allows 100 percent pin-locking with full logic utilization,
enables concurrent PCB development, reduces design
time, and allows designers to achieve performance goals
with minimum effort.

Further complementing SX’s flexible routing structure is
a hardwired, constantly loaded clock network that has
been tuned to provide fast clock propagation with
minimal clock skew. Additionally, the high performance
of the internal logic has eliminated the need to embed
latches or flip-flops in the I/O cells to achieve fast clock-
to-out or fast input setup times. SX devices have easy to
use I/O cells that do not require HDL instantiation,
facilitating design reuse and reducing design and
verification time.

SX Family Architecture
The SX family architecture was designed to satisfy next-
generation performance and integration requirements
for production-volume designs in a broad range of
applications.

Programmable Interconnect Element

The SX family provides efficient use of silicon by locating
the routing interconnect resources between the Metal 2
(M2) and Metal 3 (M3) layers (Figure 1-1 on page 1-2).
This completely eliminates the channels of routing and
interconnect resources between logic modules (as
implemented on SRAM FPGAs and previous generations
of antifuse FPGAs), and enables the entire floor of the
device to be spanned with an uninterrupted grid of logic
modules.

Interconnection between these logic modules is achieved
using The Actel patented metal-to-metal programmable
antifuse interconnect elements, which are embedded
between the M2 and M3 layers. The antifuses are
normally open circuit and, when programmed, form a
permanent low-impedance connection.

The extremely small size of these interconnect elements
gives the SX family abundant routing resources and
provides excellent protection against design pirating.
Reverse engineering is virtually impossible because it is
extremely difficult to distinguish between programmed
and unprogrammed antifuses, and there is no
configuration bitstream to intercept.

Additionally, the interconnect elements (i.e., the
antifuses and metal tracks) have lower capacitance and
lower resistance than any other device of similar
capacity, leading to the fastest signal propagation in the
industry.

Logic Module Design
The SX family architecture is described as a “sea-of-
modules” architecture because the entire floor of the
device is covered with a grid of logic modules with
virtually no chip area lost to interconnect elements or
routing. The Actel SX family provides two types of logic
modules, the register cell (R-cell) and the combinatorial
cell (C-cell).
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The R-cell contains a flip-flop featuring asynchronous
clear, asynchronous preset, and clock enable (using the
S0 and S1 lines) control signals (Figure 1-2). The R-cell
registers feature programmable clock polarity selectable
on a register-by-register basis. This provides additional

flexibility while allowing mapping of synthesized
functions into the SX FPGA. The clock source for the
R-cell can be chosen from either the hardwired clock or
the routed clock. 

The C-cell implements a range of combinatorial functions
up to 5-inputs (Figure 1-3 on page 1-3). Inclusion of the
DB input and its associated inverter function dramatically
increases the number of combinatorial functions that can
be implemented in a single module from 800 options in
previous architectures to more than 4,000 in the SX
architecture. An example of the improved flexibility

enabled by the inversion capability is the ability to
integrate a 3-input exclusive-OR function into a single
C-cell. This facilitates construction of 9-bit parity-tree
functions with 2 ns propagation delays. At the same
time, the C-cell structure is extremely synthesis friendly,
simplifying the overall design and reducing synthesis
time. 

Figure 1-1 • SX Family Interconnect Elements

Figure 1-2 • R-Cell
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Chip Architecture
The SX family chip architecture provides a unique
approach to module organization and chip routing that
delivers the best register/logic mix for a wide variety of
new and emerging applications.

Module Organization
Actel has arranged all C-cell and R-cell logic modules into
horizontal banks called clusters. There are two types of
clusters: Type 1 contains two C-cells and one R-cell, while
Type 2 contains one C-cell and two R-cells.

To increase design efficiency and device performance,
Actel has further organized these modules into
SuperClusters (Figure 1-4). SuperCluster 1 is a two-wide
grouping of Type 1 clusters. SuperCluster 2 is a two-wide
group containing one Type 1 cluster and one Type 2
cluster. SX devices feature more SuperCluster 1 modules
than SuperCluster 2 modules because designers typically
require significantly more combinatorial logic than flip-
flops.   

Figure 1-3 • C-Cell

Figure 1-4 • Cluster Organization
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Routing Resources
Clusters and SuperClusters can be connected through the use of two innovative local routing resources called
FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within
clusters and SuperClusters (Figure 1-5 and Figure 1-6). This routing architecture also dramatically reduces the number
of antifuses required to complete a circuit, ensuring the highest possible performance.

Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters

Routing Segments
• Typically 2 antifuses
• Max. 5 antifuses

FastConnect
• One antifuse
• 0.4 ns routing delay

DirectConnect
• No antifuses
• 0.1 ns routing delay

Routing Segments
• Typically 2 antifuses
• Max. 5 antifuses

FastConnect
• One antifuse
• 0.4 ns routing delay

DirectConnect
• No antifuses
• 0.1 ns routing delay
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DirectConnect is a horizontal routing resource that
provides connections from a C-cell to its neighboring R-
cell in a given SuperCluster. DirectConnect uses a
hardwired signal path requiring no programmable
interconnection to achieve its fast signal propagation
time of less than 0.1 ns.

FastConnect enables horizontal routing between any
two logic modules within a given SuperCluster and
vertical routing with the SuperCluster immediately
below it. Only one programmable connection is used in a
FastConnect path, delivering maximum pin-to-pin
propagation of 0.4 ns.

In addition to DirectConnect and FastConnect, the
architecture makes use of two globally oriented routing
resources known as segmented routing and high-drive
routing. The Actel segmented routing structure provides
a variety of track lengths for extremely fast routing
between SuperClusters. The exact combination of track
lengths and antifuses within each path is chosen by the
100 percent automatic place-and-route software to
minimize signal propagation delays.

The Actel high-drive routing structure provides three
clock networks. The first clock, called HCLK, is hardwired
from the HCLK buffer to the clock select multiplexer
(MUX) in each R-cell. This provides a fast propagation
path for the clock signal, enabling the 3.7 ns clock-to-out
(pin-to-pin) performance of the SX devices. The
hardwired clock is tuned to provide clock skew as low as
0.25 ns. The remaining two clocks (CLKA, CLKB) are
global clocks that can be sourced from external pins or
from internal logic signals within the SX device.

Other Architectural Features

Technology
The Actel SX family is implemented on a high-voltage
twin-well CMOS process using 0.35 µ design rules. The
metal-to-metal antifuse is made up of a combination of
amorphous silicon and dielectric material with barrier
metals and has a programmed ("on" state) resistance of
25 Ω with a capacitance of 1.0 fF for low signal impedance.

Performance
The combination of architectural features described
above enables SX devices to operate with internal clock
frequencies exceeding 300 MHz, enabling very fast
execution of even complex logic functions. Thus, the SX
family is an optimal platform upon which to integrate
the functionality previously contained in multiple CPLDs.
In addition, designs that previously would have required
a gate array to meet performance goals can now be
integrated into an SX device with dramatic
improvements in cost and time to market. Using timing-
driven place-and-route tools, designers can achieve
highly deterministic device performance. With SX
devices, designers do not need to use complicated
performance-enhancing design techniques such as the
use of redundant logic to reduce fanout on critical nets
or the instantiation of macros in HDL code to achieve
high performance.

I/O Modules
Each I/O on an SX device can be configured as an input,
an output, a tristate output, or a bidirectional pin. 

Even without the inclusion of dedicated I/O registers,
these I/Os, in combination with array registers, can
achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns.
I/O cells that have embedded latches and flip-flops
require instantiation in HDL code; this is a design
complication not encountered in SX FPGAs. Fast pin-to-
pin timing ensures that the device will have little trouble
interfacing with any other device in the system, which in
turn enables parallel design of system components and
reduces overall design time.

Power Requirements
The SX family supports 3.3 V operation and is designed
to tolerate 5.0 V inputs. (Table 1-1). Power consumption
is extremely low due to the very short distances signals
are required to travel to complete a circuit. Power
requirements are further reduced because of the small
number of low-resistance antifuses in the path. The
antifuse architecture does not require active circuitry to
hold a charge (as do SRAM or EPROM), making it the
lowest power architecture on the market.

Table 1-1 • Supply Voltages

Device VCCA VCCI VCCR Maximum Input Tolerance Maximum Output Drive

A54SX08

A54SX16
A54SX32

3.3 V 3.3 V 5.0 V 5.0 V 3.3 V

A54SX16-P* 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V

3.3 V 3.3 V 5.0 V 5.0 V 3.3 V

3.3 V 5.0 V 5.0 V 5.0 V 5.0 V

Note: *A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5.0 V drive.
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Boundary Scan Testing (BST)
All SX devices are IEEE 1149.1 compliant. SX devices offer
superior diagnostic and testing capabilities by providing
Boundary Scan Testing (BST) and probing capabilities.
These functions are controlled through the special test
pins in conjunction with the program fuse. The
functionality of each pin is described in Table 1-2. In the
dedicated test mode, TCK, TDI, and TDO are dedicated
pins and cannot be used as regular I/Os. In flexible mode,
TMS should be set HIGH through a pull-up resistor of
10 kΩ. TMS can be pulled LOW to initiate the test
sequence.

The program fuse determines whether the device is in
dedicated or flexible mode. The default (fuse not blown)
is flexible mode. 

Dedicated Test Mode

In Dedicated mode, all JTAG pins are reserved for BST;
designers cannot use them as regular I/Os. An internal
pull-up resistor is automatically enabled on both TMS
and TDI pins, and the TMS pin will function as defined in
the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, users need to reserve the JTAG
pins in Actel's Designer software by checking the
"Reserve JTAG" box in "Device Selection Wizard"
(Figure 1-7). JTAG pins comply with LVTTL/TTL I/O
specification regardless of whether they are used as a
user I/O or a JTAG I/O. Refer to the Table 1-5 on page 1-8
for detailed specifications.

Development Tool Support
The SX family of FPGAs is fully supported by both the
Actel Libero® Integrated Design Environment (IDE) and
Designer FPGA Development software. Actel Libero IDE
is a design management environment, seamlessly
integrating design tools while guiding the user through
the design flow, managing all design and log files, and
passing necessary design data among tools. Libero IDE
allows users to integrate both schematic and HDL
synthesis into a single flow and verify the entire design
in a single environment. Libero IDE includes Synplify® for
Actel from Synplicity®, ViewDraw® for Actel from
Mentor Graphics®, ModelSim® HDL Simulator from
Mentor Graphics, WaveFormer Lite™ from
SynaptiCAD™, and Designer software from Actel. Refer
to the Libero IDE flow diagram (located on the Actel
website) for more information.

Actel Designer software is a place-and-route tool and
provides a comprehensive suite of backend support tools
for FPGA development. The Designer software includes
timing-driven place-and-route, and a world-class
integrated static timing analyzer and constraints editor.
With the Designer software, a user can select and lock
package pins while only minimally impacting the results
of place-and-route. Additionally, the back-annotation
flow is compatible with all the major simulators, and the
simulation results can be cross-probed with Silicon
Explorer II, Actel integrated verification and logic
analysis tool. Another tool included in the Designer
software is the SmartGen core generator, which easily
creates popular and commonly used logic functions for
implementation into your schematic or HDL design. Actel
Designer software is compatible with the most popular
FPGA design entry and verification tools from companies
such as Mentor Graphics, Synplicity, Synopsys®, and
Cadence® Design Systems. The Designer software is
available for both the Windows® and UNIX® operating
systems.

Probe Circuit Control Pins
The Silicon Explorer II tool uses the boundary scan ports
(TDI, TCK, TMS, and TDO) to select the desired nets for
verification. The selected internal nets are assigned to
the PRA/PRB pins for observation. Figure 1-8 on page 1-7
illustrates the interconnection between Silicon Explorer II
and the FPGA to perform in-circuit verification. 

Design Considerations
The TDI, TCK, TDO, PRA, and PRB pins should not be used
as input or bidirectional ports. Because these pins are
active during probing, critical signals input through
these pins are not available while probing. In addition,
the Security Fuse should not be programmed because
doing so disables the Probe Circuitry.

Table 1-2 • Boundary Scan Pin Functionality

Program Fuse Blown 
(Dedicated Test Mode)

Program Fuse Not Blown 
(Flexible Mode)

TCK, TDI, TDO are dedicated
BST pins.

TCK, TDI, TDO are flexible and
may be used as I/Os.

No need for pull-up resistor for

TMS

Use a pull-up resistor of 10 kΩ
on TMS.

Figure 1-7 • Device Selection Wizard
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Programming
Device programming is supported through Silicon
Sculptor series of programmers. In particular, Silicon
Sculptor II are compact, robust, single-site and multi-site
device programmer for the PC.

With standalone software, Silicon Sculptor II allows
concurrent programming of multiple units from the
same PC, ensuring the fastest programming times
possible. Each fuse is subsequently verified by Silicon
Sculptor II to insure correct programming. In addition,
integrity tests ensure that no extra fuses are
programmed. Silicon Sculptor II also provides extensive
hardware self-testing capability.

The procedure for programming an SX device using
Silicon Sculptor II are as follows:

1. Load the .AFM file

2. Select the device to be programmed

3. Begin programming

When the design is ready to go to production, Actel
offers device volume-programming services either
through distribution partners or via in-house
programming from the factory.

For more details on programming SX devices, refer to the
Programming Antifuse Devices application note and the
Silicon Sculptor II User's Guide.

3.3 V / 5 V Operating Conditions  

Figure 1-8 • Probe Setup

 SX FPGATDI
TCK

TDO

TMS

PRA

PRB

Serial Connection

16 Channels

Silicon
Explorer II

Table 1-3 • Absolute Maximum Ratings1

Symbol Parameter Limits Units

VCCR
2 DC Supply Voltage3 –0.3 to + 6.0 V

VCCA
2 DC Supply Voltage –0.3 to + 4.0 V

VCCI
2 DC Supply Voltage (A54SX08, A54SX16, A54SX32) –0.3 to + 4.0 V

VCCI
2 DC Supply Voltage (A54SX16P) –0.3 to + 6.0 V

VI Input Voltage –0.5 to + 5.5 V

VO Output Voltage –0.5 to + 3.6 V

IIO I/O Source Sink Current3 –30 to + 5.0 mA

TSTG Storage Temperature –65 to +150 °C

Notes:

1. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute
maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the
Recommended Operating Conditions.

2. VCCR in the A54SX16P must be greater than or equal to VCCI during power-up and power-down sequences and during normal
operation.

3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC +
0.5 V or less than GND – 0.5 V, the internal protection diodes will forward-bias and can draw excessive current.
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Table 1-4 • Recommended Operating Conditions

Parameter Commercial Industrial Military Units

Temperature Range* 0 to + 70 –40 to + 85 –55 to +125 °C

3.3 V Power Supply Tolerance ±10 ±10 ±10 %VCC

5.0 V Power Supply Tolerance ±5 ±10 ±10 %VCC

Note: *Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military.

Table 1-5 • Electrical Specifications

Commercial Industrial

UnitsSymbol Parameter Min. Max. Min. Max.

VOH (IOH = –20 µA) (CMOS)

(IOH = –8 mA) (TTL)

(IOH = –6 mA) (TTL)

(VCCI – 0.1)

2.4

VCCI

VCCI

(VCCI – 0.1)

2.4

VCCI

VCCI

V

VOL (IOL= 20 µA) (CMOS)

(IOL = 12 mA) (TTL)

(IOL = 8 mA) (TTL)

0.10

0.50

0.50

V

VIL 0.8 0.8 V

VIH 2.0 2.0 V

 tR, tF Input Transition Time tR, tF 50 50 ns

CIO CIO I/O Capacitance 10 10 pF

 ICC Standby Current, ICC 4.0 4.0 mA

 ICC(D)  ICC(D) IDynamic VCC Supply Current See "Evaluating Power in SX Devices" on page 1-16.
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PCI Compliance for the SX Family
The SX family supports 3.3 V and 5.0 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1. 

Table 1-6 • A54SX16P DC Specifications (5.0 V PCI Operation)

Symbol Parameter Condition Min. Max. Units

VCCA Supply Voltage for Array 3.0 3.6 V

VCCR Supply Voltage required for Internal Biasing 4.75 5.25 V

VCCI Supply Voltage for I/Os 4.75 5.25 V

VIH Input High Voltage1 2.0 VCC + 0.5 V

VIL Input Low Voltage1 –0.5 0.8 V

IIH Input High Leakage Current VIN = 2.7 70 µA

IIL Input Low Leakage Current VIN = 0.5 –70 µA

VOH Output High Voltage IOUT = –2 mA 2.4 V

VOL Output Low Voltage2 IOUT = 3 mA, 6 mA 0.55 V

CIN Input Pin Capacitance3 10 pF

CCLK CLK Pin Capacitance 5 12 pF

CIDSEL IDSEL Pin Capacitance4 8 pF

Notes:

1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.

2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter include,
FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used, AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and
ACK64#.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).

4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].
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A54SX16P AC Specifications for (PCI Operation)

Table 1-7 • A54SX16P AC Specifications for (PCI Operation)

Symbol Parameter Condition Min. Max. Units

IOH(AC) Switching Current High 0 < VOUT ≤ 1.41 –44 mA

1.4 ≤ VOUT < 2.41, 2 –44 + (VOUT – 1.4)/0.024 mA

3.1 < VOUT < VCC
1, 3  EQ 1-1 on page 1-11

(Test Point) VOUT = 3.13 –142 mA

IOL(AC) Switching Current High VOUT ≥ 2.21 95 mA

2.2 > VOUT > 0.551 VOUT/0.023

 0.71 > VOUT > 01, 3 EQ 1-2 on page 1-11 mA

(Test Point) VOUT = 0.713 206 mA

ICL Low Clamp Current –5 < VIN ≤ –1 –25 + (VIN + 1) /0.015 mA

slewR Output Rise Slew Rate 0.4 V to 2.4 V load4 1 5 V/ns

slewF Output Fall Slew Rate 2.4 V to 0.4 V load4 1 5 V/ns

Notes:

1. Refer to the V/I curves in Figure 1-9 on page 1-11. Switching current characteristics for REQ# and GNT# are permitted to be one half
of that specified here; i.e., half-size output drivers may be used on these signals. This specification does not apply to CLK and RST#,
which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#,
which are open drain outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than
toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A
and B) are provided with the respective diagrams in Figure 1-9 on page 1-11. The equation defined maxima should be met by
design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any
point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter
with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum
parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not
required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates;
therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should
ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

1/2 in. max.

Pin

Output 
Buffer VCC

10 pF

1 kΩ
1 kΩ
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Figure 1-9 shows the 5.0 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P
device.

IOH = 11.9 × (VOUT – 5.25) × (VOUT + 2.45)

for VCC > VOUT > 3.1 V

EQ 1-1

IOL = 78.5 × VOUT × (4.4 – VOUT)

for 0 V < VOUT < 0.71 V

EQ 1-2

Figure 1-9 • 5.0 V PCI Curve for A54SX16P Device
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A54SX16P DC Specifications (3.3 V PCI Operation)

Table 1-8 • A54SX16P DC Specifications (3.3 V PCI Operation)

Symbol Parameter Condition Min. Max. Units

VCCA Supply Voltage for Array 3.0 3.6 V

VCCR Supply Voltage required for Internal Biasing 3.0 3.6 V

VCCI Supply Voltage for I/Os 3.0 3.6 V

VIH Input High Voltage 0.5VCC VCC + 0.5 V

VIL Input Low Voltage –0.5 0.3VCC V

IIPU Input Pull-up Voltage1 0.7VCC V

IIL Input Leakage Current2 0 < VIN < VCC ±10 µA

VOH Output High Voltage IOUT = –500 µA 0.9VCC V

VOL Output Low Voltage IOUT = 1500 µA 0.1VCC V

CIN Input Pin Capacitance3 10 pF

CCLK CLK Pin Capacitance 5 12 pF

CIDSEL IDSEL Pin Capacitance4 8 pF

Notes:

1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a
floated network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current
at this input voltage.

2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK). 

4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].
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A54SX16P AC Specifications (3.3 V PCI Operation)

Table 1-9 • A54SX16P AC Specifications (3.3 V PCI Operation)

Symbol Parameter Condition Min. Max. Units

IOH(AC)

Switching Current High 0 < VOUT ≤ 0.3VCC
1 mA

0.3VCC ≤ VOUT < 0.9VCC
1 –12VCC mA

0.7VCC < VOUT < VCC
1, 2  –17.1 + (VCC – VOUT) EQ 1-3 on page 1-14

(Test Point) VOUT = 0.7VCC
2 –32VCC mA

IOL(AC)

Switching Current High VCC > VOUT ≥ 0.6VCC
1 mA

0.6VCC > VOUT > 0.1VCC
1 16VCC mA

 0.18VCC > VOUT > 01, 2 26.7VOUT EQ 1-4 on page 1-14 mA

(Test Point) VOUT = 0.18VCC
2 38VCC

ICL Low Clamp Current –3 < VIN ≤ –1 –25 + (VIN + 1)/0.015 mA

ICH High Clamp Current –3 < VIN ≤ –1 25 + (VIN – VOUT – 1)/0.015 mA

slewR Output Rise Slew Rate3 0.2VCC to 0.6VCC load 1 4 V/ns

slewF Output Fall Slew Rate3 0.6VCC to 0.2VCC load 1 4 V/ns

Notes:

1. Refer to the V/I curves in Figure 1-10 on page 1-14. Switching current characteristics for REQ# and GNT# are permitted to be
one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to
CLK and RST# which are system outputs. “Switching Current High” specification are not relevant to SERR#, INTA#, INTB#,
INTC#, and INTD# which are open drain outputs.

2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums
(C and D) are provided with the respective diagrams in Figure 1-10 on page 1-14. The equation defined maxima should be
met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output
driver.

3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate
at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet
this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both
maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply
to open drain outputs.

1/2 in. max.

Pin

Output 
Buffer VCC

10 pF

1 kΩ
1 kΩ
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Figure 1-10 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P
device.

IOH = (98.0/VCC) × (VOUT – VCC) × (VOUT + 0.4VCC)

for VCC > VOUT > 0.7 VCC

EQ 1-3

IOL = (256/VCC) × VOUT × (VCC – VOUT)

for 0 V < VOUT < 0.18 VCC

EQ 1-4

Figure 1-10 • 3.3 V PCI Curve for A54SX16P Device
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Power-Up Sequencing

Power-Down Sequencing

Table 1-10 • Power-Up Sequencing

VCCA VCCR VCCI Power-Up Sequence Comments

A54SX08, A54SX16, A54SX32

3.3 V 5.0 V 3.3 V 5.0 V First

3.3 V Second

No possible damage to device

3.3 V First
5.0 V Second

Possible damage to device

A54SX16P

3.3 V 3.3 V 3.3 V 3.3 V Only No possible damage to device

3.3 V 5.0 V 3.3 V 5.0 V First

3.3 V Second

No possible damage to device

3.3 V First
5.0 V Second

Possible damage to device

3.3 V 5.0 V 5.0 V 5.0 V First
3.3 V Second

No possible damage to device

3.3 V First

5.0 V Second

No possible damage to device

Note: No inputs should be driven (high or low) before completion of power-up.

Table 1-11 • Power-Down Sequencing

VCCA VCCR VCCI Power-Down Sequence Comments

A54SX08, A54SX16, A54SX32

3.3 V 5.0 V 3.3 V 5.0 V First

3.3 V Second

Possible damage to device

3.3 V First
5.0 V Second

No possible damage to device

A54SX16P

3.3 V 3.3 V 3.3 V 3.3 V Only No possible damage to device

3.3 V 5.0 V 3.3 V 5.0 V First

3.3 V Second

Possible damage to device

3.3 V First
5.0 V Second

No possible damage to device

3.3 V 5.0 V 5.0 V 5.0 V First
3.3 V Second

No possible damage to device

3.3 V First

5.0 V Second

No possible damage to device

Note: No inputs should be driven (high or low) after the beginning of the power-down sequence. 
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Evaluating Power in SX Devices
A critical element of system reliability is the ability of
electronic devices to safely dissipate the heat generated
during operation. The thermal characteristics of a circuit
depend on the device and package used, the operating
temperature, the operating current, and the system's
ability to dissipate heat.

You should complete a power evaluation early in the
design process to help identify potential heat-related
problems in the system and to prevent the system from
exceeding the device’s maximum allowed junction
temperature. 

The actual power dissipated by most applications is
significantly lower than the power the package can
dissipate. However, a thermal analysis should be
performed for all projects. To perform a power
evaluation, follow these steps: 

1. Estimate the power consumption of the
application. 

2. Calculate the maximum power allowed for the
device and package. 

3. Compare the estimated power and maximum
power values. 

Estimating Power Consumption

The total power dissipation for the SX family is the sum
of the DC power dissipation and the AC power
dissipation. Use EQ 1-5 to calculate the estimated power
consumption of your application.

PTotal = PDC + PAC 

EQ 1-5

DC Power Dissipation
The power due to standby current is typically a small
component of the overall power. The Standby power is
shown in Table 1-12 for commercial, worst-case
conditions (70°C).

The DC power dissipation is defined in EQ 1-6.

PDC = (Istandby) × VCCA + (Istandby) × VCCR + 

(Istandby) × VCCI + xVOL × IOL + y(VCCI – VOH) × VOH

EQ 1-6

AC Power Dissipation
The power dissipation of the SX Family is usually
dominated by the dynamic power dissipation. Dynamic
power dissipation is a function of frequency, equivalent
capacitance, and power supply voltage. The AC power
dissipation is defined in EQ 1-7 and EQ 1-8.

PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net +
POutput Buffer + PInput Buffer 

EQ 1-7

PAC = VCCA
2 × [(m × CEQM × fm)Module + 

(n × CEQI × fn)Input Buffer+ (p × (CEQO + CL) × fp)Output Buffer + 

(0.5 × (q1 × CEQCR × fq1) + (r1 × fq1))RCLKA + 

(0.5 × (q2 × CEQCR × fq2)+ (r2 × fq2))RCLKB + 

(0.5 × (s1 × CEQHV × fs1) + (CEQHF × fs1))HCLK]

EQ 1-8

Definition of Terms Used in Formula
m = Number of logic modules switching at fm

n = Number of input buffers switching at fn

p = Number of output buffers switching at fp

q1 = Number of clock loads on the first routed array
clock

q2 = Number of clock loads on the second routed array
clock

x = Number of I/Os at logic low

y = Number of I/Os at logic high

r1 = Fixed capacitance due to first routed array clock

r2 = Fixed capacitance due to second routed array
clock

s1 = Number of clock loads on the dedicated array
clock

CEQM = Equivalent capacitance of logic modules in pF

CEQI = Equivalent capacitance of input buffers in pF

CEQO = Equivalent capacitance of output buffers in pF

CEQCR = Equivalent capacitance of routed array clock in pF

CEQHV = Variable capacitance of dedicated array clock

CEQHF = Fixed capacitance of dedicated array clock

CL = Output lead capacitance in pF

fm = Average logic module switching rate in MHz

fn = Average input buffer switching rate in MHz

fp = Average output buffer switching rate in MHz

fq1 = Average first routed array clock rate in MHz

fq2 = Average second routed array clock rate in MHz

fs1 = Average dedicated array clock rate in MHz

Table 1-12 • Standby Power

ICC VCC Power

4 mA 3.6 V 14.4 mW
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Table 1-13 shows capacitance values for various
devices.

Guidelines for Calculating Power 

Consumption

The power consumption guidelines are meant to
represent worst-case scenarios so that they can be
generally used to predict the upper limits of power
dissipation. These guidelines are shown in Table 1-14.

Sample Power Calculation 

One of the designs used to characterize the SX family
was a 528 bit serial-in, serial-out shift register. The design
utilized 100 percent of the dedicated flip-flops of an
A54SX16P device. A pattern of 0101… was clocked into
the device at frequencies ranging from 1 MHz to
200 MHz. Shifting in a series of 0101… caused 50 percent
of the flip-flops to toggle from low to high at every clock
cycle.

Follow the steps below to estimate power consumption.
The values provided for the sample calculation below are
for the shift register design above. This method for
estimating power consumption is conservative and the
actual power consumption of your design may be less
than the estimated power consumption.

The total power dissipation for the SX family is the sum
of the AC power dissipation and the DC power
dissipation.

PTotal = PAC (dynamic power) + PDC (static power)

EQ 1-9

AC Power Dissipation

PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net +
POutput Buffer + PInput Buffer

EQ 1-10

PAC = VCCA
2 × [(m × CEQM × fm)Module + 

(n × CEQI × fn)Input Buffer+ (p × (CEQO + CL) × fp)Output Buffer +

(0.5 (q1 × CEQCR × fq1) + (r1 × fq1))RCLKA + 

(0.5 (q2 × CEQCR × fq2)+ (r2 × fq2))RCLKB + 

(0.5 (s1 × CEQHV × fs1) + (CEQHF × fs1))HCLK]

EQ 1-11

Table 1-13 • Capacitance Values for Devices

A54SX08 A54SX16 A54SX16P A54SX32

CEQM (pF) 4.0 4.0 4.0 4.0

CEQI (pF) 3.4 3.4 3.4 3.4

CEQO (pF) 4.7 4.7 4.7 4.7

CEQCR (pF) 1.6 1.6 1.6 1.6

CEQHV 0.615 0.615 0.615 0.615

CEQHF 60 96 96 140

r1 (pF) 87 138 138 171

r2 (pF) 87 138 138 171

Table 1-14 • Power Consumption Guidelines

Description Power Consumption Guideline

Logic Modules (m) 20% of modules

Inputs Switching (n) # inputs/4

Outputs Switching (p) # outputs/4

First Routed Array Clock Loads (q1) 20% of register cells 

Second Routed Array Clock Loads (q2) 20% of register cells

Load Capacitance (CL) 35 pF

Average Logic Module Switching Rate (fm) f/10

Average Input Switching Rate (fn) f/5

Average Output Switching Rate (fp) f/10

Average First Routed Array Clock Rate (fq1) f/2

Average Second Routed Array Clock Rate (fq2) f/2

Average Dedicated Array Clock Rate (fs1) f

Dedicated Clock Array Clock Loads (s1) 20% of regular modules
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Step 3: Calculate DC Power Dissipation

DC Power Dissipation

PDC = (Istandby) × VCCA + (Istandby) × VCCR + (Istandby) × 

VCCI + X × VOL × IOL + Y(VCCI – VOH) × VOH

EQ 1-12

For a rough estimate of DC Power Dissipation, only use
PDC = (Istandby) × VCCA. The rest of the formula provides a
very small number that can be considered negligible.

PDC = (Istandby) × VCCA

PDC = .55 mA × 3.3 V

PDC  = 0.001815 W

Step 4: Calculate Total Power Consumption

PTotal = PAC + PDC

PTotal = 1.461 + 0.001815

PTotal = 1.4628 W

Step 5: Compare Estimated Power Consumption 
against Characterized Power Consumption

The estimated total power consumption for this design is
1.46 W. The characterized power consumption for this
design at 200 MHz is 1.0164 W.

Step 1: Define Terms Used in Formula  

VCCA 3.3

Module

Number of logic modules switching 
at fm (Used 50%)

m 264

Average logic modules switching rate 
fm (MHz) (Guidelines: f/10)

fm 20

Module capacitance CEQM (pF) CEQM 4.0

Input Buffer

Number of input buffers switching at fn n 1

Average input switching rate fn (MHz)
(Guidelines: f/5)

fn 40

Input buffer capacitance CEQI (pF) CEQI 3.4

Output Buffer

Number of output buffers switching at fp p 1

Average output buffers switching rate 
fp(MHz) (Guidelines: f/10)

fp 20

Output buffers buffer capacitance 
CEQO (pF)

CEQO 4.7

Output Load capacitance CL (pF) CL 35

RCLKA

Number of Clock loads q1 q1 528

Capacitance of routed array clock (pF) CEQCR 1.6

Average clock rate (MHz) fq1 200

Fixed capacitance (pF) r1 138

RCLKB

Number of Clock loads q2 q2 0

Capacitance of routed array clock (pF) CEQCR 1.6

Average clock rate (MHz) fq2 0

Fixed capacitance (pF) r2 138

HCLK

Number of Clock loads s1 0

Variable capacitance of dedicated 
array clock (pF)

CEQHV 0.61
5

Fixed capacitance of dedicated 
array clock (pF)

CEQHF 96

Average clock rate (MHz) fs1 0

Step 2: Calculate Dynamic Power Consumption

VCCA × VCCA 10.89

m × fm × CEQM 0.02112

n × fn × CEQI 0.000136

p × fp × (CEQO+CL) 0.000794

0.5 (q1 × CEQCR × fq1) + (r1 × fq1) 0.11208

0.5(q2 × CEQCR × fq2) + (r2 × fq2) 0

0.5 (s1 × CEQHV × fs1) + (CEQHF × fs1) 0

PAC   = 1.461 W
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Figure 1-11 shows the characterized power dissipation numbers for the shift register design using frequencies ranging
from 1 MHz to 200 MHz.

Junction Temperature (TJ)

The temperature that you select in Designer Series
software is the junction temperature, not ambient
temperature. This is an important distinction because the
heat generated from dynamic power consumption is
usually hotter than the ambient temperature. Use the
equation below to calculate junction temperature.

Junction Temperature = ΔT + Ta

EQ 1-13

Where:

Ta = Ambient Temperature

ΔT = Temperature gradient between junction (silicon)
and ambient 

ΔT = θja × P

P = Power calculated from Estimating Power
Consumption section

θja = Junction to ambient of package. θja numbers are
located in the "Package Thermal Characteristics"
section.

Package Thermal Characteristics
The device junction to case thermal characteristic is θjc,
and the junction to ambient air characteristic is θja. The
thermal characteristics for θja are shown with two
different air flow rates. 

The maximum junction temperature is 150 °C. 

A sample calculation of the absolute maximum power
dissipation allowed for a TQFP 176-pin package at
commercial temperature and still air is as follows:

 

EQ 1-14

Figure 1-11 • Power Dissipation
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Table 1-15 • Package Thermal Characteristics

Package Type Pin Count θjc

θja
Still Air

θja
300 ft/min. Units

Plastic Leaded Chip Carrier (PLCC) 84 12 32 22 °C/W

Thin Quad Flat Pack (TQFP) 144 11 32 24 °C/W

Thin Quad Flat Pack (TQFP) 176 11 28 21 °C/W

Very Thin Quad Flatpack (VQFP) 100 10 38 32 °C/W

Plastic Quad Flat Pack (PQFP) without Heat Spreader 208 8 30 23 °C/W

Plastic Quad Flat Pack (PQFP) with Heat Spreader 208 3.8 20 17 °C/W

Plastic Ball Grid Array (PBGA) 272 3 20 14.5 °C/W

Plastic Ball Grid Array (PBGA) 313 3 23 17 °C/W

Plastic Ball Grid Array (PBGA) 329 3 18 13.5 °C/W

Fine Pitch Ball Grid Array (FBGA) 144 3.8 38.8 26.7 °C/W

Note: SX08 does not have a heat spreader.

Table 1-16 • Temperature and Voltage Derating Factors*

VCCA

Junction Temperature

–55 –40 0 25 70 85 125

3.0 0.75 0.78 0.87 0.89 1.00 1.04 1.16

3.3 0.70 0.73 0.82 0.83 0.93 0.97 1.08

3.6 0.66 0.69 0.77 0.78 0.87 0.92 1.02

Note: *Normalized to worst-case commercial, TJ = 70°C, VCCA = 3.0 V
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SX Timing Model 

Hardwired Clock

External Setup = tINY + tIRD1 + tSUD – tHCKH

= 1.5 + 0.3 + 0.5 – 1.0 = 1.3 ns

EQ 1-15

Clock-to-Out (Pin-to-Pin)

= tHCKH + tRCO + tRD1 + tDHL

= 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns

EQ 1-16

Routed Clock

External Setup = tINY + tIRD1 + tSUD – tRCKH

= 1.5 + 0.3 + 0.5 – 1.5 = 0.8 ns

EQ 1-17

Clock-to-Out (Pin-to-Pin)

= tRCKH + tRCO + tRD1 + tDHL

= 1.52+ 0.8 + 0.3 + 1.6 = 4.2 ns

EQ 1-18

   

Note: Values shown for A54SX08-3, worst-case commercial conditions.

Figure 1-12 • SX Timing Model
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