

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AB-RTCMC-32.768kHz-AIGZ-S7

Moisture Sensitivity Level: MSL=1

- With state-of-the-art RTC Technology by Micro Crystal AG
- RTC module with built-in crystal oscillating at 32.768 kHz
- 350 nA timekeeping current at 3 V
- Timekeeping down to 1.0 V
- 1.3 V to 4.4 V I2C bus operating voltage
- Low operating current of 35 μA (at 400 kHz)
- 32.768kHz square wave on power-up to drive a microcontroller in low-power mode- Programmable from 1 Hz to 32.768kHz;- Can be disabled
- 400 kHz I2C serial interface
- Oscillator stop detection circuit monitors clock operation
- Accurate programmable watchdog— 62.5 ms to 31 min timeout
- Counters for tenths/hundredths of seconds, seconds, minutes, hours, day, date, month, year, and century
- Software clock calibration to compensate deviation of crystal due to temperature
- Automatic leap year compensation
- Ultra-small, 3.2 x1.5 mm, lead-free 8-pin ceramic leadless chip carrier

> STANDARD SPECIFICATIONS:

Absolute Maximum Ratings

In accordance with the Absolute Maximum Rating System IEC 60134

Parameters	Symbol	Conditions	Min.	Max.	Units
Supply Voltage	V_{DD}	>GND $/$ $<$ V _{DD}	GND-0.3	+5.0	V
Input Voltage	V_{I}		GND-0.2	$V_{DD} + 0.3$	V
Output Voltage	V_{O}		GND-0.2	V _{DD} +0.3	V
Output Current	I_{O}			20	mA
Power Dissipation	P_{D}			1	W
Operating Ambient Temperature Range	T_{OPR}		-40	+85	°C
Storage Temperature Range	T_{STO}	Stored as bare product	-55	+125	$^{\circ}\mathrm{C}$
Electro Static Discharge Voltage	V_{ESD}	$HBM^{1)} T_A = 25$ °C $MM^{2)} T_A = 25$ °C		>1500 >1000	V

- 1) HBM: Human Body Model, according to JESD22-A114.
- 2) MM: Machine Model, according to JESD22-A115.

These data are based on characterization results, not tested in production. Stresses above these listed maximum ratings may cause permanent damage to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

Operating and AC Measurement Conditions 1)

Parameters	Symbol	Min.	Max.	Units
Supply Voltage	V_{DD}	1.3	4.4	V
Operating Ambient Temperature	T_{A}	-40	+85	°C
Load Capacitance	C_{L}		50	pF
Input Rise and Fall Times			5	ns
Input Pulse Voltages		$0.2*V_{\mathrm{DD}}$	$0.8*V_{\mathrm{DD}}$	V
Input and Output timing ref. Voltage		$0.3*V_{DD}$	$0.7*V_{DD}$	V

1) Output Hi-Z is defined as the point where data is no longer driven.

3.2 x 1.5 x 0.8 mm

APPLICATIONS:

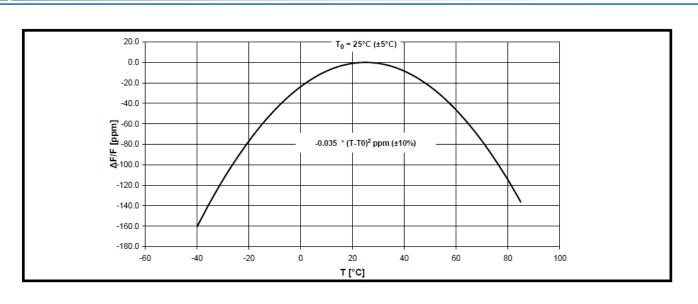
- Wide range in communication & measuring equipment
- Commercial & Industrial applications
- Automotive electronics applications
- Wireless communications
- PDA and Palm Pilots
- Credit Cards with Security Technology

AB-RTCMC-32.768kHz-AIGZ-S7

3.2 x 1.5 x 0.8 mm

Capacitance

Parameters 1) 2)	Symbol	Min.	Max.	Units
Input Capacitance	C_{IN}		7	pF
Output Capacitance	$C_{OUT}^{3)}$		10	pF
Low-pass filter input time constant (SDA and SCL)	t_{LP}		50	ns


- 1) Effective capacitance measured with power supply at 3.6 V; sampled only, not 100% tested.
- 2) At 25°C, f = 1MHz.
- 3) Outputs deselected.

Frequency Characteristics

 $T_{amb} = +25$ °C; $f_{OSC} = 32.768 \text{ kHz}$

Parameters	Symbol	Conditions	Min.		Max.	Units
Frequency Accuracy	$\Delta f/f$	$T_{amb} = +25$ °C	-20		+20	ppm
Frequency vs. Temperature Characteristics	$\Delta f/T_{OPR}$	T_{OPR} = -40 to +85°C	-0.035 ^{ppm} /°	$C^2 * (T_{OPR} - T_{OPR})$	$(\Gamma_0)^2 (\pm 10\%)$	ppm
Turnover Temperature	To		+20	+25	+30	$^{\circ}\mathrm{C}$
Aging (first year)	$\Delta f/f$	$T_{amb} = +25$ °C	-3		+3	ppm
Oscillator Start-up Voltage	V_{Start}	≤10 seconds	1.5			V
Oscillator Start-up Time	T_{Start}	$V_{DD} = 3.0V$			1	S
CLKOUT Duty Cycle		$F_{\text{CLKOUT}} = 32.768 \text{kHz}$ $T_{\text{amb}} = +25^{\circ}\text{C}$	40	50	60	%

FREQUENCY VS. TEMPERATURE CHARACTERISTICS

AB-RTCMC-32.768kHz-AIGZ-S7

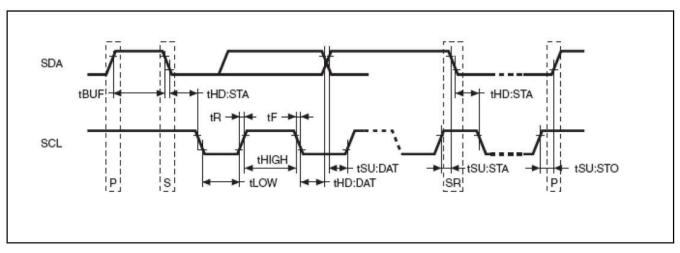
3.2 x 1.5 x 0.8 mm

Static Characteristics

Valid for T_{amb} = -40°C to +85°C; V_{DD} = 1.3 V to 4.4 V (except where noted)

Parameters	Symbol	Conditions	Min.	Typ.	Max.	Units
Cumply Voltage	V _{DD} 1)	Clock	1.0		4.4	V
Supply Voltage	V DD	I ² C Bus (400kHz)	1.3		4.4	V
		$V_{DD} = 4.4V$			100	μΑ
Supply Current		$V_{DD} = 3.6V$		50	70	μΑ
SCL=400kHz	I_{DD1}	$V_{DD} = 3.0V$		35		μΑ
No Load		$V_{DD} = 2.5V$		30		μΑ
		$V_{DD} = 2.0V$		20		μΑ
Supply Current (standby)		$V_{DD} = 4.4V$			950	nA
SCL = 0Hz; CLKOUT off		$V_{DD} = 3.6V$		375	700	nA
All inputs	I_{DD2}	$V_{\rm DD} = 3.0 \text{V} \text{ at } 25^{\circ}\text{C}$		350	500	nA
\geq V _{DD} -0.2V		$V_{\rm DD} = 2.0 \text{V} \text{ at } 25^{\circ}\text{C}$		310	450	nA
\leq V _{SS} +0.2V		$V_{\rm DD} = 1.0 \rm V \ at \ 25 ^{\circ} \rm C$		270	400	nA
LOW Level Input Voltage	$V_{ m IL}$		-0.2		$0.3*V_{DD}$	V
HIGH Level Input Voltage	V_{IH}		$0.7*V_{DD}$		V _{DD} +0.3	V
HIGH Level Output Voltage	V_{OH}	V _{DD} =4.4V, I _{OH} = - 1.0mA (push-pull)	2.4			V
LOW Level Output	V	V_{DD} =4.4V, I_{OL} = 3.0mA (SDA)			0.4	V
Voltage	$V_{ m OL}$	V_{CC} =4.4V, I_{OL} = 1.0mA (SQW, \overline{INT})			0.4	V
Pull-up Supply voltage (open drain)		INT			4.4	V
Input Leakage Current	I_{LI}	$0V \leq V_{IN} \leq V_{DD}$	-1		+1	μA
Output Leakage Current	I_{LO}	$0V \le V_{OUT} \le V_{DD}$	-1		+1	μΑ

^{1.} Oscillator startup guaranteed down to 1.5 V only.

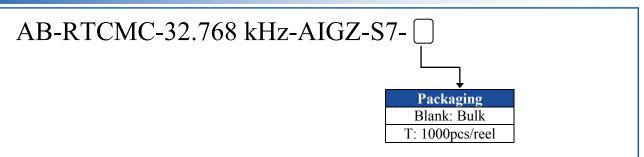

I²C Interface Dynamic Characteristics

Valid for T_{amb} = -40°C to +85°C; V_{DD} = 1.3 V to 4.4 V (except where noted)

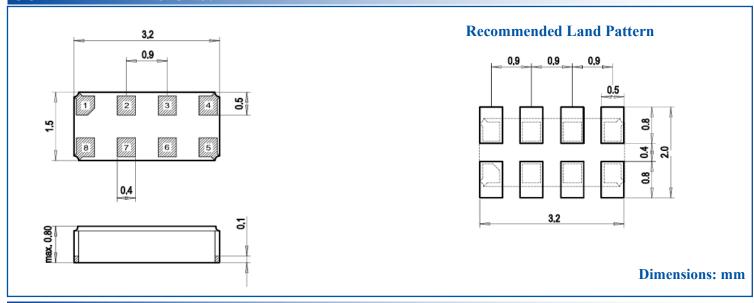
Parameters	Symbol	Min.	Typ.	Max.	Units
SCL Clock Frequency	f_{SCL}	0		400	kHz
START Condition Setup Time (only relevant for a repeated start condition)	t _{SU:STA}	600			ns
START Condition Hold Time (after this period the first clock pulse is generated)	t _{HD:STA}	600			ns
Data Setup Time ¹⁾	$t_{SU:DAT}$	100			ns
Data Hold Time	t _{HD:DAT}	0			μs
STOP Condition Setup Time	$t_{\rm SU:STO}$	600			ns
Bus Free Time between STOP and START condition	$t_{ m BUF}$	1.3			μs
SCL "LOW time"	t_{LOW}	1.3			μs
SCL "HIGH time"	t_{HIGH}	600			ns
SCL and SDA Rise Time	t_R	_		300	ns
SCL and SDA Fall Time	t_{F}			300	ns
Watchdog Output Pulse Width	t_{REC}	96	_	98	ms

^{1.} Transmitter must internally provide a hold time to bridge the undefined region (300 ns max) of the falling edge of SCL.

I²C Interface Timing Characteristics



AB-RTCMC-32.768kHz-AIGZ-S7

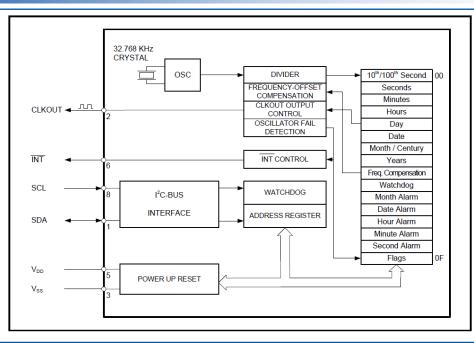


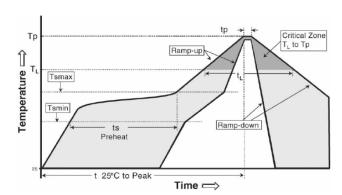
▶ PART IDENTIFICATIONS:

OUTLINE DIMENSIONS:

▶ PIN DESCRIPTIONS:

Pin No.	Pin Name	Function
1	SDA	Serial data; open-drain; requires pull-up resistor
2	CLKOUT	Clock Output
3	V_{SS}	Ground
4	NC	Not connected
5	V_{DD}	Power Supply voltage
6	INT	Interrupt output; open-drain; requires pull-up resistor; active low
7	NC	Not connected
8	SCL	Serial clock input; requires pull-up resistor


AB-RTCMC-32.768kHz-AIGZ-S7

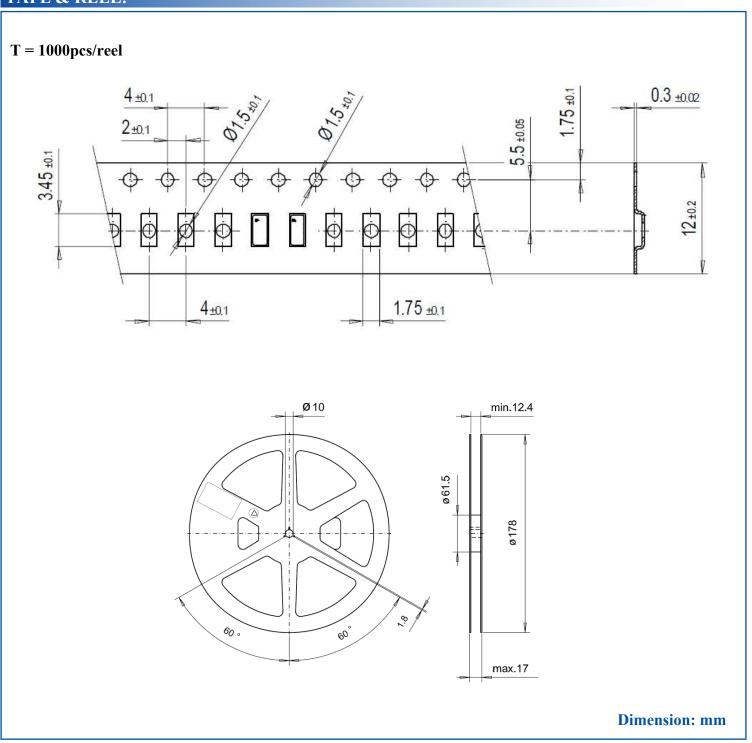

3.2 x 1.5 x 0.8 mm

BLOCK DIAGRAM:

RECOMMENDED REFLOW PROFILE:

Maximum Reflow Conditions in accordance with IPC/JEDEC J-STD-020C "Pb-free"

Temperature	Conditions	Units	
Average Ramp-up Rate (T _{Smax} to T _P)	3°C/second max	°C/s	
Ramp Down Rate (T _{cool})	6°C/second max	°C/s	
Time 25°C to Peak Temperature (T to-peak)	8 minutes max	m	
Preheat			
Temperature Min (T _{Smin})	150	°C	
Temperature Max (T _{Smax})	200	°C	
Time Ts _{min} to Ts _{max} (ts)	60 ~ 180	sec	
Time Above Liquidus			
Temperature Liquidus (T _L)	217	°C	
Time above Liquidus (t _L)	60 ~150	sec	
Peak Temperature			
Peak Temperature (T _P)	260	°C	
Time within 5°C of Peak Temperature (t _P)	$20 \sim 40$	sec	


AB-RTCMC-32.768kHz-AIGZ-S7

3.2 x 1.5 x 0.8 mm

TAPE & REEL:

ATTENTION: Abracon Corporation's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependant Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon Corporation is required. Please contact Abracon Corporation for more information.

