

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

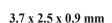
AB-RTCMC-32.768kHz-B5GA-S3

Moisture Sensitivity Level: MSL=1

FEATURES:

- With state-of-the-art RTC Technology by Micro Crystal AG
- RTC module with built-in crystal oscillating at 32.768 kHz
- 400kHz two-wire I2C interface
- Wide Interface operating voltage: 1.8 5.5 V
- Wide clock operating voltage: 1.2 5.5 V
- Low power consumption: 250 nA typ @ 3.0V / 25°C
- Provides year, month, day, weekday, hours, minutes, seconds
- Alarm and Timer functions
- · Century flag
- Low voltage detector, internal power on reset
- Programmable clock output for peripheral devices (32.768 kHz, 1024 Hz, 32 Hz, 1 Hz)
- I2C slave address: read A3h, write A2h
- Small and compact package size: 3.7 x 2.5 x 0.9 mm. RoHS-compliant and 100% leadfree

> STANDARD SPECIFICATIONS:


Absolute Maximum Ratings

Parameters	Min.	Тур.	Max.	Units	Notes
Supply Voltage (V _{DD})	-0.5		+6.5	V	>GND $/ <$ V _{DD}
Supply Current (I _{DD} ; I _{SS})	-50		+50	mA	V _{DD} Pin
Input Voltage (V _I)	V_{SS} -0.5		V _{DD} +0.5	V	Input Pin
Output Voltage (V _O)	V_{SS} -0.5		V _{DD} +0.5	V	INT Pin
DC Input Current (I _I)	-10		+10	mA	
DC Output Current (I _O)	-10		+10	mA	
Operating Temperature Range (T _{OPR})	-40		+85	°C	
Storage Temperature (T _{STO})	-55		+125	°C	Stored as bare product

Frequency Characteristics

Parameters	Min.	Тур.	Max.	Units	Notes
Frequency Accuracy (ΔF/F)		±10	±20	ppm	T_{AMB} =+25°C; V_{DD} =3.0V
Frequency vs Voltage (ΔF/V)		±0.8	±1.5	ppm/V	T _{AMB} =+25°C; V _{DD} =1.8~5.5V
Frequency vs Temperature ($\Delta F/T_{OPR}$)	-0.035 ppm/°C ² $(T_{OPR}-T_{O})^{2} \pm 10\%$		ppm	T_{REF} =+25°C; V_{DD} =3.0V	
Turnover Temperature (T _O)	+20	+25	+30	$^{\circ}\!\mathrm{C}$	
Aging (first year)	-3		+3	ppm	T_{AMB} =+25°C
Start-up Time (T _{START})		350	500	ms	T_{AMB} =+25°C
CLKOUT duty cycle	40	50	60	%	T_{AMB} =+25°C

APPLICATIONS:

- Wide range in communication & measuring equipment
- Commercial & Industrial applications
- Automotive electronics applications
- Wireless communications
- PDA and Palm Pilots
- · Credit Cards with Security Technology

ABRACON IS

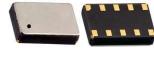
ISO 9001: 2008 CERTIFIED

AB-RTCMC-32.768kHz-B5GA-S3

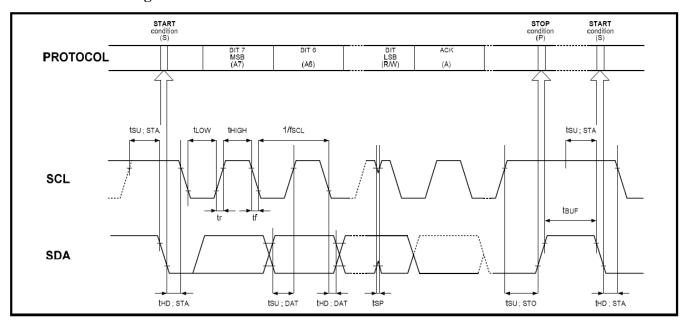
3.7 x 2.5 x 0.9 mm

Static Characteristics

Parameters		Min.	Тур.	Max.	Units	Notes	
Supplies		•					
Supply Voltage (V_{DD})		1.2		5.5		I ² C bus inactive T _{AMB} =+25°C	
		1.8		5.5	V	I ² C bus active f _{SCL} = 400kHz	
				5.5		For clock data integrity T _{AMB} =+25°C	
Current Consumption	$f_{SCL} = 400 \text{kHz}$			800	μA	I ² C bus active	
(I_{DDO})	$f_{SCL} = 100 \text{kHz}$			200	μΑ		
	$V_{DD} = 5.0V$		275	550		I ² C bus inactive(f _{SCL} =0Hz)	
Current Consumption $(I_{DD})^{-1/2/3}$	$V_{DD} = 3.0V$		250	500	nA	CLKOUT disabled T _{AMB} =+25°C	
(100)	$V_{DD} = 2.0V$		225	450	Ī		
	$V_{DD} = 5.0V$		500	750		I ² C bus inactive(f _{SCL} =0Hz)	
Current Consumption $(I_{DD})^{1/2/3}$	$V_{DD} = 3.0V$		400	650	nA	CLKOUT disabled	
(IDD)	$V_{DD} = 2.0V$		400	600	Ī	T_{AMB} =-40 \sim +85°C	
	$V_{DD} = 5.0V$		2.5	3.4		I ² C bus inactive(f _{SCL} =0Hz) CLKOUT enabled (32.768kHz)	
Current Consumption $(I_{DD32k})^{3}$	$V_{DD} = 3.0V$		1.5	2.2	μΑ		
(1DD32k)	$V_{DD} = 2.0V$		1.1	1.6	Ī	Load=7.5pF / T_{AMB} = +25°C	
Input							
LOW Level Input Voltage (V _{IL})		V _{SS} -0.5		30%* V _{DD}	V		
HIGH Level Input Volt	HIGH Level Input Voltage (V _{IH})			V _{DD} +0.5	V		
Input Leakage Current	Input Leakage Current (I _L)			+1	μΑ	$V_I = V_{DD}$ or V_{SS}	
Input Capacitance (C _I) ⁴⁾				7	pF		
Output		•		1			
HIGH Level Output Current (I _{OH})	Pin: CLKOUT			1	mA	$V_{OH} = 4.6V; V_{DD} = 5.0V$	
LOW Level Output Current (I _{OL})	Pin: SDA			-3			
	Pin: INT			-1	mA	$V_{OL} = 0.4V; V_{DD} = 5.0V$	
	Pin: CLKOUT			-1	Ī		
Output Leakage Current (I _{LO})		-1	0	+1	μΑ	$V_{O} = V_{DD}$ or V_{SS}	
Voltage Detector		<u> </u>		•	-		
Low Voltage (V _{LOW})			0.9	1.0	V	T_{AMB} =+25°C	


- 1) Timer source clock = 1/60 Hz.
- 2) CLKOUT disabled (FE = 0 or CLKOE = 0).
- 3) V_{IL} and V_{IH} with an input voltage swing of V_{SS} to $V_{\text{DD}}.$
- 4) Tested on sample basis.

AB-RTCMC-32.768kHz-B5GA-S3


3.7 x 2.5 x 0.9 mm

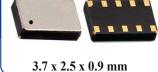
I²C Interface Dynamic Characteristics

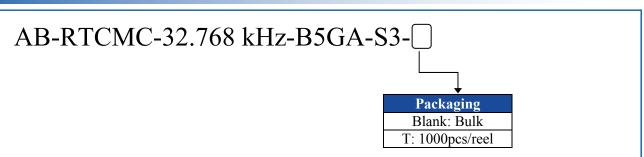
All timing values are valid within the operating supply voltage range and references to V_{IL} and V_{IH} with an input voltage swing from V_{SS} and V_{DD} .

Parameters	Min.	Typ.	Max.	Units
SCL clock frequency (f _{SCL})			400	kHz
Hold time (repeated) START condition (t _{HD;STA})	0.6			μs
Startup time for repeated START condition (t _{SU;STA})	0.6			μs
LOW period of SCL clock (t _{LOW})	1.3			μs
HIGH period of SCL clock (t _{HIGH})	0.6			μs
Bus free time between STOP and START condition (t _{BUF})	1.3			μs
Rise time of both SDA and SCL signals (t _r)			0.3	μs
Fall time of both SDA and SCL signals (t _f)			0.3	μs
Capacitive load for each bus line (C _b)			400	pF
Data setup time (t _{SU;DAT})	100			ns
Data hold time (t _{HD;DAT})	0			ns
Setup time for STOP condition (t _{SU;STO})	0.6			μs
Spike pulse width $(t_{w(spike)})$			50	ns

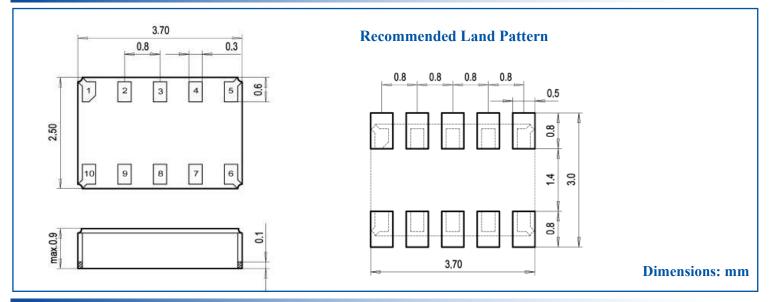
I²C Interface Timing Characteristics

Note:


The I²C BUS access time between a START and a START condition or between a START and a STOP condition to this device must be less than one second.



AB-RTCMC-32.768kHz-B5GA-S3

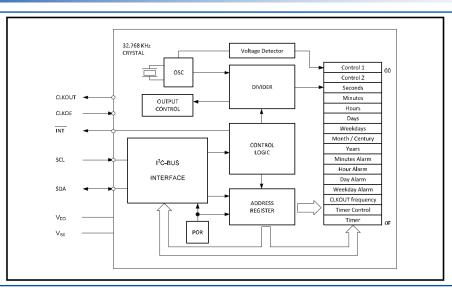


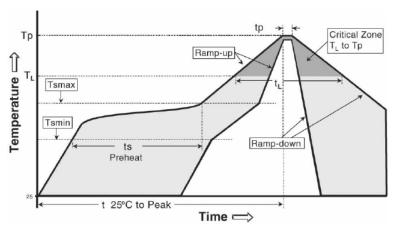
PART IDENTIFICATIONS:

OUTLINE DIMENSIONS:

▶ PIN DESCRIPTIONS:

Pin No.	Pin Name	Function
1	CLKOE	CLKOUT enable/disable pin; enable is active HIGH; tie to GND when not using CLKOUT
2	V_{DD}	Positive supply voltage
3	CLKOUT	Clock Output pin; push-pull
4	SCL	Serial Clock Input pin; requires pull-up resistor
5	SDA	Serial Data Input-Output pin; open-drain; requires pull-up resistor
6	ĪNT	Interrupt Output pin; open-drain; active LOW
7	V_{SS}	Ground
8	N.C.	Not Connected
9	N.C.	Not Connected
10	N.C.	Not Connected


AB-RTCMC-32.768kHz-B5GA-S3

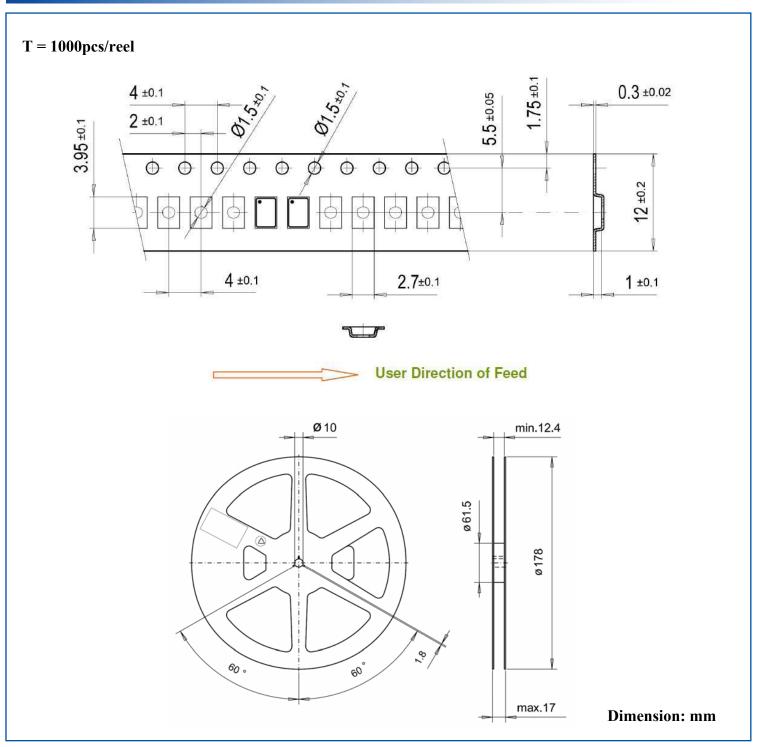

3.7 x 2.5 x 0.9 mm

BLOCK DIAGRAM:

RECOMMENDED REFLOW PROFILE:

Maximum Reflow Conditions in accordance with IPC/JEDEC J-STD-020C "Pb-free"

Temperature	Conditions	Units	
Average Ramp-up Rate (T _{Smax} to T _P)	3°C/second max	°C/s	
Ramp Down Rate (T _{cool})	6°C/second max	°C/s	
Time 25°C to Peak Temperature (T to-peak)	8 minutes max	m	
Preheat			
Temperature Min (T _{Smin})	150	$^{\circ}$ C	
Temperature Max (T _{Smax})	200	$^{\circ}$ C	
Time Ts _{min} to Ts _{max} (ts)	60 ~ 180	sec	
Time Above Liquidus			
Temperature Liquidus (T _L)	217	°C	
Time above Liquidus (t _L)	60~150	sec	
Peak Temperature			
Peak Temperature (T _P)	260	$^{\circ}$ C	
Time within 5°C of Peak Temperature (t _P)	$20 \sim 40$	sec	


AB-RTCMC-32.768kHz-B5GA-S3

3.7 x 2.5 x 0.9 mm

TAPE & REEL:

ATTENTION: Abracon Corporation's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependant Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon Corporation is required. Please contact Abracon Corporation for more information.

