

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


AB-RTCMC-32.768kHz-B5ZE-S3

Moisture Sensitivity Level: MSL=1

FEATURES:

- With state-of-the-art RTC Technology by Micro Crystal AG
- RTC module with built-in crystal oscillating at 32.768 kHz
- 1 MHz Fast-mode Plus (Fm+) two-wire I2C interface
- Wide Interface operating voltage: 1.6 5.5 V
- Wide clock operating voltage: 1.2 5.5 V
- Ultra low power consumption: 130 nA typ @ 3.0V / 25°C
- Provides year, month, day, weekday, hours, minutes, seconds
- Freely programmable Alarm and Timer functions with interrupt capability
- Low voltage detector, internal power on reset
- Battery backup input pin and switch-over circuit
- INT 1 can be programmed either as interrupt or clock output (open-drain)
- Programmable clock output for peripheral devices (32.768 kHz, 16.384 kHz, 8192 Hz, 4096 Hz, 1024 Hz, 32 Hz and 1 Hz)
- Programmable offset register for frequency adjustment
- I2C slave address: read D1h, write D0h
- Small and compact package size: 3.7 x 2.5 x 0.9 mm. RoHS-compliant and 100% leadfree

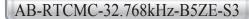
RoHS/RoHS II compliant

3.7 x 2.5 x 0.9 mm

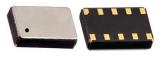
APPLICATIONS:

- Wide range in communication & measuring equipment
- Commercial & Industrial applications
- Automotive electronics applications
- Wireless communications
- PDA and Palm Pilots
- · Credit Cards with Security Technology

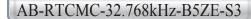
> STANDARD SPECIFICATIONS:


Absolute Maximum Ratings

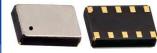
Parameters	Min.	Тур.	Max.	Units	Notes
Supply Voltage (V _{DD})	-0.5		+6.5	V	
Battery Supply voltage (V _{BACKUP})	-0.5		+6.5	V	
Input Voltage (V _I)	-0.5		+6.5	V	
Output Voltage (V _O)	-0.5		+6.5	V	
Supply Current (I _{DD})	-50		+50	mA	
DC Input Current (I _I)	-10		+10	mA	
DC Output Current (I _O)	-10		+10	mA	
Operating Temperature Range (T _{OPR})	-40		+85	°C	
Storage Temperature (T _{STO})	-55		+125	°C	Stored as bare product


Frequency Characteristics

Parameters	Min.	Typ.	Max.	Units	Notes
Frequency Accuracy (ΔF/F)		±10	±20	ppm	T_{AMB} =+25°C; V_{DD} =3.0V
Frequency vs Voltage (ΔF/V)		±0.8	±1.5	ppm/V	T _{AMB} =+25°C; V _{DD} =1.8~5.5V
Frequency vs Temperature ($\Delta F/T_{OPR}$)	-0.035 ppm/°C ² $(T_{OPR}-T_O)^2 \pm 10\%$		ppm	T_{REF} =+25°C; V_{DD} =3.0V	
Turnover Temperature (T _O)	+20	+25	+30	$^{\circ}\!\mathrm{C}$	
Aging (first year)	-3		+3	ppm	T_{AMB} =+25°C
Oscillator Start-up Time (T _{START})		350	500	ms	T_{AMB} =+25°C
CLKOUT duty cycle	40	50	60	%	T_{AMB} =+25°C


3.7 x 2.5 x 0.9 mm

Static Characteristics


 V_{DD} = 1.2 V to 5.5 V; V_{SS} = 0 V; T_{AMB} = -40°C to +85°C; f_{OSC} = 32.768 kHz; unless otherwise specified

Parameters		Min.	Тур.	Max.	Units	Notes
	For clock data integrity I ² C bus inactive	1.2		5.5		
Supply Voltage (V_{DD})	I ² C bus active	1.6		5.5	V	
(* DD)	Power management function active	1.8		5.5		
Slew Rate (SR)	Of V _{DD}			±0.5	V/ms	
Battery Supply Voltage (V _{BACKUP})	Power management function active	1.8		5.5	V	
Current	$f_{SCL}=1000kHz$ $V_{DD}=3.0V$		100	200	μА	
Consumption (I _{DD}) I ² C bus active	$f_{SCL}=100kHz$ $V_{DD}=3.0V$		50	100	μΑ	
Current Consumption (I _{DDO})	$V_{DD} = 3.0V$		130	180	nA	I ² C bus inactive (f _{SCL} =0Hz) Interrupts disabled CLKOUT disabled Power management fct. disabled
1)	$V_{DD} = 2.0V$		110	160	nA	(PM[2:0] = 111) $T_{amb} = +25$ °C
Current Consumption (I _{DDO})	$V_{DD} = 2.0 \text{ to } 5.0 \text{V}$			500	nA	I ² C bus inactive (f_{SCL} =0Hz) Interrupts disabled CLKOUT disabled Power management fct. disabled (PM[2:0] = 111) T_{amb} = -40 ~ +85°C
Current Consumption $(I_{DD32k})^{2}$	V_{BACKUP} or $V_{DD} = 3.0V$		1200		nA	I^2C bus inactive (f_{SCL} =0Hz) Interrupts disabled CLKOUT enabled (32.768kHz) Power management fct. enabled (PM[2:0] = 000) T_{amb} = +25°C
Current Consumption $(I_{DD32k})^{2}$	V_{BACKUP} or $V_{DD} = 2.0$ to $5.0V$			3600	nA	I^2C bus inactive (f_{SCL} =0Hz) Interrupts disabled CLKOUT enabled (32.768kHz) Power management fct. enabled (PM[2:0] = 000) T_{amb} = -40 ~ +85°C
Battery Leakage Current (I _{L(bat)})	V _{DD} active; V _{BACKUP} =3.0V		50	100	nA	

3.7 x 2.5 x 0.9 mm

(Continued)

 $V_{DD} = 1.2 \text{ V}$ to 5.5 V; $V_{SS} = 0 \text{ V}$; $T_{AMB} = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; $f_{OSC} = 32.768 \text{ kHz}$; unless otherwise specified

Paramet	Min.	Тур.	Max.	Units	Notes	
Power Management						
Battery Switch Threshold Vo	ltage (V _{th(sw)bat})	2.28	2.5	2.7	V	
Inputs 3)						
LOW Level Input Voltage (V	T _{IL})			$30\%V_{DD}$	V	
HIGH Level Input Voltage (V	$V_{ m IH})$	$70\%V_{DD}$			V	
Input Voltage (V _I)		-0.5		V _{DD} +0.5	V	
Innut I calso as Cumant (I)	$V_I = V_{DD}$ or V_{SS}		0		nA	
Input Leakage Current (I _L)	Post ESD Event	-1		+1	μΑ	
Input Capacitance (C _I) 4)				7	рF	
Outputs						
Output Voltage (V _O)	On pin INT_1, INT_2, CLKOUT, SDA (refers to ext. pull-up voltage)	-0.5		+5.5	V	
LOW Level Output Voltage ((V_{OL})	V_{SS}		0.4	V	
LOW Level Output Current $(I_{OL})^{5}$	Output sink current; On pin \overline{INT}_{-1} , \overline{INT}_{-2} , CLKOUT V_{OL} =0.4V; V_{DD} =5.0V	1.5			mA	
On pin SDA V _{OL} =0.4V; V _{DD} =3.0V		20			mA	
Output Leakage Current	$V_O = V_{DD}$ or V_{SS}		0		nA	
(I_{LO})	Post ESD Event	-1		+1	μΑ	

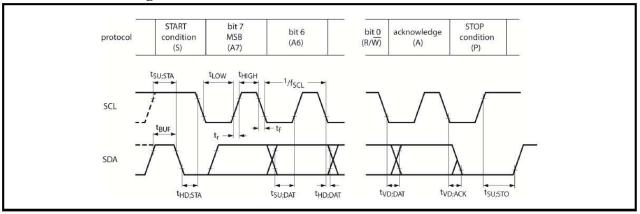
¹⁾ Timer source clock = 1/3600 Hz, level of pins SCL and SDA is V_{SS} or V_{DD} .

²⁾ When the device is supplied via the V_{BACKUP} pin instead of the V_{DD} pin, the current values for I_{BACKUP} will be as specified for I_{DD} under the same conditions.

³⁾ The I²C bus is 5V tolerant.

⁴⁾ Implicit by design.

⁵⁾ Tested on sample basis.

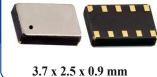

3.7 x 2.5 x 0.9 mm

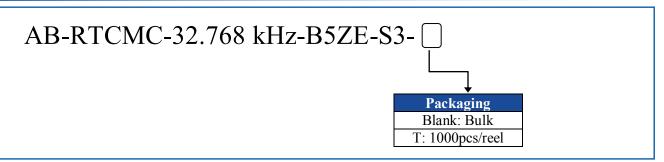
I²C Interface Dynamic Characteristics

Parameters	Symbol	Standard Mode		Fast Mode (FM)		Fast Mode Plus (FM+) 1)		Units		
2 *** *********************************		Min.	Max.	Min.	Max.	Min.	Max.	01110		
Pin SCL										
SCL clock frequency ²⁾	f_{SCL}		100		400		1000	kHz		
LOW period of SCL clock	t_{LOW}	4.7		1.3		0.5		μs		
HIGH period of SCL clock	$t_{\rm HIGH}$	4.0		1.6		0.26		μs		
Pin SDA										
Data setup time	$t_{\mathrm{SU;DAT}}$	250		100		50		ns		
Data hold time	$t_{HD;DAT}$	0		0		0		ns		
Pin SCL and SDA										
Bus free time between STOP and START condition	$t_{ m BUF}$	4.7		1.3		0.5		μs		
Setup time for STOP condition	$t_{\mathrm{SU;STO}}$	4.0		0.6		0.26		μs		
Hold time (repeated) START condition	$t_{\text{HD;STA}}$	4.0		0.6		0.26		μs		
Setup time for repeated START condition	$t_{\mathrm{SU;STA}}$	4.7		0.6		0.26		μs		
Rise time of both SDA and SCL signals 3) 4)	$t_{\rm r}$		1000	20+0.1C _b	300		120	ns		
Fall time of both SDA and SCL signals 3)4)	t_{f}		300	20+0.1C _b	300		120	ns		
Capacitive load for each bus line	C_b		400		400		550	pF		
Data valid acknowledge time 5)	t _{VD;ACK}		3.45		0.9		0.45	μs		
Data valid time ⁶⁾	$t_{\mathrm{VD;DAT}}$		3.45		0.9		0.45	μs		
Pulse width of spikes that must be suppressed by the input filter 7) 1) Fact mode plus guaranteed at 3.0 V < V < 5.5 V	t_{SP}		50		50		50	ns		

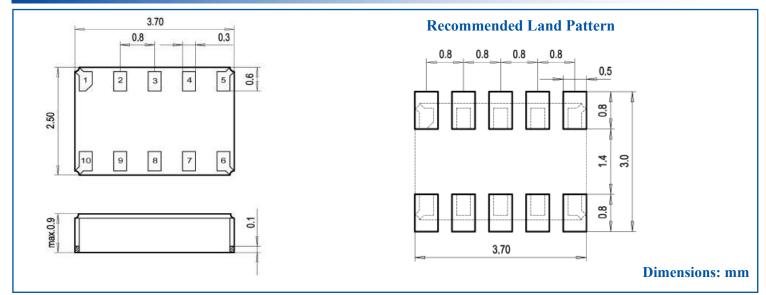
- 1) Fast mode plus guaranteed at 3.0 V \leq V_{DD} \leq 5.5 V.
- 2) The minimum SCL clock frequency is limited by the bus time-out feature, which resets the serial bus interface if either the SDA or SCL is held LOW for a minimum of 25 ms. The bus time-out feature must be disabled for DC operation.
- 3) A master device must internally provide a hold time of at least 300 ns for the SDA signal (refer to the $V_{\rm IL}$ of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.
- 4) The maximum t_f for the SDA and SCL bus lines is 300 ns. The maximum fall time for the SDA output stage, t_f is 250 ns. This allows series protection resistors to be connected between the SDA pin, the SCL pin and the SDA/SCL bus lines without exceeding the maximum t_f .
- 5) t_{VD;ACK} = time for acknowledgement signal from SCL LOW to SDA output LOW.
- 6) t_{VD;DAT} = minimum time for valid SDA output following SCL LOW.
- 7) Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns.

I²C Interface Timing Characteristics



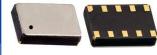


AB-RTCMC-32.768kHz-B5ZE-S3

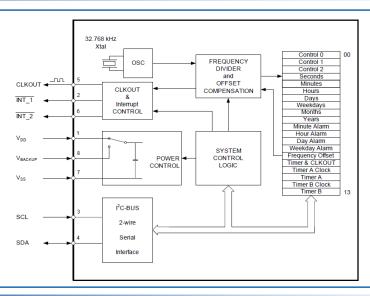


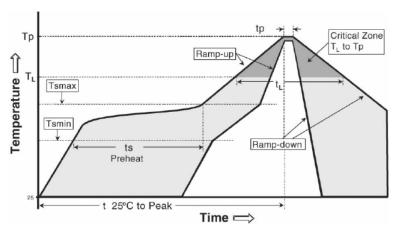
▶ PART IDENTIFICATIONS:

OUTLINE DIMENSIONS:


▶ PIN DESCRIPTIONS:

Pin No.	Pin Name	Function
1	V_{DD}	Power Supply Voltage
2	INT_1	Interrupt _1 Output pin
3	SCL	Serial Clock Input pin
4	SDA	Serial Data Input-Output pin
5	CLKOUT	Clock Output pin; push-pull
6	INT_2	Interrupt _2 Output pin
7	V_{SS}	Ground
8	V_{BACKUP}	Backup Supply Voltage
9	N.C.	Not Connected
10	N.C.	Not Connected

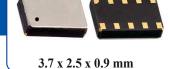

AB-RTCMC-32.768kHz-B5ZE-S3


3.7 x 2.5 x 0.9 mm

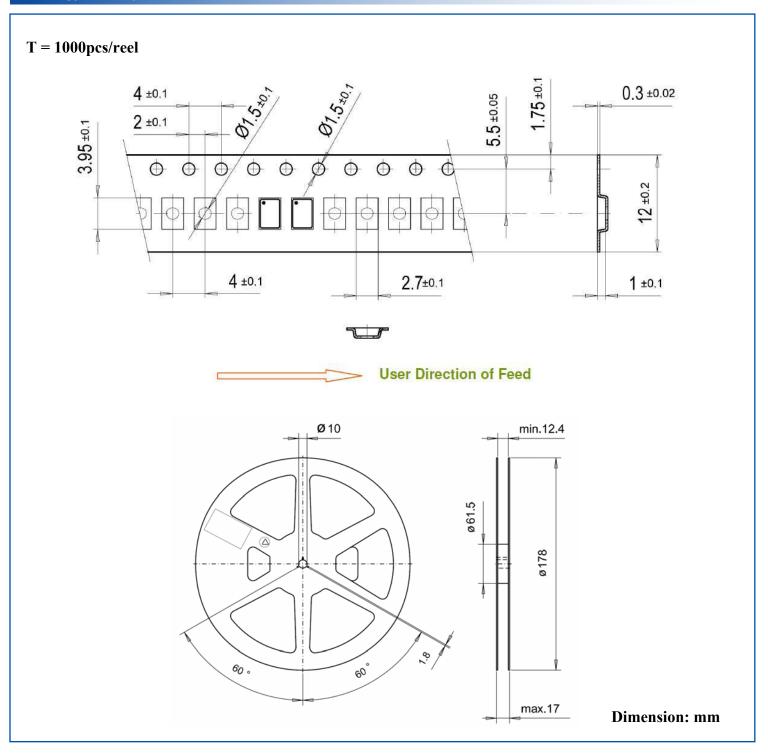
BLOCK DIAGRAM:

RECOMMENDED REFLOW PROFILE:

Maximum Reflow Conditions in accordance with IPC/JEDEC J-STD-020C "Pb-free"



Temperature	Conditions	Units °C/s	
Average Ramp-up Rate (T _{Smax} to T _P)	3°C/second max		
Ramp Down Rate (T _{cool})	6°C/second max	°C/s	
Time 25°C to Peak Temperature (T to-peak)	8 minutes max	m	
Preheat			
Temperature Min (T _{Smin})	150	$^{\circ}$ C	
Temperature Max (T _{Smax})	200	$^{\circ}$ C	
Time Ts _{min} to Ts _{max} (ts)	60 ~ 180	sec	
Time Above Liquidus			
Temperature Liquidus (T _L)	217	$^{\circ}$ C	
Time above Liquidus (t _L)	60~150	sec	
Peak Temperature			
Peak Temperature (T _P)	260	$^{\circ}\! \mathbb{C}$	
Time within 5°C of Peak Temperature (t _P)	$20\sim40$	sec	



AB-RTCMC-32.768kHz-B5ZE-S3

TAPE & REEL:

ATTENTION: Abracon Corporation's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependant Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon Corporation is required. Please contact Abracon Corporation for more information.

