
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

 2011 Microchip Technology Inc. DS01368A-page 1

AN1368

INTRODUCTION

Graphic-enabled devices are used extensively in daily

life. They are found everywhere, including indoor

products, such as telephones, calculators, pagers, MP3

players, digital electric meters, smart remote and UPS

displays. They are also used in outdoor products, such

as traffic signals, taxi meters, bus displays, advertise-

ment boards, etc. The list is virtually endless. A current

trend is that many existing devices are becoming

graphic-enabled because it is economically feasible,

easy to use and the latest in technology.

This application note is intended to help engineers who

are designing their first graphic application. It describes

the basic definitions and jargons of graphics applications

and it helps the engineer to understand the theory,

necessary decision factors, hardware considerations,

available microcontrollers and development tools. Soft-

ware libraries and support are available from Microchip

with further literature references for advanced users.

BASICS OF COLOR SCIENCE

In its purest form, color is associated with the

wavelength of light, within human visible range, from

about 400 nm (Violet) to 700 nm (Red), with Yellow

centered at about 575 nm. That means, if a light of

575 nm wavelength is incident on human eyes, it is

perceived as a Yellow light. We have also learned that

colors can be derived from three basic colors: Red,

Blue and Green. For example, Yellow can be derived

by mixing Red and Green lights. Is this true? The

answer is both no and yes. It is no because mixing Red

and Green lights will constitute a mixture of lights with

wavelengths of 700 nm and 560 nm, and there is not a

wavelength representing Yellow. The answer is yes

because human eyes perceive this mixture as a Yellow

colored light. Therefore, we see the mixture of Red and

Green lights as a single Yellow light, as shown in

Figure 1. This is due to the color recognition properties

of the human eye.

FIGURE 1: RED + GREEN = YELLOW

Human eyes perceive the light as a Yellow colored light

instead of separate Red and Green colored lights. This

color recognition property of the human eye is the

foundation of the RGB (Red, Green and Blue) model.

The model states that the human eye can be made to

perceive different colors by mixing appropriate

proportions (intensities) of Red, Blue and Green colors.

Therefore, a ‘colored’ light can be formed by mixing

different proportions of Red, Green and Blue colors.

� Mixing the same proportions of three RGB colors

gives a Gray color

� Mixing a zero amount of all RGB colors gives a

Black color

� Mixing a maximum amount of all RGB colors

gives a White color

Varying the intensity of light, while keeping the same

proportion of RGB, gives different shades of Gray,

which is also known as ‘Grayscale’. Using a single

color (a fixed proportion of RGB) throughout an appli-

cation gives a ‘Monochrome’ application, meaning a

single color.

Since everything is represented in bits and bytes in a

digital system, then how can actual colors be repre-

sented as a number in the form of bits or bytes? Each

of these three basic colors (RGB) can represent a byte

for a number ranging from 0 to 255. Therefore, with

3 bytes, we can represent 16 million colors (224) and

this is termed as “True Color”. It is also common to use

16 bits to represent colors. With 16 bits, we can

represent 64K colors (216), which is sufficient for many

graphics applications.

Author: Pradeep Budagutta

Microchip Technology Inc.

Developing Embedded Graphics Applications using PIC®

Microcontrollers with Integrated Graphics Controller

AN1368

DS01368A-page 2  2011 Microchip Technology Inc.

In general, to divide 16 bits among Red, Green and

Blue, two schemes are used:

� Scheme 1 (R<5> G<6> B<5>): In this scheme,

there are 5 bits of Red, followed by 6 bits of Green

and 5 bits of Blue. Green is given more bits

because of the property of the human eye, which

can distinguish more shades of Green than Red

and Blue. Figure 2 illustrates these 64K colors.

� Scheme 2 (T<1> R<5> G<5> B<5>): In this

scheme, there is one transparent bit, followed by

5 bits each of Red, Green and Blue. The

transparent bit indicates if the color should be

used or not.

Currently, the Microchip Graphics Library (Version 2.11)

supports only Scheme 1.

FIGURE 2: COLORS IN 16-BIT

REPRESENTATION

Grayscale is usually represented in a byte, with 0 as

Black, 1-254 as the shades of Black, getting lighter as

the number increases, and 255 as White, as shown in

Figure 3. Sometimes, only 4 or 2 bits are used to

represent 16 or 4 shades of Black, respectively. If only

one bit is used to represent either the on or off of a

color, then it is called ‘Monochrome’.

The number of bits required to represent a color is

called the ‘Color Depth’. For example, a color depth of

16 bits means it requires 16 bits to represent a color,

and therefore, we can represent 216 different colors.

FIGURE 3: GRAYSCALE VALUES OF

0 TO 225

Alternatively, color may be represented using a Color

Look-up Table (CLUT), also called a palette table, where

the color is specified by the index of the table, as shown

in Figure 4. Depending on the size of the table, the bits

used to represent the index will vary as 256 entries of

RGB (8-bit index), 16 entries of RGB (4-bit index),

4 entries of RGB (2-bit index) and 2 entries of RGB (1-bit

index). This scheme is mainly used to save memory. For

more information on this scheme, see Appendix A:

“Color Look-up Table (CLUT)”.

FIGURE 4: COLOR LOOK-UP TABLE

(CLUT)

 2011 Microchip Technology Inc. DS01368A-page 3

AN1368

BASIC DISPLAY TERMINOLOGY

A screen is made up of discrete elements, known as

pixels. Every pixel can show one point of color and

each pixel is composed of three points: Red, Green

and Blue. The colors are arranged next to each other

on a color screen, one point of intensity on a grayscale

screen or one point that can be set to on/off on a

monochrome screen. The number of such pixels in

horizontal and vertical directions is called the screen

resolution. For example, a resolution of 320x240

means there are 320 pixels horizontally (number of

columns) and 240 pixels vertically (number of rows).

Standard resolutions are given names, such as QCIF

(176x144), CIF (352x288),QVGA (320x240), WQVGA

(480x272), VGA (640x480) and WVGA (800x480), etc.

While mentioning the resolution, it is always better to

refer to the numbers instead of the names.

A screen can be in Landscape mode (width > height) or

in Portrait mode (height > width). The ratio of the

display screen’s visible width to its visible height is

called the ‘Aspect Ratio’. The most commonly used

aspect ratio is 4:3. The diagonal length of the display

screen is termed as the length of the display.

For example, a display of 3.5'' means that the diagonal

length of the display is 3.5'', as shown in Figure 5.

FIGURE 5: A 3.5'' QVGA DISPLAY IN LANDSCAPE MODE

240 Pixels

3.5''

320 Pixels

AN1368

DS01368A-page 4  2011 Microchip Technology Inc.

GRAPHICS SUBSYSTEM HARDWARE

The hardware components required for a graphic appli-

cation, with their interconnection and design decisions,

are described in the following subsections.

COMPONENTS OF A GRAPHICS
SYSTEM

There are four basic components for any embedded

graphics system, as illustrated in Figure 6. They

consist of the display glass, display controller, frame

buffer and the microcontroller.

FIGURE 6: THE FOUR BASIC COMPONENTS OF A GRAPHICS SYSTEM

Display Glass

Display glass is the device which displays a sequence of

colors on the pixels and also converts the digital

representation of colors to actual colors. The term, color,

includes grayscale. Generally, the types of displays used

are TFT LCDs, CSTN/MSTN LCDs or OLED/AMOLEDs.

All the LCD modules include gate and source drivers to

drive the voltage and current for displaying all the

pixels. Table 1 gives a brief comparison of different

display technologies.

Display Glass
Frame

Buffer

Display

Controller

Microcontroller

TABLE 1: COMPARISON OF DIFFERENT DISPLAY TECHNOLOGIES(1)

Property TFT LCD STN (CSTN/MSTN) AMOLED

Frame Rate High Low High

Ghosting No Yes No

HBLANK and VBLANK Yes No Yes

Backlight Required Required Not Required

Cost Medium Low High

Typical Size for QVGA

(320x240) Resolution

1.5" to 5.7" 1.5" to 5.7" Up to 2.8"

Contrast Medium Low High

Power Consumption High Medium Low

Viewing Angle Medium Medium High

Note 1: Data mentioned in this table may change due to constant changes or advancements in the display

technology.

 2011 Microchip Technology Inc. DS01368A-page 5

AN1368

Some of the important properties of display

technologies are explained as follows:

� Frame Rate: The number of times the display

screen is refreshed in a second (this parameter

does not reflect the refresh capacity of the

microcontroller but only the capacity of the display

glass).

� Ghosting: When the screen is changed, the

previous frame is visible with lower intensity for a

fraction of time, which appears to be the ghost of

the current screen.

� HBLANK and VBLANK: Horizontal and vertical

blanking periods, where the display is not updated.

For more information, refer to Section 43. “Graph-

ics Controller Module (GFX)” (DS39731) in the

“PIC24F Family Reference Manual”.

� Backlight: For TFT/STN LCDs, backlight is

necessary to view the display. It could be either

CCFL or LED type.

� Contrast: It is defined as the ratio of intensities of

white to black on the display. The higher the

contrast, the better is the display quality.

� Viewing Angle: It is the horizontal or vertical

angle within which the display is properly

viewable.

The display glass has no inherent memory and must be

constantly updated with pixel data in each row and

column, failing which, the display will go blank (similar

to DRAM refresh). This refreshing of the display data is

handled by the display controller.

Display Controller

The display glass must be constantly refreshed by

feeding the horizontal and vertical pixel data repeatedly

from the frame buffer. This task is performed by the

display controller. It fetches the data from the frame

buffer, decodes it to the required bit format and feeds it

to the display glass, along with proper control signals.

The display controller must adhere to the timing

requirements of the display glass.

Frame Buffer

The frame buffer is a memory (usually a RAM), which

holds the data to be shown on the display screen and

acts as the data source for the display controller. The

required size of the frame buffer depends on the

resolution and color depth. The minimum requirement

is that it should hold the data required to display one full

frame and must support the scan rate (preferred

refresh rate as per the data sheet of the display glass)

of the display controller.

EQUATION 1:

EXAMPLE 1:

EXAMPLE 2:

EXAMPLE 3:

Frame Buffer Size Required (Bytes) = Number of Pixels x

Color Depth (Bits)/8

For a QVGA (320x240) display using a 16 BPP color

depth:

Frame Buffer = 320 x 240 x 16/8

 = 153,600 Bytes

 = 150 Kbytes

For a WQVGA (480x272) display using a 16 BPP

color depth:

Frame Buffer = 480 x 272 x 16/8

 = 261,120 Bytes

 = 255 Kbytes

For a QCIF (176x144) display using an 8 BPP color

depth:

Frame Buffer = 176 x 144 x 8/8

 = 25,344 Bytes

 = 24.75 Kbytes

AN1368

DS01368A-page 6  2011 Microchip Technology Inc.

Microcontroller

The application code running inside the microcontroller

decides which data should be stored in the frame

buffer, and as the frame buffer changes, the display

content also changes. Each pixel’s color is calculated

and stored in the frame buffer. The microcontroller and

the display controller must have the same settings, with

respect to the color depth and memory range of the

frame buffer being used. The microcontroller must

have sufficient processing power (usually measured in

MIPS) to render the required shapes in the frame

buffer, such that it does not appear to be drawn slowly

on the display screen. This is because the display

controller keeps pumping data from the frame buffer

concurrently, with the microcontroller rendering pixels

into the frame buffer. However, the microcontroller

does not render any new shapes into the frame buffer

if there is no change on the display screen. If there is a

change on the screen, only the changed pixels need to

be sent to the frame buffer, thereby minimizing the data

transfer to the frame buffer.

In Figure 7, only four pixels will be changed, and at a

16-bit color depth, 4 * 16/8 = 8 bytes need to be sent

to the frame buffer.

FIGURE 7: PIXEL DATA UPDATE

Microcontroller

Display Glass

Frame

Buffer
Display

Controller

 2011 Microchip Technology Inc. DS01368A-page 7

AN1368

INTEGRATION OF BASIC
COMPONENTS

The choice of how to integrate the four basic

components is an important step in designing a

graphics application. To make the choice, the designer

needs to understand the types of combinations of these

basic components that are possible in the form of ICs.

There are four types of possible combinations, as

illustrated in Figure 8.

Table 2 lists the advantages and disadvantages of the

four combinations of the basic components.

FIGURE 8: DIFFERENT WAYS OF INTEGRATING BASIC GRAPHICS’ COMPONENTS

SRAM

Display Glass
Frame

Buffer

Display Module

Display

Controller

Display GlassFrame

Buffer

Graphic Controller Chip

Microcontroller

Display Glass
Frame

Buffer

Buffer

RGB

Microcontroller

Display GlassRGB

B. 3 Devices

C. 2 Devices

D. 3 Devices

Display

Controller

A. 2 Devices

RGB

Display

Controller

Frame

Buffer

Display

Controller

Parallel or
Serial

Parallel or
Serial

Parallel

Microcontroller

Microcontroller

AN1368

DS01368A-page 8  2011 Microchip Technology Inc.

TABLE 2: BASIC COMPONENTS

For Options A and B, the Microchip Graphics Library

currently supports PIC24, dsPIC® and PIC32

microcontrollers with PMP or EPMP. The

PIC24FJXXXDAXXX family can support Options C and

D. PIC24FJ256DA210 contains 96 Kbytes of internal

memory and has a graphics controller inside. It also

supports optional external RAM as a frame buffer with

a parallel interface through the EPMP module. For

more information on the device, refer to the respective

device data sheet and also Section 43. “Graphics

Controller Module (GFX)” (DS39731) from the

“PIC24F Family Reference Manual”.

Options Advantages Disadvantages

A. The frame buffer and display

controller are housed in a single

module, called the ‘Display Module’.

The microcontroller and display

module interface through a serial or

parallel interface.(1)

� No specific IC is required for graphics

functionality

� Less system components and less PCB

space

� Generally higher cost

� Usually forces a

software driver change

if the display module is

changed

� May lack additional

memory required for

double-buffering,

animation, etc.

B. The frame buffer is housed

together with the display controller.

The microcontroller and graphics

controller communicate through a

serial or parallel interface, whereas

the graphics controller interfaces to

the display glass through an RGB

interface.(1)

� Software driver change is not required if

the display glass is changed. Only a

compile-time configuration change may be

needed.

� Can be cheaper than Option A

� More system compo-

nents and more PCB

space

� Display size is limited

by the frame buffer

inside the display

controller

C. The frame buffer and display

controller are housed inside the

microcontroller. The microcontroller

interfaces to the display glass

through an RGB interface.

Instead of a display controller, a

combination of a parallel interface

and a DMA engine can be used as

well.

� Only one IC is required for graphics

functionality

� Small form factor

� Usually the cheapest option

� Faster rendering since the memory is inside

the microcontroller

� Software driver change is not required if the

display module is changed. Only a

compile-time configuration change may be

needed.

� Display size is limited

by the frame buffer

inside the

microcontroller

D. The display controller is housed

inside the microcontroller. Separate

RAM is used as the frame buffer.

The microcontroller interfaces to the

display glass (display panel) through

an RGB interface and interfaces with

the frame buffer through a parallel

interface.

Instead of a display controller, a

combination of a parallel interface

and a DMA engine can be used as

well.

� The microcontroller can support the

maximum display size possible as the size

of the frame buffer can be selected by the

user

� Usually cheaper than Option A and B

� Requires an extra IC

chip for the frame

buffer

Note 1: A serial connection can be used on low resolution displays with low color depth (e.g., 1 BPP, 120x64). With

higher resolutions, the speed can be a bottleneck.

 2011 Microchip Technology Inc. DS01368A-page 9

AN1368

POWER SEQUENCING IN DISPLAY
PANELS

Different display panels will have different power supply

requirements and timing to enable each of the power

signals of the panel. In some display panels, the

following power signals can be found:

� Digital Power Signal

� Analog Power Signal

� LCD Power Signal

� Backlight Power Signal

The digital power signal is used to power-up the digital

logic on the panel. The analog power signal is used to

power the analog portion of the panel. The LCD power

signal, also known as the gate voltage, along with the

digital data signals are primarily used to control the

pixel illumination. In some cases, the LCD power signal

is composed of two power signals: the positive LCD

power signal and the negative LCD power signal. In

some cases, only one signal is available. The backlight

illumination is controlled by the backlight power signal.

Depending on the design of the display panel, all four

types of the power signals can be found in the panel

data sheet. In some cases, only the digital power and

backlight signals appear. This means that the panel

has integrated an internal circuitry to generate the

analog and LCD power signals. This is usually true for

small displays (2'' to 4''). For larger displays, the analog

and LCD power signals tend to be higher in voltage

requirements. In these cases, it is not practical for the

display panel to integrate such circuitry; therefore,

those two power signals, that are specified as inputs,

must be externally provided.

The different power signals of the display panel must

follow the power sequencing recommended by the

manufacturer. If the proper sequence is not followed,

the display panel’s life cycle can be reduced

significantly. The typical power sequence of a panel is

shown in Figure 9.

Timing requirements are represented by t1, t2, t3, t4, t5

and t6. In most cases, the requirements are

represented as t1 = t4, t2 = t3 and t5 = t6.

FIGURE 9: POWER SEQUENCE OF A PANEL

Voltage

Time

VD

VA

VLCD

t1 t2 t3 t4

Time

Data

VBK
t5 t6

VD = Digital Supply

VLCD = LCD Supply

Data = Digital Signal from Controller

VBK = Backlight Supply

VA = Analog Supply

AN1368

DS01368A-page 10  2011 Microchip Technology Inc.

TOUCH SCREEN

Some applications require the support of a touch

screen for the display. This is achieved by using a

separate touch screen on the display glass or by

selecting a display module with a touch screen. In both

cases, the touch signals must be handled by either the

microcontroller or a separate touch screen controller

(such as Microchip’s AR1000 series touch screen

controllers). These touch signals are analog and digital

signals which must be decoded to sense the touch

coordinates. Transparent touch screens are usually of

resistive type or capacitive type. Resistive touch

screens are the most commonly used and are

generally available in 4-wire or 5-wire configurations.

The touch point can be detected by measuring the

variation of the resistance of the touch screen. Only a

4-wire touch screen is explained here.

4-WIRE RESISTIVE TOUCH SCREEN

This touch screen has four signals, of which two are

purely digital signals. The other two signals are

alternately configured as both digital and analog signals.

The four signals can be directly connected to the

microcontroller I/O pins with two digital inputs and two

digital outputs, or analog pins. Figure 10 illustrates the

connections for this scheme.

When the user touches the screen, the resistance of

the screen changes. By measuring the resistance in

horizontal and vertical directions, and comparing them

with the calibrated values, the (x, y) coordinates of the

point of touch can be obtained.

When a point on the screen is touched, the x-coordinate

voltage is obtained by applying voltages across the y-

signal and measuring the analog voltage on the x-signal,

as shown in Figure 11. The y-coordinate voltage is

obtained by applying voltage across x-signals and

measuring the analog y-voltage, as shown in Figure 12.

FIGURE 10: 4-WIRE RESISTIVE TOUCH SCREEN

PIC® MCU

Digital I/O

Digital I/O

Digital I/O

Digital I/O

X X

Y

Y

with ADC

 2011 Microchip Technology Inc. DS01368A-page 11

AN1368

FIGURE 11: MEASUREMENT OF THE X-VOLTAGE

FIGURE 12: MEASUREMENT OF THE Y-VOLTAGE

DECISION FACTORS

After understanding the basic definitions and

components of a graphics subsystem, the next step is

to decide the specifications for the application. Some of

the important factors that needs to be considered when

deciding on specifications are as follows:

� Display Resolution and Size

� Display Orientation – Portrait or Landscape

� Color Depth (BPP)

� Frame Buffer Size

� Microcontroller Processing Power

� Configuration of Graphics Components

� Frame Rate vs. MIPS

� Interfacing with Unmatched Number of Display

RGB Lines

These decision factors are described in the following

sections.

Display Resolution and Size

A particular resolution can be obtained in different

display sizes. For example, QVGA (320x240) displays

are available in a size range of 1.5'' to 5.7''. As the size

increases, keeping the resolution constant, the pixels

will look coarser, that is, curved shapes on the screen

will appear blocky.

In an application, if the user needs to look at the display

from a short distance (e.g., hand held devices), higher

resolution displays are a better choice for larger

displays. If the user looks at the display from a long dis-

tance (e.g., token number of displays at banks), larger

sized displays with lower resolution may be used. If

pictures are being displayed, it is better to use a higher

resolution. Figure 13 illustrates how ‘A’ appears on a

smaller sized lower resolution display, larger sized lower

resolution display and larger sized higher resolution

display, respectively.

FIGURE 13: DISPLAY OF ‘A’ AT

VARIOUS RESOLUTIONS

PIC®MCU

Digital I/O

Digital I/O

Dig-O/AN-I

Dig-O/AN-I

1

0

X

Y

X

Y

Sense

with ADC

PIC®MCU

Digital I/O

Digital I/O

Dig-O/AN-I

Dig-O/AN-I

1

0 X

Y

X

Y

Sense

with ADC

AN1368

DS01368A-page 12  2011 Microchip Technology Inc.

Display Orientation

Displays are available in Landscape (e.g., 320x240) or

Portrait (e.g., 240x320) modes. A landscape display

can also be used in Portrait mode by setting a 90°

rotate function in the graphics library or display

controller. Similarly, a portrait display can also be used

in Landscape mode. If rotating the pixels is

implemented by special hardware features inside the

graphics controller, there is no penalty on the

performance. However, if the rotation is performed in

software (such as the graphics library used), there is a

penalty in the software performance. This is because

for every (x, y) point, a new rotated (x’, y’) point has to

be calculated, which takes away some of the

processing power.

Note the difference in the RGB strip alignment if the

display is used in Rotated mode, as shown in

Figure 14.

Color Depth Selection

Along with the resolution of the display, the correct

choice of color depth is another decision factor since

this determines the size of the frame buffer (cost of

RAM). If natural photos are being displayed, it is better

to go with 16 BPP or higher. If 256 different colors are

enough for the application, then a color depth of 8 BPP

can be chosen (with the standard 256 colors provided

by the display controller or custom 256 colors using

CLUT (See Appendix A: “Color Look-up Table

(CLUT)”). This would reduce the RAM requirement by

50%, compared to 16 BPP. If only 16 or 4 different

colors are sufficient, 4 BPP or 2 BPP can be used,

saving the RAM by 75% and 87.5%, respectively, as

compared to 16 BPP. Table 3 lists the RAM

requirements for different color depths.

FIGURE 14: LANDSCAPE AND PORTRAIT DISPLAYS USED IN LANDSCAPE MODE

TABLE 3: RAM SIZE REQUIREMENT FOR DIFFERENT COLOR DEPTHS

BPP for QVGA (320x240) 16 BPP 8 BPP 4 BPP 2 BPP

Number of Colors 65,536 256 16 4

RAM Size (Bytes) 153,600 76,800 38,400 19,200

 2011 Microchip Technology Inc. DS01368A-page 13

AN1368

Frame Buffer Size

The size of the frame buffer is calculated as follows:

EQUATION 2:

Table 3 shows an example for the QVGA (320x240)

display. If the double-buffering technique is used, the

frame buffer requirement will double (see Appendix B:

“Double-Buffering” for more information).

If the frame buffer is inside the display controller or the

smart display module, and if the RAM is fixed, the

maximum resolution that can be supported is limited.

Processing Power (MIPS)

The processing power required is application-specific.

It depends on how many graphic elements are

displayed on the screen and the complexity of the

graphic elements. More processing power is required

to draw complex shapes, such as a circle, bevel, text,

etc., rather than lines and rectangles. The processing

power requirements also depend on if a hardware

graphics accelerator is available and used. Processing

power requirements also depend on the update rate of

the screen elements. For many embedded graphics

applications, ≥ 16 MIPS processing power could be

sufficient. The best way to check the processing power

requirements is to evaluate using the standard

graphics development tools. (For more information on

development tools, see the “Development Tools”

section.

Configuration of Graphics Components

In Table 2, each configuration has its own advantages

and disadvantages.

Most often, the decision to use one or another

configuration is not influenced by the technical advan-

tages or disadvantages, but rather by a supply chain

advantage or the availability of components. The

designer must balance between optimizing a design to

meet the requirement and managing the supply chain.

Frame Rate VS. MIPS

Frame rate refers to the number of different frames that

can be displayed in a second. This is a good

performance index for display of a video, but not for an

embedded GUI application. In general, an embedded

application does not always change the entire screen,

instead it changes a part of the screen, like a button or

a check box. The amount of change depends on the

size of the changed widget. The update time also

depends on factors, such as if the change belongs to a

widget or an image. It is important to consider the

worst-case scenario on the planned application. Initial

calculation of frame rate and MIPS is important to get

the preliminary requirements for the system. In addition

to these calculations, it is recommended to evaluate

the system using development tools, such as

evaluation kits.

Frame Buffer (Bytes) = Total_number_of_pixels x
Color_Depth (in BPP)/8

AN1368

DS01368A-page 14  2011 Microchip Technology Inc.

Interfacing with an Unmatched Number
of Display RGB Lines

It is possible that the display controller’s number of

RGB line outputs is different from the number of RGB

line inputs of the display; it is still possible to interface

both of them. If the display’s RGB input lines are equal

to the display controller’s RGB line outputs, there will

be no color degradation. If not, there may be a slight

color degradation because the display panel will be

unable to display all the colors generated by the display

controller. Usually, the former case is encountered

rather than the latter.

In Figure 15, the display panel has more RGB signal

lines than the display controller. Here, all the RGB lines

of each color of the display controller are connected to

the MSbs of the display’s display signal lines. The

unconnected LSbs may be connected to Ground or

VDD, or to the MSb of the same color. Connecting the

LSbs to the MSbs is the widely used method, since this

enables the display to have a wider range of color

values.

FIGURE 15: DISPLAY CONTROLLER’S DISPLAY SIGNALS LESS THAN LCD’S DISPLAY

SIGNALS

Red [4] dp_Red [5]

RGB 565 RGB 666 (Display)

dp_Red [0]

Green [5..0]

Blue [4..0] dp_Blue [5..1]

dp_Blue[0]

dp_Blue[5]

 Connect to VDD or
or

Red [0] dp_Red [1]

Connect to VDD or GND or MSb

dp _Green [5..0]

GND or MSb

 2011 Microchip Technology Inc. DS01368A-page 15

AN1368

In Figure 16, the display LCD has less display signal

lines than the display controller.

The MSbs of the display lines of each color of the dis-

play controller are connected to all the display signal

lines of the LCD. The unconnected LSbs may be left

unconnected.

FIGURE 16: DISPLAY CONTROLLER’S DISPLAY SIGNALS ARE MORE THAN LCD’S DISPLAY

SIGNALS (POSSIBLE COLOR DEGRADATION)

Red [5] dp_Red [4]

RGB 666 RGB 585 (Display)

dp_Red [0]

Green [5..0]

Blue [4..0] dp_Blue[4..0]

dp _Green [5..0]

Red [0]

Blue [0]

No Connect

No Connect

AN1368

DS01368A-page 16  2011 Microchip Technology Inc.

THE PIC24FJ256DA210
MICROCONTROLLER

The PIC24FJ256DA210 device is a 16-bit microcon-

troller which supports a processing speed of up to

16 MIPS. The microcontroller includes 96 Kbytes of

internal RAM and a built-in display controller with

Graphics Processing Units (GPUs) to accelerate the

drawing of common 2D shapes.

It can also interface with optional, external parallel

RAM through the Enhanced PMP module to increase

the size of the frame buffer. The PIC24FJ256DA210

graphics controller module is shown in Figure 17.

FIGURE 17: PIC24FJ256DA210 GRAPHICS CONTROLLER MODULE

PIC24F Graphics
Controller Module

T
o
 D

is
p

la
y

G
la

s
s

System

RAM

VSYNC

GCLK

GEN

GPWR

HSYNC

GD<15:0>

GPU Command
Interface

Registers

and Control
Interface

CHRGPURCCGPU IPU

Memory Request Arbiter

Display Module

Interface

CLUT

Graphics
Controller Clock
(G1CLK)

Display Interface
Clock (DISPCLK)

System Clock

 2011 Microchip Technology Inc. DS01368A-page 17

AN1368

� DISPCLK is the clock which drives the display

glass.

� System clock is the clock speed at which the

program accesses the Command/Control/Status

registers.

� G1CLK is the clock which drives the GPUs to

draw lines, rectangles, render characters and

decode compressed data without the involvement

of the processor.

� External RAM, up to 16 MB, can be connected

through the EPMP module using a parallel inter-

face. The graphics module can use this on its own

without any involvement of the processor. The

interfaces allowed are limited to an 8-bit or 16-bit

parallel connection. For more options and informa-

tion, refer to Section 42. “Enhanced Parallel

Master Port (EPMP)” (DS39730) in the “PIC24F

Family Reference Manual”.

� HSYNC, VSYNC are the horizontal and vertical

synchronization signals to the display.

� GCLK is the pixel clock.

� GEN is a signal that varies in function for TFT and

STN display types of interfaces. For TFT, this sig-

nal indicates that data lines are valid. For STN,

this signal toggles per line on the Line Toggle

mode and toggles per frame for the Frame Toggle

mode. For more information, refer to Section 43.

“Graphics Controller Module (GFX)”

(DS39731) in the “PIC24F Family Reference

Manual”.

� GD<15:0> carry the display RGB or Gray values

as per the graphics module settings. Only the

required number of lines is enabled, depending

on the interface requirements of the display. (e.g.,

16 lined for TFT LCD’s RGB565 input or four lines

for MSTN’s grayscale input).

� GPWR is the power supply control signal for the

display glass. In some large displays, an external

circuitry may be needed. Use this signal to enable

or disable the external power circuitry. In displays

that include an internal power circuitry, this signal

can be connected to the display’s power enable

pin. This signal should not be used as a power

supply line to the display glass.

Table 4 lists the number of microcontroller pins

required for various display and RAM configurations.

The Graphics Processing Units (GPUs) like the

Character Graphical Processing Unit (CHRGPU),

Rectangle Copy Graphics Processing Unit (RCCGPU)

and Inflate Processing Unit (IPU) are the graphics

accelerators. These accelerators are used for

rendering characters, rectangles and to decompress

the compressed data, respectively.

These GPUs help to free the processing power of the

microcontroller, which can be used for the purpose of

the application. Instead of the CPU rendering the

pixels, the application only needs to issue the

commands to draw primitive rendering functions (such

as lines, bars and characters) to the screen. After

issuing the commands, the CPU is free to perform

other application tasks. The application code runs in

parallel to the RCCGPU, which concurrently draws the

line. However, care should be taken because returning

from a function, for example, Line(), need not imply

that the line is completely drawn. This is called a non-

blocking draw. The drawing can also be made blocking

by setting the proper compiler switch in the

GraphicsConfig.h file, as explained in future

sections.

TABLE 4: MICROCONTROLLER PINS

Configuration
Display Data

Pins (RGB)

EPMP

Pins

Other (Clock

and Sync)

Pins

Total

A TFT LCD without External RAM (using CLUT

and 16-bit colors)

16 0 5 21

A 256-Color CSTN without External RAM 8 0 5 13

A TFT LCD with External 16-Bit Wide RAM of

256 Kbytes (using 16-bit colors)

16 37 5 58

A 16-Color MSTN without External RAM 4 0 5 9

AN1368

DS01368A-page 18  2011 Microchip Technology Inc.

The GPUs are briefly explained below:

� CHRGPU: Renders the characters on the display.

A font table must be loaded into the RAM and the

CHRGPU must point to that font table. The (x, y)

coordinates must also be initialized on the appro-

priate CHRGPU registers. When a character code

and the draw command are given, the character

will be rendered on the configured RAM area,

which can also be the frame buffer. The user must

take care of the display glass orientation as the

characters cannot be rotated dynamically by the

CHRGPU. The CHRGPU does not support anti-

aliased fonts; all the pixels on a character are of the

same color. The background and foreground colors

are set using the CHRGPU commands. If transpar-

ency is enabled, only the foreground color is

drawn, and if the transparency is disabled, the

background color is also drawn surrounding the

character. To use the CHRGPU by default, uncom-

ment the line: #define USE_DRV_OUTCHAR in

MicrochipGraphicsModule.h.

� RCCGPU: Used to draw horizontal or vertical

lines, rectangles, filled rectangles, and to copy

rectangular regions. RCCGPU can perform the

following three operations:

- Copy – Copy a memory block from one part

of the RAM to another. Depending on the

command parameter, the block of memory

can be a contiguous block or a rectangular

block.

- Copy with Solid Fill – Fill a rectangular area

with a specific color.

- Copy with Transparency – Same as the copy

option, but a color set apart to indicate trans-

parency will not be copied to the destination,

leaving that part of the destination

unchanged.

Each operation can use one of the 16 available logical

operations, called Raster Operations (ROPs), which is

applied while copying.

For example, source can be copied as is or the source

can be ORed with the destination area, or the source

can be ANDed with a separate region and copied to the

destination area. For more information on the Graphics

Controller Module (GFX) and the supported ROPs,

refer to the Section 43. “Graphics Controller Module

(GFX)” (DS39731) in the “PIC24F Family Reference

Manual”.

The RCCGPU can be used to achieve special effects,

such as screen animations, like scrolling, peeling, etc.

For more information on the advanced usage of the

RCCGPU, see Appendix C: “Advanced Usage of

RCCGPU”.

� IPU: Used to decompress a compressed data

using the DEFLATE algorithm with Fixed Huffman

codes. For example, images can be compressed

and kept in the internal Flash or external memory

and they can be decompressed into RAM during

run time. Similarly, compressed user-specific data

can also be decompressed and used during run

time with the IPU. It should be noted that

decompression can only commence from the

beginning of a compressed block and not from the

middle. For example, when storing multiple

images, compress each image to its own

compressed block. The IPU can be used to

decompress any images by specifying the

location of the desired compressed block. The

Microchip Graphics Library will handle this

scenario, making it transparent to the users.

For more information on these GPUs and their

registers, refer to Section 43. “Graphics Controller

Module (GFX)” (DS39731) in the “PIC24F Family

Reference Manual”.

Note: Bit maps can be compressed by selecting

the “IPU” option in the Graphics Resource

Converter (GRC) tool while converting the

images. GRC is a tool included in the

installation of the Graphics Library. The

PutImage() API automatically decom-

presses these compressed images using

the IPU at run time. The user is required to

allocate the required amount of RAM for

IPU operation, using compile-time options

as described in the Microchip Graphics

Library Help file.

 2011 Microchip Technology Inc. DS01368A-page 19

AN1368

DEVELOPMENT TOOLS

A fast and cost-effective way of evaluating the system

specification of an application is through the use of

existing development tools. Microchip has several

development tools supporting graphics design. Two

important tools that can be used for graphics

development are:

� Graphics LCD Controller PICtail™ Plus SSD1926

Board (AC164127-5), which is an add-on board to

the Microchip’s generic development board for

16-bit and 32-bit microcontrollers, such as the

Explorer 16 board and PIC32 starter kits.

� PIC24FJ256DA210 Development Board

(DM240312), which is a stand-alone board.

Both the boards require add-on display modules which

are available with displays of various sizes. User-

specific display panels can be used with the help of a

display prototype board. Figure 18, Figure 19, Figure 20

and Figure 21 illustrate these development tools. For the

latest tool set, visit: http://www.microchip.com/graphics.

FIGURE 18: GRAPHICS PICtail™ PLUS DAUGHTER BOARD WITH 3.2'' DISPLAY KIT (AC164127-3)

FIGURE 19: DEVELOPMENT BOARD SUPPLIED WITH PIC24FJ256DA210 DEVELOPMENT KIT

(DV164039)

AN1368

DS01368A-page 20  2011 Microchip Technology Inc.

FIGURE 20: 4.3'' WQVGA POWERTIP TFT DISPLAY BOARD (AC164127-6)

FIGURE 21: GRAPHICS DISPLAY PROTOTYPE BOARDS (AC164139)

 2011 Microchip Technology Inc. DS01368A-page 21

AN1368

SOFTWARE

The basic software component required for any

graphics application is a Software Display Driver which

provides one basic operation (i.e., setting the color of a

pixel). A driver may also implement APIs to draw

fundamental shapes, for instance, a line, rectangle,

bar, circle, text, image and so on. The Software Display

Driver must be written for every separate graphics

driver used. More complex graphic elements, like

labels, buttons, check boxes, sliders and progress bars

are implemented in higher layers, which in turn, use the

Software Display Driver.

Microchip provides a ‘free to use on PIC MCU’ software

library, called “Microchip Graphics Library”, which

contains the above discussed drivers and higher

layers. Several demos are distributed with the graphics

library which the user can run out of the box on the

appropriate development tools.

Features of the Microchip Graphics Library are:

� Works with 16-bit and 32-bit PIC® MCUs, as well

as dsPIC® DSCs

� Modular design, compile only what is required

� Supports multiple user interfaces

� Not dependent on display size or resolution

� Low-cost, full-featured development tools

� Utilities to import fonts and images

� Free to Microchip customers

� Includes multiple low-level drivers

The structure of the Microchip Graphics Library is

shown in Figure 22.

The Microchip Graphics Library v2.11 is distributed

along with the Microchip Applications Library and is

available for download at www.microchip.com/MAL.

FIGURE 22: STRUCTURE OF MICROCHIP GRAPHICS LIBRARY

The Graphics Display Controller is the hardware module

consisting of the frame buffer and Display Controller.

The remaining layers are the software layers. The

Microchip Graphics Library is organized in a set of

folders under the folder, ‘Microchip Solutions’. The ‘C’

files are in the folder, Microchip Solutions/Microchip/

Graphics, and the header files are in the folder,

Microchip Solutions/Microchip/Include/Graphics. The

development board-specific files are in the folder,

Microchip Solutions/Board Support Package. The

project path must be set to point to these folders.

Starting from the bottom-most Software layer to the

top-most layer, the functionality of each layer and the

files responsible for those layers are explained further

in the following sections. For more information, refer to

the Help file of the Microchip Graphics Library.

Application Layer

User Message Interface

(Touch Screen, Keypad, and so on)

Graphic Object Layer

(Button, Slider, Edit Box, and so on)

Graphic Primitive Layer

(Line, Circle, Bar, and so on)

Display Device Driver Layer

(PutPixel, SetColor, and so on)

Graphic Display Controller/Display Panel

Note: The Microchip Graphics Library Version 2.11 is explained here. In future, the software structure may be modified. Refer

to the Help file of your Microchip Graphics Library for the latest information.

AN1368

DS01368A-page 22  2011 Microchip Technology Inc.

DISPLAY DEVICE DRIVER LAYER

Every hardware display controller has its own set of

commands and status information. Therefore, separate

software drivers are needed for each supported display

controller, which fulfills the requirements of the display

driver and the standard APIs defined by the Graphics

Library. The list of supported drivers can be found in the

Graphics Library Help file. To know if a display module is

supported, check if the display driver inside the display

module is available in the above mentioned folder.

The main function provided by this layer is the

initialization of the driver using the API

ResetDevice(), painting a pixel using APIs,

SetColor(color) and PitPixel(x, y), and

knowing the color of a pixel using the API

GetPixel(x, y). The other functionalities provided

are, for example, setting up of clipping area, getting the

maximum x and y values for a display screen, etc. An

application can be written using only this layer without

using any higher layers. In that case, all the shapes

must be drawn by the user. To include this layer, the

following files must be added to the project:

HEADER FILES

Graphics.h

DisplayDriver.h or specific <Driver.h>

(like SSD1926.h)

CONFIGURATION FILES

HardwareProfile.h

GraphicsConfig.h

These files are project-specific and must be inside the

project folder.

SOURCE FILES

Specific <Driver.c> (like SSD1926.c)

GRAPHIC PRIMITIVE LAYER

This is a layer above the Display Driver layer and

provides most common services through APIs, which

are used to draw basic shapes, for instance, line

(normal, thick, dashed), bar, rectangle, circle, polygon,

bevel and arc. It also provides APIs for drawing text

and images. These are generic APIs which work with

any given display driver. However, some of these APIs

may be implemented by the Driver layer for optimized

performance, especially if the driver supports 2D-

Accelerations (For example, the Microchip Graphics

module and SSD1926). It is possible to write simple

applications by using Primitive and Driver layers only

and without using higher layers. To include this layer,

the following files must be added to the project:

HEADER FILES

Primitive.h

SOURCE FILES

Primitive.c

GRAPHIC OBJECT LAYER (GOL)

The GOL consists of many selectable objects, called

‘widgets’, such as Button, TextBox, Check Box,

ScrollBar, ProgressBar, Picture, ListBox, GroupBox,

Meter, DigitalMeter, Dial, Chart and Grid, which form

the basic elements of a complex graphics application.

Each of these widgets is implemented in ‘C’, but with

basic object-oriented principles, and can be used as

modules. Use of this layer must be enabled at compile

time in the ‘GraphicsConfig.h’ file. The use of

individual widgets can be enabled or disabled during

compile time in the ‘GraphicsConfig.h’ file, thereby

saving RAM and ROM. For more information, see the

“Configuration” section.

Each kind of widget has a default style scheme which

defines the font and the colors used for various parts

and states of the widget. For example, a button in a

pressed state has a different color than the released

button. The style scheme for each widget is explained

in detail in the Help file of the Microchip Graphics

Library. For each style scheme, some heap memory

(dynamically allocated memory) is required to store the

style scheme values. Heap is required to store the state

information for each enabled widget. The total heap

must be greater than the sum of heaps for all the

instances of used widgets. Aside from the heap

requirement, each widget type also needs to use RAM

space for variables when rendering and managing the

widgets. This additional RAM requirement is a constant

overhead for each type of widget. The difference

between the two is that the heap requirement is needed

for each instance of a widget, while the RAM

requirement is needed for each type of widget. The

RAM requirement is constant and not dependent on the

number of instances of one type of widget.

 2011 Microchip Technology Inc. DS01368A-page 23

AN1368

For example, if the Release note says:

For a PIC24F application using only two buttons, a

RAM of 8 bytes, ROM of 1002 bytes and the required

heap memory would be 2 x 28 = 56 Bytes.

If one style scheme is used, then a heap memory of

20 bytes would be required.

EQUATION 3:

The GOL depends on the Primitive and the Display Driver

layers. A function, GOLDraw(), must be called

continuously in a loop to simplify the drawing of widgets.

Additionally, a function, GOLDrawCallback(), must be

implemented in the application code. This is used for

custom drawing which is explained in the Help file.

Generally, this function can just return: TRUE.

To include the GOL, along with the files required for the

Primitive layer and Display Driver layer, the following

files must be added to the project. See the Help file for

the latest list of files. If the GOL is used, then in the

GraphicsConfig.h file, the macro, #define

USE_GOL, must be defined. Individual macros for the

widgets used, such as #define USE_BUTTON, must

also be defined. If these individual macros are not

defined, the widgets will not be compiled even if they

are included in the project.

Users can also create their own widgets and add to the

graphics library. See “References” for more details.
Module Button GOL

Heap for PIC24F 28

(per instance)

20 (per style

scheme)

Heap for PIC32 44

(per instance)

24 (per style

scheme)

RAM for PIC24F 8 32

RAM for PIC32 12 28

ROM for PIC24F 1002 2076

ROM for PIC32 2748 5400

Note: The RAM and ROM requirements for

PIC24F and PIC32 devices may be differ-

ent because of different microcontroller

architecture and different compilers.

Note: This example is indicative only. It is

recommended to see the release notes of

the Microchip Graphics Library to derive

the appropriate values for that particular

release.

Total Heap (Minimum Required Heap) = 20

(for the Style Scheme) + (2 x 28) = 76 bytes

Total RAM (for Graphics) = 32 (for GOL) + 8 = 40 bytes

File Category Button

Header Files • GOL.h

• Button.h

• Chart.h

• CheckBox.h

• DigitalMeter.h

• EditBox.h

• Grid.h

• GroupBox.h

• ListBox.h

• Meter.h

• Picture.h

• ProgressBar.h

• RadioButton.h

• RoundDial.h

• Slider.h

• StaticText.h

• TextEntry.h

• Window.h

• <CustomWidget.h>

Configuration

Files

� GraphicsConfig.h (to

select the usage of GOL and

its individual widgets)

Source files • GOL.c

• GOLFontDefault.c

• Button.c

• Chart.c

• CheckBox.c

• DigitalMeter.c

• EditBox.c

• Grid.c

• GroupBox.c

• ListBox.c

• Meter.c

• Picture.c

• ProgressBar.c

• RadioButton.c

• RoundDial.c

• Slider.c

• StaticText.c

• TextEntry.c

• Window.c

• <CustomWidget.c>

Note: This list is for indication only. Refer to the

Microchip Graphics Library Help file for

the latest list of files.

AN1368

DS01368A-page 24  2011 Microchip Technology Inc.

USER MESSAGE INTERFACE

The user message interface is a sublayer of the GOL

which is enabled if the GOL is used. This sublayer is

used to facilitate the message passing between

widgets and user input. For example, if the user

presses a button, then a message is sent to a call back

function, called GOLMsgCallback(), where the

message indicating that the button is pressed is

checked and an action is taken. This callback function

must be present in the application code if the GOL is

being used, no matter if message passing is being

used or not. If the message passing is not used, the

function body must return a ‘1’.

Similar to GOLDraw(), GOLMsg() must be called

continuously in a loop inside the application code to

facilitate message collection and passing.

The usage of GOLDraw(), GOLDrawCallback(),

GOLMsg() and GOLMsgCallback() are explained in

Example 4, Example 5 and Example 6.

APPLICATION LAYER

In this layer, the user has full control of the application.

Initially, the user must initialize the Microchip Graphics

Library. The initialization is done by calling GOLInit() if

all the layers are being used, InitGraph() if the GOL

is not being used but the Primitive and Display Driver

layers are being used, or by calling ResetDevice() if

only the Display Driver layer is being used. After the

initialization routine, the Primitive and Driver layers’ APIs

can be called to achieve the required draw functionality.

To use GOL objects (like buttons), the widgets must be

created by calling the widget’s create function (e.g.,

BtnCreate()), one by one, until all of the widgets are

created. This step will not display the widgets. The

created widgets are drawn on the screen when the

GOLDraw() function is called repeatedly in a while loop.

The messages are processed by calling the GOLMsg()

inside the same loop, as shown in Example 5.

After GOLDraw() is done, messages are received

from the touch screen driver and hard buttons driver.

The obtained message is passed to GOLMsg() to

process and to output a widget-specific message. For

example, it converts a “USER TOUCHED POSITION

100, 100” message to BUTTON1_PRESSED.

Additionally, the application must possess the

GOLDrawCallback() and GOLMsgCallback()

functions.

If custom drawing is not done, then the draw callback is

used, as shown in Example 4.

EXAMPLE 4:

The message callback handles the processed

message sent out by the widgets, as shown in

Example 6.

If the application already uses a main loop,

GOLDraw() and GOLMsg() can be called within the

loop (see Example 5).

Note 1: Refer to the application note, AN1136, “How

to Use Widgets in Microchip Graphics

Library” for creating a simple application.

2: Refer to the Microchip Graphics Library

Help file for the list of related application

notes.

WORD GOLDrawCallback(void)

{

return (1);

}

 2011 Microchip Technology Inc. DS01368A-page 25

AN1368

EXAMPLE 5:

EXAMPLE 6:

while(1)

{

if(GOLDraw())

{ // Draw GOL objects

// Drawing is done here, process messages

TouchGetMsg(&msg); // Get message from touch screen

GOLMsg(&msg); // Process message

SideButtonsMsg(&msg); // Get message from side buttons

GOLMsg(&msg); // Process message

}

}

WORD GOLMsgCallback(WORD objMsg, OBJ_HEADER *pObj, GOL_MSG *pMsg)

{

 // beep if button is pressed

 if(objMsg == BTN_MSG_PRESSED)

 {

 Beep();

 }

}

	Contact us
	Introduction
	Basics of Color Science
	FIGURE 1: Red + Green = Yellow
	FIGURE 2: Colors in 16-bit Representation
	FIGURE 3: GrayScale Values of 0 to 225
	FIGURE 4: Color Look-up Table (CLUT)

	Basic Display Terminology
	FIGURE 5: A 3.5'' QVGA Display in Landscape Mode

	Graphics Subsystem Hardware
	Components of a Graphics System
	FIGURE 6: The Four Basic Components of a Graphics System
	Display Glass
	TABLE 1: Comparison of Different Display Technologies(1)

	Display Controller
	Frame Buffer
	EQUATION 1:
	EXAMPLE 1:
	EXAMPLE 2:
	EXAMPLE 3:

	Microcontroller
	FIGURE 7: Pixel Data Update

	Integration of Basic Components
	FIGURE 8: Different Ways of Integrating Basic Graphics’ Components
	TABLE 2: Basic Components

	Power Sequencing in Display Panels
	FIGURE 9: Power Sequence of a Panel

	Touch Screen
	4-Wire Resistive Touch Screen
	FIGURE 10: 4-Wire Resistive Touch Screen
	FIGURE 11: Measurement of the X-Voltage
	FIGURE 12: Measurement of the Y-Voltage

	Decision Factors
	Display Resolution and Size
	FIGURE 13: Display of ‘A’ at Various Resolutions

	Display Orientation
	Color Depth Selection
	FIGURE 14: Landscape and Portrait Displays used in Landscape Mode
	TABLE 3: RAM Size Requirement for Different Color Depths

	Frame Buffer Size
	EQUATION 2:

	Processing Power (MIPS)
	Configuration of Graphics Components
	Frame Rate vs. MIPS
	Interfacing with an Unmatched Number of Display RGB Lines
	FIGURE 15: Display Controller’s Display Signals less than LCD’s Display Signals
	FIGURE 16: Display Controller’s Display Signals are more than LCD’s Display Signals (Possible Color Degradation)

	The PIC24FJ256DA210 Microcontroller
	FIGURE 17: PIC24FJ256DA210 graphics controller module
	TABLE 4: Microcontroller Pins

	Development Tools
	FIGURE 18: Graphics PICtail™ Plus Daughter Board with 3.2'' Display Kit (AC164127-3)
	FIGURE 19: Development Board supplied with PIC24FJ256DA210 Development Kit (DV164039)
	FIGURE 20: 4.3'' WQVGA Powertip TFT Display Board (AC164127-6)
	FIGURE 21: Graphics Display Prototype Boards (AC164139)

	Software
	FIGURE 22: Structure of Microchip Graphics Library

	Display Device Driver Layer
	Graphic Primitive Layer
	Graphic Object Layer (GOL)
	EQUATION 3:

	User Message Interface
	Application Layer
	EXAMPLE 4:

