
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

 2014 Microchip Technology Inc. DS50002243A

Emulation Extension Pak (EEP)

and Emulation Header

User’s Guide

DS50002243A-page 2 2014 Microchip Technology Inc.

Information contained in this publication regarding device

applications and the like is provided only for your convenience

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR

WARRANTIES OF ANY KIND WHETHER EXPRESS OR

IMPLIED, WRITTEN OR ORAL, STATUTORY OR

OTHERWISE, RELATED TO THE INFORMATION,

INCLUDING BUT NOT LIMITED TO ITS CONDITION,

QUALITY, PERFORMANCE, MERCHANTABILITY OR

FITNESS FOR PURPOSE. Microchip disclaims all liability

arising from this information and its use. Use of Microchip

devices in life support and/or safety applications is entirely at

the buyer’s risk, and the buyer agrees to defend, indemnify and

hold harmless Microchip from any and all damages, claims,

suits, or expenses resulting from such use. No licenses are

conveyed, implicitly or otherwise, under any Microchip

intellectual property rights.

Note the following details of the code protection feature on Microchip devices:

� Microchip products meet the specification contained in their particular Microchip Data Sheet.

� Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

� There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

� Microchip is willing to work with the customer who is concerned about the integrity of their code.

� Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

== ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,

FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,

PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash

and UNI/O are registered trademarks of Microchip Technology

Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,

MTP, SEEVAL and The Embedded Control Solutions

Company are registered trademarks of Microchip Technology

Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of

Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom,

chipKIT, chipKIT logo, CodeGuard, dsPICDEM,

dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,

ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial

Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB

Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code

Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,

PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,

Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA

and Z-Scale are trademarks of Microchip Technology

Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated

in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip

Technology Germany II GmbH & Co. KG, a subsidiary of

Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their

respective companies.

© 2014, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-62077-860-9

 2014 Microchip Technology Inc. DS50002243A-page 3

EEP AND EMULATION HEADER
USER’S GUIDE

Table of Contents

Chapter 1. EEP and Emulation Header Overview

1.1 Emulation Extension Pak and Emulation Header Defined 5

1.2 Why Do I Need An Emulation Header? .. 6

1.3 Programming Notes ... 7

1.4 General Emulation Header Setup .. 8

1.5 Device vs. Optional Header Features .. 10

1.6 MPLAB X IDE Use with Headers ... 11

1.7 Calibration Bits ... 11

1.8 Performance Issues ... 11

1.9 Related Debug Tools .. 11

1.10 Customer Support .. 11

Chapter 2. Emulation Header Features

2.1 Introduction ... 13

2.2 Hardware and Software Requirements .. 13

2.3 Real Time Hardware Instruction Trace ... 14

2.4 Hardware Address/Data Breakpoints ... 18

2.5 Enhanced Event Breakpoints ... 19

2.6 Background Debug Mode ... 19

2.7 Event Combiners .. 20

2.8 Stopwatch Cycle Counter ... 22

2.9 Execution Out-of-Bounds Detection ... 22

2.10 Interrupt Context Detection .. 22

2.11 Trigger In/Out ... 23

Chapter 3. Emulation Header List

3.1 Introduction ... 25

3.2 AC244055 .. 27

3.3 AC244063 .. 30

3.4 AC244064 .. 32

Chapter 4. Emulation Header Target Footprints

4.1 Introduction ... 35

4.2 DIP Device Footprints .. 35

4.3 TQFP/PLCC Device Footprints .. 35

Chapter 5. Emulation Header Connections

5.1 Introduction ... 37

5.2 6-Pin Modular Connector ... 37

5.3 6-Pin SIL Connector ... 38

EEP and Emulation Header User’s Guide

DS50002243A-page 4 2014 Microchip Technology Inc.

5.4 Modular-to-SIL Adapter .. 39

5.5 Ordering Information .. 39

Index ...41

Worldwide Sales and Service..44

 2014 Microchip Technology Inc. DS50002243A-page 5

EEP and Emulation Header

User’s Guide

Chapter 1. EEP and Emulation Header Overview

This chapter contains the following topics:

� Emulation Extension Pak and Emulation Header Defined

� Why Do I Need An Emulation Header?

� Programming Notes

� General Emulation Header Setup

� Device vs. Optional Header Features

� MPLAB X IDE Use with Headers

� Calibration Bits

� Performance Issues

� Related Debug Tools

� Customer Support

1.1 EMULATION EXTENSION PAK AND EMULATION HEADER DEFINED

An emulation header is a circuit board that allows an emulator to debug code for a spe-

cific device. A special version of the device (-ME2) with on-board emulation circuitry is

located on the header. Connectors on the side of the header allow it to connect directly

to or through an adapter to the emulator. Connectors on the bottom of the header allow

it to connect directly to or through a transition socket to a target board.

An Emulation Extension Pak (EEP) contains an emulation header, gold single in-line

pins, and a trace cable and trace adapter board.

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and

documentation are constantly evolving to meet customer needs, so some actual dialogs

and/or tool descriptions may differ from those in this document. Please refer to our web site

(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each

page, in front of the page number. The numbering convention for the DS number is

“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the

document.

For the most up-to-date information on development tools, see the MPLAB® IDE or MPLAB X

IDE online Help (Help menu).

EEP and Emulation Header User’s Guide

DS50002243A-page 6 2014 Microchip Technology Inc.

1.2 WHY DO I NEED AN EMULATION HEADER?

Although some devices have on-board debug circuitry to allow you to debug your code,

you often lose device resources to debugging, i.e., debugging requires the use of two

I/O lines, plus Vdd, Vss and Vpp, to communicate with the device. Using a debug

header can free up these resources for your application.

Using an emulation header gives you the benefits of a debug header plus new and

powerful debugging features. These features give you more choices to pick the right

debugging feature(s) to efficiently solve the debugging task at hand.

1.2.1 Advances Debug Features

Advanced debug features and benefits are:

� Real-time Hardware Instruction Trace (RI)

- Provides full instruction execution information up to 32 MHz

- Trace through Reset conditions

- Trace buffer with optional stall

� Hardware Address/Data Breakpoints - 32 maximum

- Break on program memory fetch or data read/writes

- Program or data address range breakpoints

- Data masking for bit-field breakpoints

- Data comparison breakpoints

- Break on ISR and/or main code

- Break on Pass Count

- Break and Trigger Out or just Trigger Out

- Data break on normal or linear modes

- Break without halting or as a trigger for other events

� Enhanced Event Breakpoints

- Break on execution out of bounds - watches PC

- Break on MCLR Reset

- Break on trigger in signal

� Background Debug

- Settings and breakpoints may be changed in runtime or sleep time

- Faster stepping for lower MCU frequencies compared to -ICE/-ICD parts

� Event Combiners - Four (4) available

- Each event combiner can combine up to eight (8) events

- Generates a halt or Trigger Out

- Modeled on MPLAB ICE 2000 In-Circuit Emulator complex triggers

� Execution Out-Of-Bounds Detection

- Watch for PC values that exceed the available program memory

� Enhanced Stopwatch Cycle Counter

- 32-bit instruction cycle counter

� External Trigger In/Out

- Trigger In: Signal falling edge can cause a Halt or Trigger Out

- Trigger Out: On an event with an enabled trigger, positive pulse is generated

RI = This feature applies to the MPLAB REAL ICE in-circuit emulator only.

For more information on these features, see: Chapter 2. “Emulation Header

Features”.

EEP and Emulation Header Overview

 2014 Microchip Technology Inc. DS50002243A-page 7

1.2.2 Standard Debug Features

For information on standard debug features, see the user’s guide or online help file for

your hardware debug tool:

� PICkit 3™ in-circuit debugger

� MPLAB ICD 3 in-circuit debugger

� MPLAB REAL ICE™ in-circuit emulator

Also see the Processor Extension Pak and Debug Header Specification (DS51292).

1.3 PROGRAMMING NOTES

The emulation header is designed to be used with the in-circuit emulator in debugger

mode, Debug>Debug Project (not in programmer mode, Run>Run Project) in MPLAB

X IDE. Any programming of the special -ME2 device on the header is for debug pur-

poses.

To program production (non-special) devices with your debug tool, use the Universal

Programming Module (AC162049) or design a modular interface connector on the

target. See the appropriate specification for connections. For the most up-to-date

device programming specifications, see the Microchip website www.microchip.com.

Also, production devices can be programmed with the following tools:

� MPLAB PM3 device programmer

� PICkit 3 development programmer

� MPLAB ICD 3 in-circuit debugger (select as a programmer)

� MPLAB REAL ICE in-circuit emulator (select as a programmer)

EEP and Emulation Header User’s Guide

DS50002243A-page 8 2014 Microchip Technology Inc.

1.4 GENERAL EMULATION HEADER SETUP

To set up your header, follow these instructions, before doing anything else:

1. Check the header box for any paper inserts that specify special operating instruc-

tions and the emulation header for any stickers (Figure 1-1).

FIGURE 1-1: SPECIAL HEADER INSTRUCTIONS

2. Set any jumpers or switches on the header to determine device functionality or

selection as specified for that header. See the section “Emulation Header List”

for information on how to set up individual headers.

3. Connect the header to your desired debug tool by consulting the tool

documentation for connection options. Example connections are shown in

Figures 1-2 through 1-4.

FIGURE 1-2: PICkit 3™ IN-CIRCUIT DEBUGGER CONNECTIONS

FIGURE 1-3: MPLAB ICD® 3 IN-CIRCUIT DEBUGGER CONNECTIONS

Emulation Header (Top)

CAUTION
CAUTION

EEP and Emulation Header Overview

 2014 Microchip Technology Inc. DS50002243A-page 9

FIGURE 1-4: MPLAB® REAL ICE™ IN-CIRCUIT EMULATOR

CONNECTIONS

4. Connect the header to the target board. On the bottom of the header is a socket

that is used to connect to the target board. The header can be connected to the

target board as follows:

a) PDIP header socket to PDIP target socket with a stand-off (male-to-male)

connector or single in-line pins

b) Header socket to plug on the target board

c) Header socket to target socket with a transition socket (see the “Transition

Socket Specification”, DS51194)

An example connection is shown in Figure 1-5.

The header socket will have the same pin count as your selected device. The

-ME2 device on the top of the header usually has a larger pin count because it

has additional pins that are dedicated to debug.

FIGURE 1-5: CONNECT HEADER TO TARGET

5. If using a debug tool that can power the target, power that tool now.

6. Power the target, if needed.

Power In

Target Board (Top)

Target Socket

Stand-off Connector

Emulation Header (Bottom)

Header Socket

EEP and Emulation Header User’s Guide

DS50002243A-page 10 2014 Microchip Technology Inc.

1.5 DEVICE VS. OPTIONAL HEADER FEATURES

This document discusses the benefits of using an emulation header versus devices

that have on-board debug capability or debug headers. Another resource for

determining the differences in debug features is the Development Tool Selector (DTS).

To find features by device:

1. In a web browser, go to: http://www.microchip.com/dtsapp/

2. Enter your device and click the Search button.

3. Select the package you will use.

4. Compare the device under “Debug Features”, “Header Debug Features”, and

“Header Emulation Features”.

FIGURE 1-6: DTS DEVICE INFORMATION

EEP and Emulation Header Overview

 2014 Microchip Technology Inc. DS50002243A-page 11

1.6 MPLAB X IDE USE WITH HEADERS

Emulation header functionality is supported on MPLAB X IDE, but not on MPLAB IDE

v8. Please use debug headers if you are still using MPLAB IDE v8.

You need to do the following to use an emulation header on MPLAB X IDE:

1. Set up the emulation header as specified in “General Emulation Header Setup”.

2. Begin creating a project for a device supported by your emulation header using

the Projects wizard (File>New Project). See MPLAB X IDE documentation for

more on Projects.

3. In one step of the wizard you will have an opportunity to specify the header.

4. In another step you will specify the hardware (debug) tool to which your header

is attached.

5. Once the wizard is complete, write code for your project.

6. Select Debug>Debug Project to run and debug your code.

1.7 CALIBRATION BITS

The calibration bits for the band gap and internal oscillator are always preserved to their

factory settings.

1.8 PERFORMANCE ISSUES

The PIC® MCU devices do not support partial program memory erase; therefore, users

may experience slower performance than with other devices.

Also, see the in-circuit emulator Help file for information on specific device limitations

that could affect performance.

1.9 RELATED DEBUG TOOLS

The following tools support the use of emulation headers:

� PICkit 3 in-circuit debugger

� MPLAB ICD 3 in-circuit debugger

� MPLAB REAL ICE in-circuit emulator

See the Microchip website for the latest documentation: http://www.microchip.com

1.10 CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

� Distributor or Representative

� Local Sales Office

� Field Application Engineer (FAE)

� Technical Support

Technical support is available through the web site at: http://support.microchip.com.

Documentation errors or comments may be sent to: docerrors@microchip.com.

Note: An emulation header can only be used to debug (Debug menu), not to

program (Run menu). See “Programming Notes”.

EEP and Emulation Header User’s Guide

DS50002243A-page 12 2014 Microchip Technology Inc.

NOTES:

 2014 Microchip Technology Inc. DS50002243A-page 13

EEP and Emulation Header

User’s Guide

Chapter 2. Emulation Header Features

2.1 INTRODUCTION

Emulation headers provide an array of debug features. The following requirements and

advantages are discussed here:

� Hardware and Software Requirements

� Real Time Hardware Instruction Trace

� Hardware Address/Data Breakpoints

� Enhanced Event Breakpoints

� Background Debug Mode

� Event Combiners

� Stopwatch Cycle Counter

� Interrupt Context Detection

� Trigger In/Out

2.2 HARDWARE AND SOFTWARE REQUIREMENTS

To use emulation header features, the following are required.

Hardware

� an emulation header that is set up as per Section 1.4 “General Emulation

Header Setup”.

� for Trace, the trace cable and interface board (included with emulation header)

also need to be connected as per above.

Software

� MPLAB X IDE v1.90 or greater

� In the Project Properties window (right click on the project name and select

“Properties”), and under “Supported Debug Header”, ensure that the emulation

header is selected.

EEP and Emulation Header User’s Guide

DS50002243A-page 14 2014 Microchip Technology Inc.

2.3 REAL TIME HARDWARE INSTRUCTION TRACE

Real Time Hardware Instruction Trace is a real-time dump of the program execution

stream that can be captured and analyzed.

The functionality that is provided includes:

� full instruction execution information up to 32 MHz

� trace through Reset conditions

� trace buffer with optional stall

2.3.1 How Trace Works

Emulation header trace is similar to PIC32 instruction trace, which is a non-intrusive

hardware instruction trace. You can use trace to capture every instruction executed by

the device. The trace data is output from the device (using the pins TRCLK,

TRDAT[6:0], and TRSTALL) to the emulator. The emulator streams this data to a trace

buffer, that acts like a rolling first-in/first-out (FIFO) buffer, on the PC.

The amount of trace data is limited only by the size of the trace buffer. This buffer can

fill quickly even when set to the maximum size, so it is wise to determine exactly what

you need to capture.

Enable and set trace options in the Project Properties dialog in the following menu

selections:

Categories – “REAL ICE”

Option categories – “Trace and Profiling”
From there, you can set:

“Data selection” – enable/disable trace and select the type of trace.

“Data file path and name” – location of trace file

“Data file maximum size” – size of trace file

“Data Buffer maximum size” – size of the trace buffer

MPLAB X IDE will announce when the trace buffer has overflowed.

Note: Execution will not halt when this external buffer is full.

Note: This feature is only supported on the MPLAB REAL ICE in-circuit emulator.

Emulation Header Features

 2014 Microchip Technology Inc. DS50002243A-page 15

2.3.2 Setting Up and Using Trace

Trace requires hardware and software setup:

2.3.2.1 HARDWARE SETUP

To use trace, you will need the ribbon cable and emulator interface board that comes

with the emulation header. Connect one end to the emulation header (Figure 2-1). Con-

nect the other end to the emulator. For more information on complete hardware setup

and connections, refer to Section 1.4 “General Emulation Header Setup”.

FIGURE 2-1: EMULATION TRACE CABLE CONNECTED TO HEADER

2.3.2.2 MPLAB X IDE SETUP

To set up MPLAB X IDE to use trace for the MPLAB REAL ICE in-circuit emulator,

perform the following steps:

1. Right click on the project name and select “Properties” to open the Project

Properties window.

2. Click on “Real ICE” under “Categories”.

3. Under “Option categories”, select “Clock”.
For data capture and trace, the emulator needs to know the instruction cycle

speed.

4. Under “Option categories”, select “Trace and Profiling”.

5. Under “Data Collection Selection”, choose “Instruction Trace/Profiling”.

6. Set up any other trace-related options.

7. Click OK.

On a debug run, trace will continue to fill the trace buffer with data, rolling over when

the buffer is full, until a program Halt.

12

1
3

7
5

3

1
4

8
6

4

0
2
-1

0
0
3
8

J
1

C

1
5

1
7

9
1
1

1

1
8

1
6

1
0

1
2

2

A
s
s
e
m

b
ly

 N
o
.:

1
9

2
0

Header
Emulation

J
2

2013

Trace Adapter

Emulation Header

To the
Emulator

Trace
Connector

Interface
Board

To the
Emulator

Modular
Connector

Logic Probe
Connector

Modular
Connector

EEP and Emulation Header User’s Guide

DS50002243A-page 16 2014 Microchip Technology Inc.

2.3.2.3 VIEWING TRACE DATA

When trace is enabled and code is run, trace data will be collected by the emulator.

Once the device is halted, trace data will be decoded and displayed in the Trace

window (Window>Debugging>Trace).

FIGURE 2-2: TRACE WINDOW

2.3.3 Improving the Trace Experience

Remove as many USB devices from your PC USB ports as you can. This should

improve trace throughput.

Emulation Header Features

 2014 Microchip Technology Inc. DS50002243A-page 17

2.3.4 Trace Hardware

Hardware details are shown in the following figures.

FIGURE 2-3: TRACE CONNECTOR ON EMULATION HEADER

FIGURE 2-4: INTERFACE BOARD

GND

GND

GND

GND

TRGIN

TRD5

TRD2

TRCLK

GND

GND

GND

GND

GND

GND

GND

GND

TRGOUT

TRD4

TRD6

TDR3

TRD1

TRD0

20k

R17

NC (KEY)

TRSTALL

20k

R2

21

23 24

22

19

1

3

5

7

9

11

13

15

17

2

4

6

8

20

18

16

14

12

10

J4

HDR_2X12_OE

TRCLK

TRD0

TRD1

TRD2

TRD3

TRD4

TRD5

TRD6

TRGIN

TRGOUT

TRSTALL

GND

56R9

56R10

56R11

56R12

56R13

56R14

56R15

56R16

20k

R3

Trace Cable Header (To RI)

Top

To the
Emulator
Logic Probe
Connector

Pin 20 Removed

1 2

1
3

7
5

3

1
4

8
6

4

0
2

-1
0
0

3
8

J
1

C

1
5

1
7

9
1
1

1

1
8

1
6

1
0

1
2

2

A
s
s
e
m

b
ly

 N
o

.:

1
9

2
0

Header
Emulation

J
2

2013

Trace Adapter

EEP and Emulation Header User’s Guide

DS50002243A-page 18 2014 Microchip Technology Inc.

2.4 HARDWARE ADDRESS/DATA BREAKPOINTS

Up to 32 hardware address/data breakpoints are available to use on the emulation

header. Software breakpoints are useful, but real hardware breakpoints are incompa-

rable when you need unfettered control of qualifying the breakpoint/event conditions

(beyond the simple address matching). Consider the addition of a special interrupt

contextual qualifier and these hardware breakpoints offer a high degree of

configurability.

Some notable breakpoint features are listed here:

� 32 available address/data hardware breakpoints

� Address range breakpoints (break within data or program memory address

ranges)

� Data-Masking qualifier for data breakpoints (allows bit-field breakpoints)

� Data-Comparison qualifier for data breakpoints (equality to)

� Interrupt Context qualifier for address/data breakpoints –
Select from:

- Always break (break in both ISR and main code)

- Break in main line (non-interrupt) context only - break in main code only

- Break in interrupt context only - break in ISR code only

� Trigger Out qualifier for address/data breakpoints (generate a trigger out signal on

event condition) –
Select from:

- Do not trigger out when breakpoint is hit

- Trigger out when breakpoint is hit

� Pass Count qualifier for address/data breakpoints (break on event condition

occurring N times)

� Data breakpoints trigger on both normal and linear address modes

� Breakpoints and other events can trigger without halting execution and could be

used as trigger events to other features

Address/Data Breakpoints may be found and set up on the New Breakpoint Dialog

(Debug>New Breakpoint) by choosing either “Address” or “Data” as the “Breakpoint

Type”. After the breakpoint is created, it can be edited by right clicking and selecting

“Customize”.

Emulation Header Features

 2014 Microchip Technology Inc. DS50002243A-page 19

2.5 ENHANCED EVENT BREAKPOINTS

For a definition of event breakpoints, see the MPLAB X IDE Help, “New Breakpoint

Dialog”. When creating a new breakpoint or customizing an existing breakpoint using

an emulation header, additional actions are available for event breakpoints:

Event breakpoints may be found and set up on the New Breakpoint Dialog

(Debug>New Breakpoint) by choosing “Event” as the “Breakpoint Type”. After the

breakpoint is created, it may be edited by right clicking and selecting “Customize”.

2.6 BACKGROUND DEBUG MODE

The emulation header’s on-board -ME2 device contains a Background Debug Mode

control interface that allows you read/write access to RAM memory, SFRs, and

emulation registers while your program is running or even sleeping.

Background Debug Mode capability includes the following advantages:

� Allows runtime/sleep time changes of In-Circuit Debug (ICD) settings and

breakpoints (i.e., runtime address/data/complex/event breakpoints).

� Compared to debug headers (with -ICE or -ICD devices), yields noticeably faster

single-stepping speeds at lower MCU operating frequencies.

Action Description

Break break (halt) execution per option specified

Trigger out emit a trigger out pulse per option specified

Break and trigger out break (halt) execution AND emit a trigger out pulse

per option specified

EEP and Emulation Header User’s Guide

DS50002243A-page 20 2014 Microchip Technology Inc.

2.7 EVENT COMBINERS

An event combiner monitors multiple event inputs (currently breakpoints only) and can

generate a halt or a trigger out that is based on combinations and sequences of those

inputs.

Emulation headers have four (4) Event Combiners and each combines eight (8) com-

binational or sequential events into a single event trigger. Individual breakpoints may

be grouped into sequences, logical ‘AND’ lists, or a nested combination of these for

more complex control. The Event Combiners were modeled after the legacy MPLAB®

ICE 2000 complex triggers.

Set up the following complex breakpoints through selections in the Breakpoint window

(Window>Debugging>Breakpoints).

� Complex Breakpoint Sequence

� Complex Breakpoint Latched-And

� Complex Breakpoint Nesting

2.7.1 Complex Breakpoint Sequence

A breakpoint sequence is a list of breakpoints that execute but do not halt until the last

breakpoint is executed. Sequenced breakpoints can be useful when there are more

than one execution path leading to a certain instruction, and you only want to exercise

one specific path.

To create a Breakpoint Sequence:

1. Right click on an existing breakpoint or shift click to select a group of existing

breakpoints and right click on the group.

2. From the pop-up menu, go to “Complex Breakpoint” and select “Add to New

Sequence”.

3. Enter a name for your sequence in the dialog box, and click OK.

4. The breakpoint(s) will appear under the new sequence.

To add Existing Breakpoints to a Sequence:

1. Right click on an existing breakpoint or shift click to select a group of existing

breakpoints and right click on the group.

2. From the pop-up menu, go to “Complex Breakpoint” and select “Move to Name”,

where Name is the name of the sequence.

To add a New Breakpoint to a Sequence:

Right click on the sequence and select “New Breakpoint”.

For more on setting up a new breakpoint, see Section 2.4 “Hardware Address/Data

Breakpoints” and Section 2.5 “Enhanced Event Breakpoints”.

To select the Sequence Order:

1. Expand on a sequence to see all items.

2. Right click on an item and select Complex Breakpoints>Move Up or Complex

Breakpoints>Move Down. Sequence execution of breakpoints is bottom-up; the

last breakpoint in the sequence occurs first.

To remove Breakpoints from a Sequence:

1. Right click on an existing breakpoint or shift click to select a group of existing

breakpoints and right click on the group.

2. From the pop-up menu, go to “Complex Breakpoint” and select “Remove from

Name”, where Name is the name of the sequence.

Emulation Header Features

 2014 Microchip Technology Inc. DS50002243A-page 21

2.7.2 Complex Breakpoint Latched-And

In addition to breakpoint sequences, a Latched-And (hardware AND) is available to

AND a list of breakpoints. ANDed breakpoints can be useful when a variable is modified

in more than one location and you need to break only when that variable is modified in

one particular location.

To create a Breakpoint Latch-And:

1. Right click on an existing breakpoint or shift click to select a group of existing

breakpoints and right click on the group.

2. From the pop-up menu, go to “Complex Breakpoint” and select “Add a New

Latched-And”.

3. Enter a name for your Latched-And in the dialog box and click OK.

4. The breakpoint(s) will appear under the new Latched-And.

To add Existing Breakpoints to a Latch-And:

1. Right click on an existing breakpoint or shift click to select a group of existing

breakpoints and right click on the group.

2. From the pop-up menu, go to “Complex Breakpoint” and select “Move to Name”,

where Name is the name of the Latched-And.

To add a New Breakpoint to a Latch-And:

Right click on the Latched-And and select “New Breakpoint”.

To remove Breakpoints from a Latch-And:

1. Right click on an existing breakpoint or shift click to select a group of existing

breakpoints and right click on the group.

2. From the pop-up menu, go to “Complex Breakpoint” and select “Remove from

Name”, where Name is the name of the Latched-And.

2.7.3 Complex Breakpoint Nesting

Complex breakpoints may be nested to create even more complex breaking schemes.

To nest one group of complex breakpoints into another:

1. Create two groups of complex breakpoints (Sequenced, Latched-And or one of

each).

2. Right click on the complex breakpoint group you wish to nest.

3. From the pop-up menu, go to “Complex Breakpoint” and select “Move to Name”,

where Name is the name of the other complex breakpoint group.

4. The first group will appear under the second group, thus creating a scheme.

FIGURE 2-5: NESTED COMPLEX BREAKPOINTS

EEP and Emulation Header User’s Guide

DS50002243A-page 22 2014 Microchip Technology Inc.

2.8 STOPWATCH CYCLE COUNTER

The Stopwatch (32-bit Instruction) Cycle Counter has the ability to perform the existing

basic instruction cycle counting (all instruction cycles counted) that exists on standard

Enhanced Midrange parts.

The stopwatch is available under Window>Debugging>Stopwatch.

2.9 EXECUTION OUT-OF-BOUNDS DETECTION

An emulation header can be used to detect out-of-bounds execution of code.

Out-of-bounds code execution is detected by an event breakpoint that watches for PC

values that exceed the available program memory of the emulated MCU. The

out-of-bounds code execution condition is typically caused by a computed GOTO or

CALL that erroneously computes the index, or by loading PCLATH with an incorrect

value. Once code is halted due to the execution out-of-bounds event breakpoint the

‘Previous PC’ functionality can be used to identify the offending instruction.

The Out-of-bounds break option may be found and set up on the New Breakpoint

Dialog (Debug>New Breakpoint) by choosing “Event” as the “Breakpoint Type” and

checking “Break on execution out of bounds”. After the breakpoint is created, it may be

edited by right clicking and selecting “Customize”.

See also, Section 2.5 “Enhanced Event Breakpoints”.

2.10 INTERRUPT CONTEXT DETECTION

An address or data breakpoint can be set based on the context of an interrupt. You can

set up the breakpoint so it only breaks when it is in the interrupt section of code (ISR),

only when it is in main line code, or when it is in either ISR or main code. This can assist

when attempting to narrow down issues in code regions.

Address/Data Breakpoints may be found and set up on the New Breakpoint Dialog

(Debug>New Breakpoint) by choosing either “Address” or “Data” as the “Breakpoint

Type”. After the breakpoint is created, it may be edited by right clicking and selecting

“Customize”.

See also, Section 2.4 “Hardware Address/Data Breakpoints”.

Note: The count units are in instruction cycles, not in instructions (as not all

instructions execute in a single cycle).

Emulation Header Features

 2014 Microchip Technology Inc. DS50002243A-page 23

2.11 TRIGGER IN/OUT

The emulation header is capable of producing an output pulse for external triggering

and detecting an input pulse for internal triggering.

2.11.1 Trigger In/Out Hardware

Pins on the emulation header may be used for Trigger In/Out. Pin functions are labeled

on the board silkscreen, namely:

� GND – ground

� TRIG IN – used for Trigger In

� TRIG OUT – used for Trigger Out

2.11.2 Trigger In Operation

A pulse on the Trigger In (TRIG IN) pin can be used to generate a trigger condition, halt

and/or trigger out signal. Set up Trigger In by selecting Window>Debugging>Triggers.

An Event Breakpoint can be set up to break when a Trigger In pulse is detected.

See Section 2.5 “Enhanced Event Breakpoints”.

Selection Description

Polarity Trigger-in pin pulse polarity:

Positive: a positive-going pulse

Negative: a negative-going pulse

Noise Reduction Filter Reduce the noise on the trigger-in pin using a filter, which helps

mitigate spurious triggers from halting code.

Enable or disable this feature.

Trigger Trace Trigger trace when a pulse is received on the trigger-in pin.

Enable or disable this feature.

EEP and Emulation Header User’s Guide

DS50002243A-page 24 2014 Microchip Technology Inc.

2.11.3 Trigger Out Operation

A pulse can be output on the Trigger Out (TRIG OUT) pin based on a setting of either

a Program or Data Breakpoint (see Section 2.4 “Hardware Address/Data Break-

points”). The breakpoint may be set up so that the pulse is emitted without halting

device execution.

Set up Trigger Out by selecting Window>Debugging>Triggers.

A handy feature of the trigger out signal is that its duration can last as long as the occur-

ring event. For example, if the customer needs to time the duration of the watchdog

timer (whose timeout period is user-programmable); the following code, in conjunction

with the trigger out and SLEEP event breakpoint features, can make timing an event

very simple without employing the old-school technique of writing a single line of

(special, non-production) code to wiggle an I/O pin.

The following code is an example:

 ; ---

 ; T R I G G E R O U T T E S T :

 ; T I M I N G T H E W A T C H D O G T I M E R

 ; ---

 ; 1) Ensure the watchdog timer configuration bit is enabled.

 ; 2) Set an Event Breakpoint (Break on SLEEP) to initiate a

 : 'Trigger out' action only.

 ; 3) Connect your oscilloscope probe to the TRIGGER OUT pin and

 ; set up your oscilloscope to trigger on the rising edge.

 ; 4) Run the following code:

 CLRWDT

 NOP

 NOP

 SLEEP

 ; The expiration if the watchdog timer will wake up the MCU from

 : sleep after ~2 seconds. The trigger out pulse high-time

 ; duration is the duration of the watchdog timer: ___---___

 ; Since the default watchdog timer period value is 2 seconds

 : typical, the trigger out pulse measured on the oscilloscope

 ; should be approximately 2 seconds.

 NOP

 NOP

 NOP

Loop_101:

 BRA Loop_101

 ; ---

Selection Description

Polarity Trigger-in pin pulse polarity:

Positive: a positive-going pulse

Negative: a negative-going pulse

Slew Rate Limiting Limit the slew rate on the Trigger Out pulse.

Enable: slew rate is slow and limited

Disable: Slew rate is as fast as possible

One Shot The trigger out pulse duration is:

Enable: a fixed width, regardless of MCU operating frequency

Disable: the length of the event itself, which is MCU

frequency-dependent

Force Trigger Out Click this button to force a Trigger Out pulse.

 2014 Microchip Technology Inc. DS50002243A-page 25

EEP and Emulation Header

User’s Guide

Chapter 3. Emulation Header List

3.1 INTRODUCTION

Currently available emulation headers and their associated -ME2 devices are shown

below, organized by supported device.

TABLE 1: OPTIONAL DEBUG HEADERS - PIC12/16 DEVICES

Device
Pin

Count

Header Part

Number
-ME2 Device Used VDD Max

PIC16F1782

PIC16F1783

PIC16F1784

PIC16F1786

PIC16F1787

PIC16F1788

PIC16F1789

28 AC244064 PIC16F1789-ME2 5.5V

PIC16LF1782

PIC16LF1783

PIC16LF1784

PIC16LF1786

PIC16LF1787

PIC16LF1788

PIC16LF1789

28 AC244064 PIC16F1789-ME2 3.6V

PIC12F1822

PIC12F1840

PIC16F1823

PIC16F1824

PIC16F1825

PIC16F1826

PIC16F1827

PIC16F1828

PIC16F1829

PIC16F1847

8

8

14

14

14

18

18

20

20

18

AC244063 PIC16F1829-ME2 5.5V

PIC12LF1822

PIC12LF1840

PIC16LF1823

PIC16LF1824

PIC16LF1825

PIC16LF1826

PIC16LF1827

PIC16LF1828

PIC16LF1829

PIC16LF1847

8

8

14

14

14

18

18

20

20

18

3.6V

	Contact us
	Emulation Extension Pak (EEP) and Emulation Header User's Guide
	Table of Contents
	Chapter 1. EEP and Emulation Header Overview
	Chapter 2. Emulation Header Features

