: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

- Best space savings in its class
- Large capacity switching despite small size. Can replace micro ISO terminal type relays.
- Terminals for PC board pattern designs are easily allocated.
- Sealed type

ORDERING INFORMATION

Contact arrangement 3: 1 Form A

Pick-up voltage
1: Max. 5.5V DC
2: Max. 6.5V DC
Coil voltage (DC)
12: 12V

TYPES

Contact arrangement	Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Part No.
1 Form A	12 V DC	Max. $6.5 \mathrm{~V} \mathrm{DC} \mathrm{(Initial)}$	ACNH3212
		Max. 5.5 V DC (Initial)	ACNH3112

Standard packing; Carton (tube): 50 pcs.; Case: 1,000 pcs.

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating current $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Coil resistance $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Usable voltage range
12 V DC	Max. 6.5 V DC (Initial)	Min. 1.0 V DC (Initial)	37.5 mA	$320^{3 / 4}$	450 mW	
	Max. 5.5 V DC (Initial)	Min. 0.8 V DC (Initial)	53.3 mA	$2253 / 4$	10 to 16 V DC	

CN-H (ACNH3)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A
	Contact resistance (Initial)		Typ5m (By voltage drop 6 V DC 1 A)
	Contact material		Ag alloy (Cadmium free)
Rating	Nominal switching capacity (resistive load)		30A 14V DC
	Max. carrying current		$<450 \mathrm{~mW}>$ $35 \mathrm{~A} / 1 \mathrm{~h}, 45 \mathrm{~A} / 2 \mathrm{~min}$. at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ $30 \mathrm{~A} / 1 \mathrm{~h}, 40 \mathrm{~A} / 2 \mathrm{~min}$. at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ $25 \mathrm{~A} / 1 \mathrm{~h}, 35 \mathrm{~A} / 2 \mathrm{~min}$. at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$ $<640 \mathrm{~mW}$ > $30 \mathrm{~A} / 1 \mathrm{~h}, 40 \mathrm{~A} / 2 \mathrm{~min}$. at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ $25 \mathrm{~A} / 1 \mathrm{~h}, 35 \mathrm{~A} / 2 \mathrm{~min}$. at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ $20 \mathrm{~A} / 1 \mathrm{~h}, 30 \mathrm{~A} / 2 \mathrm{~min}$. at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$
	Continuous carrying current		20A 14V DC (450 mW) at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}, 15 \mathrm{~A} 14 \mathrm{~V}$ DC (640 mW) at $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$
	Nominal operating power		450 mW (for pick-up voltage max. 6.5 V DC), 640 mW (for pick-up voltage max. 5.5 V DC)
	Min. switching capacity (resistive load)*1		1A 14V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC, Measurement at same location as "Breakdown voltage" section.)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)
	Operate time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
	Release time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) (Initial) (without protective element)
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ \{100G\} (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ Time of vibration for each direction; X, Y direction: 2 hours, Z direction: 4 hours
	Mechanical		Min. 10^{7} (at 120 cpm)
Expected life	Electrical		<Resistive load> Min. 10^{5} (at nominal switching capacity, operating frequency: 1s ON, 1s OFF) <Motor load> Min. 3×10^{5} (at inrush 84 A , steady $18 \mathrm{~A}, 14 \mathrm{~V}$ DC operating frequency: ON 2s, OFF 5s) <Lamp load> Min. 2×10^{5} (at inrush 84 A , steady $12 \mathrm{~A}, 14 \mathrm{~V}$ DC operating frequency: ON 1s, OFF 14s)
Conditions	Conditions for operation, transport and storage		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+230^{\circ} \mathrm{F}$ Humidity: 2% R.H. to 85% R.H. (Not freezing and condensing at low temperature)
Mass			Approx. 9 g .32 oz

*1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

REFERENCE DATA

1-(1). Coil temperature rise
Sample: ACNH3212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 20A, 30A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

1-(2). Coil temperature rise
Sample: ACNH3212, 3pcs
Measured portion: Inside the coil
Contact carrying current: 10A, 20A
Ambient temperature: $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$

2. Ambient temperature and operating voltage range

3-(1). Distribution of pick-up and drop-out voltage
Sample: ACNH3212, 20pcs.

4-(1). Distribution of operate and release time Sample: ACNH3212, 20pcs.

3-(2). Distribution of pick-up and drop-out voltage
Sample: ACNH3112, 20pcs.

4-(2). Distribution of operate and release time Sample: ACNH3112, 20pcs.

5. Electrical life test (Resistive load)

Sample: ACNH3212, 6pcs.
Load: Resistive load (NO side: 30A 14V DC)
Operating frequency: ON 1s, OFF 1s
Ambient temperature: Room temperature
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

6-(1). Electrical life test (Motor load)

Sample: ACNH3212, 3pcs.
Load: inrush: 84A/steady: 18A
radiator fan actual load (motor free)
Operating frequency: ON 2s, OFF 5 s
Ambient temperature: $110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

CN-H (ACNH3)

6-(2). Electrical life test (Lamp load)

Sample: ACNH3212, 6pcs.
Load: $60 \mathrm{~W} \times 2$, inrush: $84 \mathrm{~A} /$ steady: 12 A
Operating frequency: ON 1s, OFF 14s
Ambient temperature: Room temperature
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS (mm inch)

Download CAD Data from our Web site.

PC board pattern (Bottom view)

Schematic (Bottom view)

General tolerance
$\pm 0.1 \pm .004$
$\pm 0.2 \pm .008$
$\pm 0.3 \pm .012$

* Dimensions (thickness and width) of terminal is measured before pre-soldering.

Intervals between terminals is measured at A surface level.

NOTES

Usage, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+110^{\circ} \mathrm{C}-40$ to $+230^{\circ} \mathrm{F}$
(2) Humidity: 2 to 85% RH
(Avoid freezing and condensation.)
(3) Atmospheric pressure: 86 to 106 kPa

The humidity range varies with the temperature. Use within the range indicated in the graph below. (Temperature and humidity range for usage, transport, and storage)

For Cautions for Use, see Relay Technical Information.

