: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

ACPL-570XL, ACPL-573XL, ACPL-177XL, 5962-08227

Hermetically Sealed 3.3V, Low IF, Wide VCc, High Gain Optocouplers

Data Sheet

Description

These devices are single, dual, and quad channel, hermetically sealed optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either standard product or with full MIL-PRF-38534 Class Level H or K testing or from DLA Drawing 5962-08227. All devices are manufactured and tested on a MIL-PRF-38534 certified line and are included in the DLA Qualified Products Database Supplemental Information Sheets QPDSIS-38534 as Hybrid Microcircuits.

Each channel contains a GaAsP light emitting diode which is optically coupled to an integrated high gain photon detector. The high gain output stage features an open collector output providing both lower saturation voltage and higher signaling speed than possible with conventional photo-Darlington optocouplers.
The supply voltage can be operated as low as 3.0 V without adversely affecting the parametric performance.

These devices have a 300% minimum CTR at an input current of only 0.5 mA making them ideal for use in low input current applications such as MOS, CMOS, low power logic interfaces or line receivers.

Features

- Low power consumption
- 3.3V Supply voltages
- Dual marked with device part number and DLA drawing number
- Manufactured and tested on a MIL-PRF-38534 Certified Line
- QPDSIS-38534, Class H and K
- Three hermetically sealed package configurations
- Performance guaranteed over full military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Low input current requirement: 0.5 mA
- High current transfer ratio: 1500% typical @ $I_{F}=0.5 \mathrm{~mA}$
- Low output saturation voltage: 0.11 V typical
- 1500 Vdc withstand test voltage
- HCPL-4701/31, -070A/31 function compatibility

Applications

- Military and aerospace
- High reliability systems
- Telephone ring detection
- Microprocessor system interface
- Transportation, medical, and life critical systems
- Isolated input line receiver
- EIA RS-232-C line receiver
- Voltage level shifting
- Isolated input line receiver
- Isolated output line driver
- Logic ground isolation
- Harsh industrial environments
- Current loop receiver
- System test equipment isolation
- Process control input/output isolation

The connection of $0.1 \mu F$ bypass capacitor between $V_{C C}$ and GND is recommended.
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Functional Diagram

Multiple Channel Devices Available

Truth Table
(Positive Logic)

Input	Output
On (H)	L
Off (L)	H

Package styles for these parts are 8 and 16 pin DIP through hole (case outlines P and E respectively). Devices may be purchased with a variety of lead bend and plating options. See Selection Guide table for details. Standard Military Drawing (SMD) parts are available for each package and lead style.

Because the same electrical die (emitters and detectors) are used for each channel of each device listed in this data sheet, absolute maximum ratings, recommended operating conditions, electrical specifications, and performance characteristics shown in the figures are similar for all parts except as noted. Additionally, the same package assembly processes and materials are used in all devices. These similarities justify the use of a common data base for die related reliability.

Selection Guide - Package Styles and Lead Configuration Options

Package	16 Pin DIP	8 Pin DIP	8 Pin DIP
Lead Style	Through Hole	Through Hole	Through Hole
Channels	4	1	2
Common Channel Wiring	VCC, GND	None	VCC, GND
Avago Part \# \& Options			
Commercial	ACPL-1770L	ACPL-5700L	ACPL-5730L
MIL-PRF-38534, Class H	ACPL-1772L	ACPL-5701L	ACPL-5731L
MIL-PRF-38534, Class K	ACPL-177KL	ACPL-570KL	ACPL-573KL
Standard Lead Finish	Gold Plate	Gold Plate	Gold Plate
Solder Dipped*	Option-200	Option-200	Option-200
Butt Cut/Gold Plate	Option-100	Option -100	Option-100
Gull Wing/Soldered*	Option -300	Option -300	Option -300
Class H SMD Part \#			
Prescript for all below	5962-	5962-	5962-
Gold Plate	0822703HEC	0822701HPC	0822702HPC
Solder Dipped*	0822703HEA	0822701HPA	0822702HPA
Butt Cut/Gold Plate	0822703HUC	0822701HYC	0822702HYC
Butt Cut/Soldered*	0822703HUA	0822701HYA	0822702HYA
Gull Wing/Soldered*	0822703HTA	0822701HXA	0822702HXA
Class K SMD Part \#			
Prescript for all below	5962-	5962-	5962-
Gold Plate	0822703KEC	0822701KPC	0822702KPC
Solder Dipped*	0822703KEA	0822701 KPA	0822702KPA
Butt Cut/Gold Plate	0822703KUC	0822701KYC	0822702KYC
Butt Cut/Soldered*	0822703KUA	0822701 KYA	0822702KYA
Gull Wing/Soldered*	0822703KTA	0822701KXA	0822702KXA

* Solder contains lead.

Functional Diagrams

$\mathbf{1 6}$ pin DIP	8 pin DIP	8 pin DIP
Through Hole	Through Hole	Through Hole
4 Channels	1 Channel	2 Channels

Outline Drawings

16 Pin DIP Through Hole, 4 Channels

Device Marking

8 Pin DIP Through Hole, 1 and 2 Channel

Note: Dimensions in Millimeters (Inches).

Hermetic Optocoupler Options

 16 pin DIP. DLA Drawing part numbers contain provisions for lead finish.

300 Surface mountable hermetic optocoupler with leads cut and bent for gull wing assembly. This option is available on commercial and hi-rel product in 8 and 16 pin DIP (see drawings below for details). This option has solder dipped leads.

Note: Dimensions in Millimeters (Inches).

[^0]
Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-65	+150	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$	
Case Temperature	T_{C}		+170	${ }^{\circ} \mathrm{C}$	
Junction Temperature	T_{J}		+175	${ }^{\circ} \mathrm{C}$	
Lead Solder Temperature			260 for 10 sec	${ }^{\circ} \mathrm{C}$	
Output Current (each channel)	IO_{O}		40	mA	
Output Voltage (each channel)	V_{O}	-0.5	20	V	1
Supply Voltage	V_{CC}	-0.5	20	V	1
Output Power Dissipation (each channel)			50	mW	2
Peak Input Current (each channel, <1 ms duration)			20	mA	
Average Input Current (each channel)	I_{F}		10	mA	3
Reverse Input Voltage (each channel)	V_{R}		5	V	
Package Power Dissipation (each channel)	P_{D}		200	mW	

8 Pin Ceramic DIP Single Channel Schematic

ESD Classification

(MIL-STD-883, Method 3015)

ACPL-5700L/01L/0KL	$(\mathbf{\Delta} \mathbf{\Delta})$, Class 2
ACPL-5730L/31L/3KL	$(\mathbf{\Delta} \mathbf{\Delta A})$, Class 3A
ACPL-1770L/2L/KL	$(\mathbf{\Delta \Delta \Delta B})$, Class 3B

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level (Each Channel)	$\mathrm{I}_{\mathrm{F}(\mathrm{OFF})}$		2.0	$\mu \mathrm{~A}$
Input Current, High Level (Each Channel)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	0.5	5	mA
Supply Voltage	V_{CC}	3.0	7.0	V
Output Voltage	V_{O}	3.0	7.0	V

Electrical Characteristics, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified

[^1]Electrical Characteristics (cont), $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Test Conditions	Group A[13] Subgroup	Limits			Units	Fig.	Note	
				Min.	Typ.*	Max.				
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	9, 10, 11		40	100	$\mu \mathrm{s}$	$\begin{aligned} & 5,6, \\ & 7,8 \end{aligned}$	4	
	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	9, 10, 11		9	30			4	
	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=330 \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	9		2	5			4	
			10, 11			10				
Propagation Delay Time to Logic High at Output	tple	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	9, 10, 11		10	60	μs	$\begin{aligned} & 5,6, \\ & 7,8 \end{aligned}$	4	
	tplH	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	9, 10, 11		8	50			4	
	tpLH	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=330 \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	9		6	20			4	
			10, 11			30				
Common Mode Transient Immunity at Low Output Level	\|CML		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=680 \mathrm{k} \Omega \\ & \left\|\mathrm{~V}_{\mathrm{CM}}\right\|=50 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	9, 10, 11	500	1000		V/us	9	$\begin{aligned} & 4,10 \\ & 11,14 \end{aligned}$
Common Mode Transient Immunity at High Output Level	\|CM ${ }^{\text {\| }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=680 \mathrm{k} \Omega \\ & \left\|\mathrm{~V}_{\mathrm{CM}}\right\|=50 \mathrm{~V} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	9, 10, 11	500	1000		V/us	9	$\begin{gathered} 4,10 \\ 11,14 \end{gathered}$	

* All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Typical Characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Sym.	Typ.	Units	Test Conditions	Note
Input Capacitance	CIN_{1}	60	pF	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	4
Input Diode Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$	-1.8	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{IF}_{\mathrm{F}}=1.6 \mathrm{~mA}$	4
Resistance (Input-Output)	$\mathrm{R}_{\mathrm{l}-\mathrm{O}}$	10^{12}	Ω	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V}$	4,8
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$	2.0	pF	$\mathrm{f}=1 \mathrm{MHz}$	4, 8
Dual and Quad Channel Product Only					
Input-Input Leakage Current	$I_{\text {I-I }}$	0.5	nA	$\begin{aligned} & \text { Relative Humidity }=\leq 65 \%, \\ & \mathrm{~V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{~V}, \mathrm{t}=5 \mathrm{~s} \end{aligned}$	9
Resistance (Input-Input)	$\mathrm{R}_{\mathrm{I}-1}$	10^{12}	Ω	$\mathrm{V}_{\text {I-I }}=500 \mathrm{~V}$	9
Capacitance (Input-Input)	Cl_{1-1}	1.0	pF	$\mathrm{f}=1 \mathrm{MHz}$	9

Notes

1. GND Pin should be the most negative voltage at the detector side. Keeping V_{CC} as low as possible, but greater than 2.0 V , will provide lowest total l_{OH} over temperature.
2. Output power is collector output power plus total supply power for the single channel device. For the dual channel device, output power is collector output power plus one half the total supply power. For the quad channel device, output power is collector output power plus one fourth of total supply power. Derate at $1.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $110^{\circ} \mathrm{C}$
3. Derate I_{F} at $0.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $110^{\circ} \mathrm{C}$.
4. Each channel.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{O}, to the forward LED input current, I_{F}, times 100%.
6. l_{OHX} is the leakage current resulting from channel to channel optical crosstalk. $I_{F}=2 \mu \mathrm{~A}$ for channel under test. For all other channels, $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$.
7. All devices are considered two-terminal devices; measured between all input leads or terminals shorted together and all output leads or terminals shorted together.
8. Measured between each input pair shorted together and all output connections for that channel shorted together.
9. Measured between adjacent input pairs shorted together for each multi-channel device.
10. $C M_{\mathrm{L}}$ is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state $\left(\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}\right) . \mathrm{CM}_{\mathrm{H}}$ is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state $\left(\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}\right)$.
11. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as a static discharge) a series resistor, R_{Cc}, should be included to protect the detector ICs from destructively high surge currents. The recommended value is:
$\mathrm{R}_{\mathrm{CC}}=\frac{1}{0.15} \frac{(\mathrm{~V})}{\mathrm{I}_{\mathrm{F}}(\mathrm{mA})} \mathrm{k} \Omega$
for single channel;
$\mathrm{R}_{\mathrm{CC}}=\frac{1(\mathrm{~V})}{0.3 \mathrm{I}_{\mathrm{F}}(\mathrm{mA})} \mathrm{k} \Omega$
for dual channel;
$\mathrm{R}_{\mathrm{CC}}=\frac{1(\mathrm{~V})}{0.6 \mathrm{I}_{\mathrm{F}}(\mathrm{mA})} \mathrm{k} \Omega$
for quad channel.
12. This is a momentary withstand test, not an operating condition.
13. Standard parts receive 100% testing at $25^{\circ} \mathrm{C}$ (Subgroups 1 and 9). SMD and 883 B parts receive 100% testing at 25,125 , and $-55^{\circ} \mathrm{C}$ (Subgroups 1 and 9, 2 and 10, 3 and 11, respectively).
14. Parameters tested as part of device initial characterization and after design and process changes. Parameters guaranteed to limits specified for all lots not specifically tested.

Figure 1. Input Diode Forward Current vs. Forward Voltage.

Figure 3. Normalized Current Transfer Ratio vs. Input Diode Forward Current.

Figure 5. Propagation Delay to Logic Low vs. Input Pulse Period.

Figure 2. Normalized DC Transfer Characteristics.

Figure 4. Normalized Supply Current vs. Input Diode Forward Current.

Figure 6. Propagation Delay vs. Temperature.

* SEE NOTE 11
${ }^{* *} C_{\text {L }}$ INCLUDES PROBE AND STRAY WIRING CAPACITANCE.

Figure 8. Switching Test Circuit.

Figure 7. Propagation Delay vs. Input Diode Forward Current.

* SEE NOTE 11

Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.

Figure 10. Recommended Drive Circuitry Using TTL Open-Collector Logic.

MIL-PRF-38534 Class H, Class K, and DLA SMD Test Program

Avago's Hi-Rel Optocouplers are in compliance with MIL-PRF-38534 Class H and K. Class H and Class K devices are also in compliance with DLA drawing 5962-08227.
Testing consists of 100% screening and quality conformance inspection to MIL-PRF-38534.

* ALL CHANNELS TESTED SIMULTANEOUSLY.

Figure 11. Operating Circuit for Burn-In and Steady State Life Tests.

[^0]: Solder contains lead.

[^1]: * All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

