

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

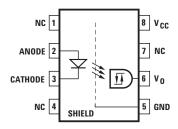
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

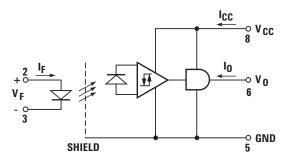
ACPL-4800

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler


Data Sheet

Description

The ACPL-4800 fast speed optocoupler contains a GaAsP LED and photo detector with built-in Schmitt trigger to provide logic-compatible waveforms, eliminating the need for additional wave shaping. The totem pole output eliminates the need for a pull up resistor and allows for direct drive Intelligent Power Module or gate drive.


Functional Diagram

	(POSITIVE LOGIC)						
LED	LED V _O						
ON	HIGH						
OFF	LOW						

Note: The connection of a 0.1 μF bypass capacitor between pins 5 & 8 is recommended.

Schematic

Features

- Performance Specified for Fast IPM Applications over Industrial Temperature Range: -40°C to 100°C
- Wide Operating V_{CC} Range: 4.5 to 20 Volts
- Typical Propagation Delays 150 ns
- Maximum Pulse Width Distortion PWD = 250 ns
- Propagation Delay Difference Min. –100 ns, Max. 250 ns
- 30 kV/ μ s Minimum Common Mode Transient Immunity at $V_{CM} = 1000 \text{ V}$
- Hysteresis
- Totem Pole Output (No Pull-up Resistor Required)
- Safety Approval:

UL 1577, 3750 V_{rms} / 1 minute CSA File CA88324, Notice #5 IEC/EN/DIN EN 60747-5-2, V_{IORM} = 630 V_{peak}

Applications

- IPM Interface Isolation
- Isolated IGBT/MOSFET Gate Drive
- AC and Brushless DC Servo Motor Drives
- Low Power Inverters
- General Digital Isolation

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and /or degradation which may be induced by ESD.

Ordering Information

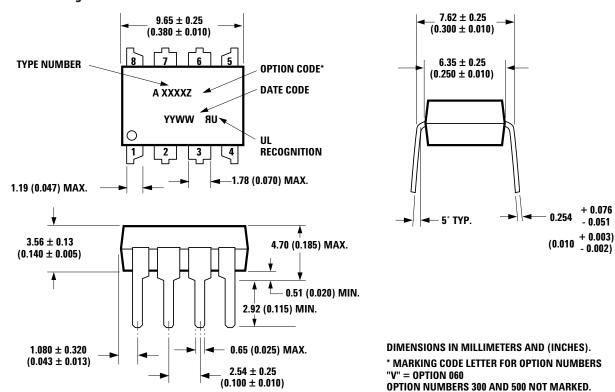
ACPL-4800 is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice #5, File CA 88324.

	Option							
RoHS Part number Compliant		Package	Surface Mount	Gull Wing	Tape& Reel	IEC/EN/DIN EN 60747-5-2	Quantity	
	-000E						50 per tube	
	-300E	-	Х	Х			50 per tube	
ACDL 4000	-500E	200:I DID 0	Х	Х	χ		1000 per reel	
ACPL-4800	-060E	- 300mil DIP-8				Х	50 per tube	
	-360E	-	Х	Х		χ	50 per tube	
	-560E	-	Х	Х	χ	Х	1000 per reel	

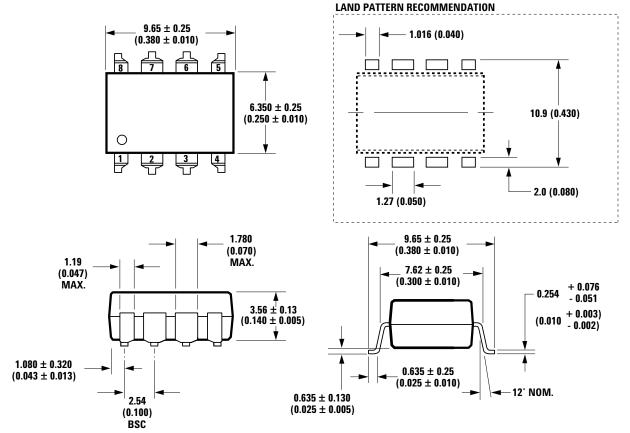
To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ACPL-4800-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-2 Safety Approval in RoHS compliant.

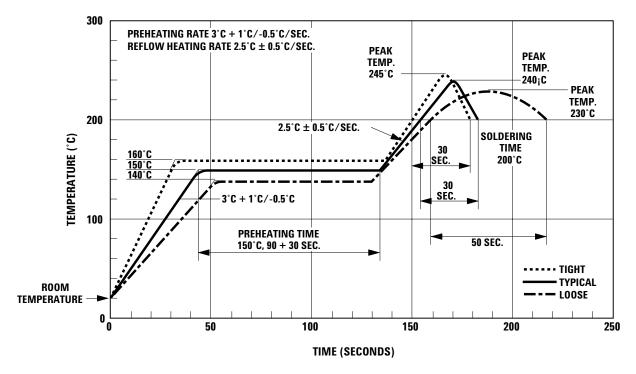

Example 2:

ACPL-4800-000E to order product of 300mil DIP package in tube packaging and RoHS compliant.

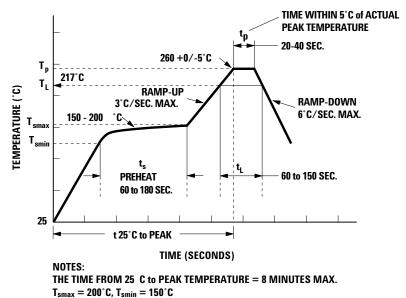

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings

DIP-8 Package


DIP-8 Package with Gull Wing Surface Mount Option 300

DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES).


NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Solder Reflow Temperature Profile (Gull Wing Surface Mount Option 300 Parts)

Note: Non-halide flux should be used

Recommended Pb-Free IR Profile

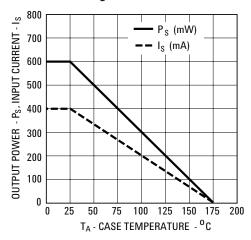
Note: Non-halide flux should be used

Insulation and Safety Related Specifications

Parameter	Symbol	8-Pin DIP	Unit	Conditions
Minimum External Air Gap(External Clearance)	L(101)	7.1	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	7.4	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08		Through insulation distance, conductor to conductor, usually the direct distance between the photo emitter and photo detector inside the optocoupler cavity.
Minimum Internal Tracking (Internal Creepage)		NA	mm	Measured from input terminals to output terminals, along internal cavity.
Tracking Resistance (Comparative Tracking Index)	CTI	200	mm	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

Option 300 - surface mount classification is Class A in accordance with CECC 00802.

IEC/EN/DIN EN 60747-5-2 Insulation Characteristics (Option 060)


Symbol	Characteristic	Unit
	I-IV	
	I-III	
	55/85/21	
	2	
V _{IORM}	630	V_{peak}
V_{PR}	1181	V_{peak}
V _{PR}	945	V _{peak}
V _{IOTM}	6000	V _{peak}
T _S	175	°C
I _{S, INPUT}	230	mA
P _{S, OUT} -	600	mW
R _S	>109	Ω
	VIORM VPR VIOTM TS IS, INPUT PS, OUT-PUT	I-IV I-III 55/85/21 2 VIORM 630 VPR 1181 VPR 945 VIOTM 6000 Ts 175 Is, INPUT 230 Ps, OUT-PUT

^{*} Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-2) for a detailed description of Method a and Method b partial discharge test profiles.

Note:

 $Isolation\ characteristics\ are\ guaranteed\ only\ within\ the\ safety\ maximum\ ratings\ which\ must\ be\ ensured\ by\ protective\ circuits\ in\ application.$

Thermal Derating Curve

Absolute Maximum Rating

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	T _S	-55	125	°C	
Operating Temperature	T _A	-40	100	°C	
Average Forward Input Current	I _{F(AVG)}		10	mA	
Peak Transient Input Current	I _{F(TRAN)}				
$(\leq 1 \mu s \text{ Pulse Width, } 300 \text{ pps})$			1.0	Α	
(\leq 200 μ s Pulse Width, $<$ 1% Duty Cycle)			40	mA	
Reverse Input Voltage	V _R		5	V	
Average Output Current	I _O		25	mA	
Supply Voltage	V _{CC}	0	25	V	
Output Voltage	V _O	-0.5	25	V	
Total Package Power Dissipation	P _T		210	mW	1
Lead Solder Temperature (Through Hole Parts Only)	260 °C fo	or 10 sec	., 1.6 mm	below se	ating plane
Solder Reflow Temperature Profile (Surface Mount Parts Only)	See Pacl	kage Ou	tline Drav	wings sect	ion

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	V_{CC}	4.5	20	V
Forward Input Current (ON)	I _{F(ON)}	6	10	mA
Forward Input Voltage (OFF)	V _{F(OFF)}	-	0.8	V
Operating Temperature	T _A	-40	100	С

Electrical Specification

 $-40^{\circ}C \leq T_{A} \leq 100^{\circ}C, 4.5V \leq V_{CC} \leq 20V, 6mA \leq I_{F(ON)} \leq 10 \ mA, 0V \leq V_{F(OFF)} \leq 0.8 \ V, unless \ otherwise \ specified.$ All Typicals at $T_{A} = 25^{\circ}C.$

Parameter	Sym.	Min.	Тур.	Max.	Units	Test Conditions		Fig.	Note
Logic Low Output Voltage	V_{OL}			0.5	V	$I_{OL} = 6.4 \text{ mA}$		1, 3	
Logic High	V _{OH}	2.4	V _{CC} - 1.1V		V	I _{OH} = -2.6 mA		2, 3,	
Output Voltage		2.7			_	I _{OH} = -0.4 mA		- 7	
Output Leakage	I _{OHH}			100	μΑ	Vcc = 5 V	$I_F = 10 \text{mA}$		
$Current(V_{OUT} = V_{CC} + 0.5V)$				500	_	Vcc = 20 V	_		
Logic Low	I _{CCL}		1.9	3.0	mA	Vcc = 5.5 V	$V_F = 0 V$		
Supply Current			2.0	3.0	_	Vcc = 20 V	$I_0 = Open$		
Logic High	I _{CCH}		1.5	2.5	mA	Vcc = 5.5 V	$I_F = 10 \text{ mA}$		
Supply Current			1.6	2.5	_	Vcc = 20 V	$I_0 = Open$		
Logic Low Short Circuit	I _{OSL}	25			mA	$V_O = Vcc = 5.5 V$	V _F =0V		2
Output Current		50				$V_O = Vcc = 20 V$	_		
Logic High Short	I _{OSH}			-25	mA	V _{CC} = 5.5 V	I _F =6mA		2
Circuit Output Current				-50	_	V _{CC} = 20 V	V _O =GND		
Input Forward Voltage	V _F		1.5	1.7	V	T _A = 25 C	I _F =6mA	4	
				1.85	_		_		
Input Reverse Breakdown Voltage	BV_R	5			V	I _R = 10 μA			
Input Diode Temperature Coefficient	ΔV _F ΔT _A		-1.7		mV/ °C	I _F = 6 mA			
Input Capacitance	C _{IN}		60		pF	$f = 1 MHz, V_F = 0 V$			3

Switching Specifications (AC)

 -40° C \leq $T_{A} \leq$ 100° C, 4.5V \leq V_{CC} \leq 20V, 6mA \leq $I_{F(ON)} \leq$ 10 mA, 0V \leq V_{F(OFF)} \leq 0.8V.

All Typicals at $T_A = 25$ °C, $I_{F(ON)} = 6$ mA unless otherwise specified.

Parameter	Sym.	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low Output Leve	t _{PHL}		150	350	ns	With Peaking Capacitor	5,6	5
Propagation Delay Time to Logic High Output Level	t _{PLH}		110	350	ns	With Peaking Capacitor	5,6	5
Pulse Width Distortion	PWD			250	ns	t _{PHL} - t _{PLH}		8
Propagation Delay Dif- ference Between Any 2 Parts	PDD	-100		250	ns			10
Output Rise Time (10- 90%)	t _r		16		ns		5,8	
Output Fall Time (90- 10%)	t _f		20		ns		5,8	
Logic High Common Mode Transient Immu- nity	CM _H	-30000			V/µs	$ V_{CM} = 1000 \text{ V}, I_F = 6.0 \text{ mA},$ $V_{CC} = 5 \text{ V}, T_A = 25 \text{ C}$	9	6
Logic Low Common Mode Transient Immu- nity	CM _L	30000			V/µs	$ V_{CM} = 1000 \text{ V}, V_F = 0 \text{ V}, V_{CC}$ = 5 V, T _A = 25 C	9	6

Package Characteristics

Parameter	Sym.	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage*	V _{ISO}	3750			V _{rms}	RH < 50%, t = 1 min. T_A = 25°C		4,7
Input-Output Resistance	R _{I-O}		10 ¹²		Ω	V _{I-O} = 500 Vdc		4
Input-Output Capacitance	C _{I-O}		0.6		pF	$f = 1 MHz, V_{I-O} = 0 Vdc$		4

^{*} The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage," publication number 5963-2203E.

Notes:

- 1. Derate total package power dissipation, P_T, linearly above 70°C free-air temperature at a rate of 4.5 mW/°C.
- 2. Duration of output short circuit time should not exceed 10 ms.
- 3. Input capacitance is measured between pin 2 and pin 3.
- 4. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.
- 5. The t_{PLH} propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The t_{PHL} propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
- 6. C_{MH} is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, $V_O > 2.0$ V. C_{ML} is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, $V_O < 0.8$ V.
- In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 V rms for one second (leakage detection current limit, II-O ≤ 5 μA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable.
- 8. Pulse Width Distortion (PWD) is defined as $\left|t_{PHL}-t_{PLH}\right|$ for any given device.
- 9. Use of a 0.1 μF bypass capacitor connected between pins 5 and 8 is recommended.
- 10. The difference between t_{PLH} and t_{PHL} between any two devices under the same test condition.

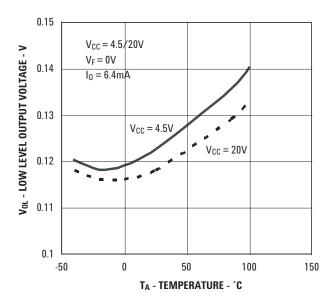


Figure 1. Typical Logic Low Output Voltage vs. Temputer

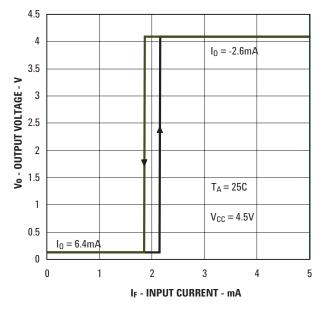


Figure 3. Typical Output Voltage vs. Forward Input Current

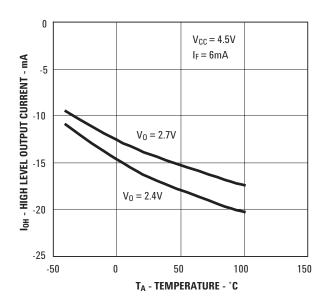


Figure 2. Typical Logic High Output Current vs. Temputer

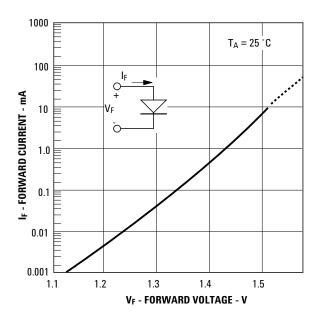


Figure 4. Typical Input Diode Forward Characteristic

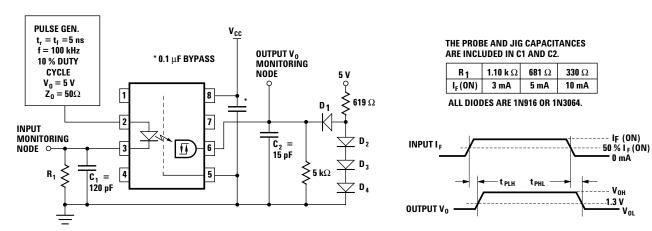


Figure 5. Test Circuit for tPLH,tPHL,tr,tf

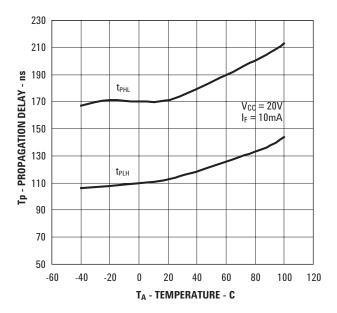


Figure 6. Typical Propagation Delays vs. Temperature.

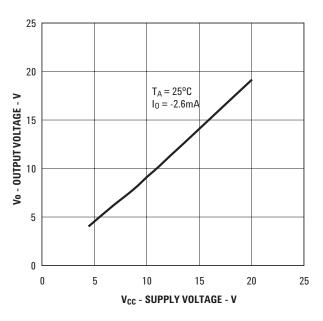


Figure 7. Typical Logic High Output Voltage vs. Supply Voltage

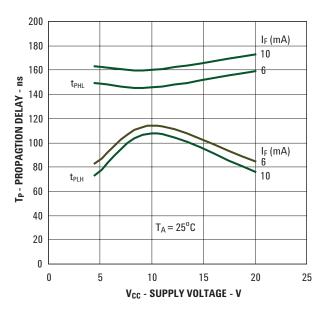


Figure 8. Typical Propogation Delay vs. Supply Voltage

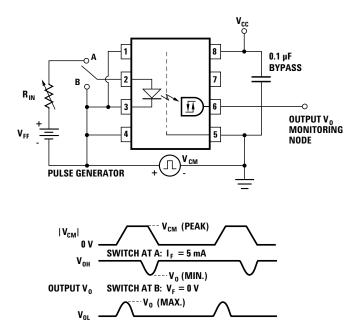


Figure 9. Test Circuit for Common Mode Transient Immunity and Typical Waveforms

