

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

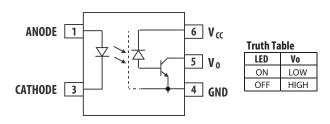
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ACPL-M43T

Wide Operating Temperature Automotive Digital Optocoupler with R²Coupler® Isolation and 5-Pin SMT Package

Data Sheet

Description


The ACPL-M43T is a single channel, high temperature, high CMR, high speed digital optocoupler in a five lead miniature footprint specifically used in the automotive applications. The SO-5 JEDEC registered (MO-155) package outline does not require "through holes" in a PCB. This package occupies approximately one-fourth the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes.

This digital optocoupler uses an insulating layer between the light emitting diode and an integrated photon detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector increase the speed up to a hundred times over that of a conventional photo-transistor coupler by reducing the base-collector capacitance.

The ACPL-M43T has an increased common mode transient immunity of $30kV/\mu s$ minimum at $V_{CM}=1500V$ over extended temperature range.

Avago R²Coupler[®] isolation products provide the reinforced insulation and reliability needed for critical in automotive and high temperature industrial applications.

Functional Diagram

Note: The connection of a 0.1 F bypass capacitor between pins 4 and 6 is recommended.

Features

- Qualified to AEC-Q100 Test Guidelines
- Wide Temperature Range: -40°C ~ 125°C
- High Temperature and Reliability IPM Driver for Automotive Application
- 30 kV/μs High Common-Mode Rejection at V_{CM} = 1500 V (typ)
- Compact, Auto-Insertable SO5 Packages
- High Speed: 1 MBd (Typ)
- Low LED Drive Current: 10 mA (typ)
- Low Propagation Delay: 300 ns (typ)
- Worldwide Safety Approval:
 - UL1577 recognized, 4000 Vrms/1 min
 - CSA Approved
 - IEC/EN/DIN EN 60747-5-5

Applications

- Automotive IPM Driver for DC-DC converters and motor inverters
- CANBus Communications Interface
- High Temperature Digital/Analog Signal Isolation
- Power Transistor Isolation

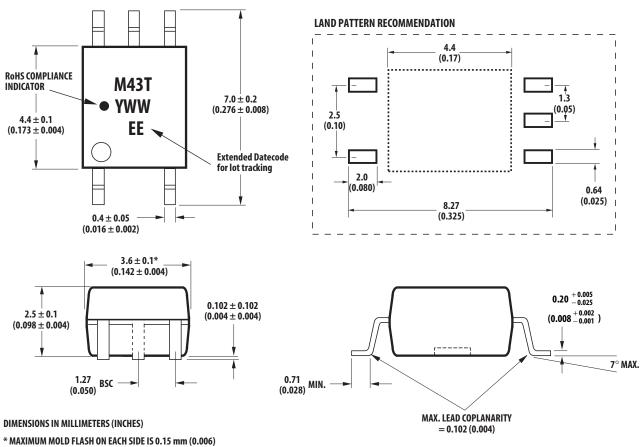
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. The components featured in this datasheet are not to be used in military or aerospace applications or environments.

Ordering Information

	Option					
Part number	RoHS Compliant	Package	Surface Mount	Tape & Reel	IEC/EN/DIN EN 60747-5-5	Quantity
ACPL-M43T	-000E	SO-5	X			100 per tube
	-060E	•	X		Х	100 per tube
	-500E	•	X	Х		1500 per reel
	-560E	•	X	Х	Х	1500 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:


ACPL-M43T-500E to order product of Mini-flat Surface Mount 5-pin package in Tape and Reel packaging with RoHS compliant.

Example 2:

ACPL-M43T to order product of Mini-flat Surface Mount 5-pin package in tube packaging and non RoHS compliant. Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings

ACPL-M43T Small Outline SO-5 Package (JEDEC MO-155)

NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision).

Note: Non-halide flux should be used.

Regulatory Information

The ACPL-M43T is approved by the following organizations:

UL	Approved under UL 1577, component recognition program up to $V_{ISO} = 4000 V_{RMS}$
CSA	Approved under CSA Component Acceptance Notice #5.
IEC/EN/DIN EN 60747-5-5	Approved under: IEC 60747-5-5, EN 60747-5-5 & DIN EN 60747-5-5

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics*

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110/1.89, Table 1			
for rated mains voltage \leq 150 V_{rms}		I – IV	
for rated mains voltage ≤ 300 Vrms		I – III	
for rated mains voltage \leq 600 V_{rms}		1 – 11	
Climatic Classification		40/125/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	V_{IORM}	567	V_{peak}
Input to Output Test Voltage, Method b*	V_{PR}	1063	V_{peak}
V_{IORM} x 1.875= V_{PR} , 100% Production Test with t_m =1 sec, Partial discharge < 5 pC			·
Input to Output Test Voltage, Method a*	V _{PR}	907	V _{peak}
V_{IORM} x 1.6= V_{PR} , Type and Sample Test, t_m =10 sec, Partial discharge < 5 pC			
Highest Allowable Overvoltage (Transient Overvoltage t _{ini} = 60 sec)	V _{IOTM}	6000	V _{peak}
Safety-limiting values – maximum values allowed in the event of a failure.			
Case Temperature	T_S	175	°C
Input Current	Is, INPUT	230	mA
Output Power	P _S , OUTPUT	600	mW
Insulation Resistance at T _S , V _{IO} = 500 V	Rs	>109	Ω

^{*} Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-M43T	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	5	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	5	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	CTI	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (DIN VDE0109)		Illa		Material Group (DIN VDE 0109)

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature		T _S	-55	150	°C	
Operating Temperature	<u> </u>	T _A	-40	125	°C	
Junction Temperature		TJ		139	°C	
Lead Soldering Cycle	- Temperature			260	°C	
	- Time			10	S	
Average Forward Input	Current	I _{F(avg)}		20	mA	
Peak Forward Input Current (50% duty cycle, 1ms pulse width) Peak Transient Input Current		I _{F(peak)}		40	mA	
(50% duty cycle, 1ms pulse width) Peak Transient Input Current (<= 1us pulse width, 300ps)		I _{F(trans)}		100	mA	
(50% duty cycle, 1ms pulse width)		V _R		5	V	Pin 3 - 1
Peak Forward Input Current (50% duty cycle, 1ms pulse width) Peak Transient Input Current (<= 1us pulse width, 300ps) Reversed Input Voltage Input Power Dissipation Output Power Dissipation Average Output Current		P _{IN}		30	mW	
Output Power Dissipati	on	Po		100	mW	
Average Output Curren	t	I _O		8	mA	
Peak Output Current		lo(pk)		16	mA	
Supply Voltage (Pins 6-	4)	V _{CC}	-0.5	30	V	
Output Voltage (Pins 5-	4)	V _O	-0.5	20	V	
Solder Reflow Tempera	ture Profile	See Reflow	Temperature P	rofile		

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Supply Voltage	V_{CC}	3.0	20.0	V	
Operating Temperature	T _A	-40	125	°C	

Electrical Specifications (DC)

Over recommended operating $T_A = -40^{\circ}\text{C}$ to 125°C, unless otherwise specified

Parameter	Sym.	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Current Transfer	CTR	32	65	100	%	$T_A = 25$ °C $V_{CC} = 4.5 \text{ V}, V_O = 0.4 \text{ V}, I_F = 10 \text{ mA}$	1, 2,	1
Ratio		24	65		_		4	
		33	160		_	$V_{CC} = 4.5 \text{ V}, V_{O} = 0.4 \text{ V}, I_{F} = 1.5 \text{ mA}$	_	
		25	165		_	$V_{CC} = 4.5 \text{ V}, V_{O} = 0.4 \text{ V}, I_{F} = 0.8 \text{ mA}$		
Logic Low Output	V _{OL}		0.1	0.5	V	$V_{CC} = 4.5 \text{ V}, I_{O} = 2.4 \text{ mA}, I_{F} = 10 \text{ mA}$		
Voltage			0.1		_	$V_{CC} = 4.5 \text{ V}, I_O = 0.5 \text{ mA}, I_F = 1.5 \text{ mA}$		
			0.1			$V_{CC} = 4.5 \text{ V}, I_O = 0.2 \text{ mA}, I_F = 0.8 \text{ mA}$		
Logic High Output	I _{OH}		3x10 ⁻⁵	0.5	μΑ	$T_A = 25^{\circ}C$ $V_O = V_{CC} = 5.5 \text{ V}$ $I_F = 0 \text{ mA}$	11,	
Current			8x10 ⁻⁵	5		$V_O = V_{CC} = 20 V$	12	
Logic Low Supply	I_{CCL}		85	200	μΑ	$I_F = 10 \text{ mA}, V_O = \text{open}, V_{CC} = 20 \text{ V}$		
Current			15			$I_F = 1.5 \text{ mA}, V_O = \text{open}, V_{CC} = 20 \text{ V}$		
Logic High Supply	I_{CCH}		0.02	1	μΑ	$T_A = 25$ °C $I_F = 0 \text{ mA}, V_O = \text{open}, V_{CC} = 20 \text{ V}$		
Current				2.5				
Input Forward	V_{F}	1.45	1.55	1.75	V	$T_A = 25$ °C $I_F = 10 \text{ mA}$	3	_
Voltage		1.25	1.55	1.85				
Input Reversed Breakdown Voltage	BV_R	5			V	$I_R = 10 \mu A$		
Temperature	$\Delta V_F /$		-1.5		mV/°C	I _F =10 mA		
Coefficient of Forward Voltage	ΔT_{A}		-1.8			I _F =1.5 mA		
Input Capacitance	C _{IN}		90		рF	$F = 1 MHz, V_F = 0$		

Switching Specifications (AC)

Over recommended operating ($T_A = -40^{\circ}\text{C}$ to 125°C), $V_{CC} = 5.0 \text{ V}$ unless otherwise specified.

Parameter	Symbol	Min	Тур	Max	Units	Test Condition	ons		Fig.	Note
Propagation Delay Time to Logic Low at Output	t _{PHL}	0.07	0.15	0.8	μs	T _A = 25°C	$I_F = 10 \text{ mA},$ $R_L = 1.9 \text{ k}\Omega$	Pulse: f = 10 kHz, Duty cycle =	5, 6, 7, 8, 9, 10,	2, 3
			0.7	5			$I_F = 1.5 \text{ mA},$ $R_L = 10 \text{ k}\Omega$		13	
			1	10			$I_F = 0.8 \text{ mA},$ $R_L = 27 \text{ k}\Omega$	V _{THHL} = 1.5 V		
Propagation Delay Time to Logic High at Output	t _{PLH}	0.15	0.5	0.8	μs	T _A = 25°C	$I_F = 10 \text{ mA},$	Pulse: f = 10 kHz,	5, 6,	2, 3
		0.03		1.0	_		$R_L = 1.9 \text{ k}\Omega$	50% , $V_{CC} = 5.0 \text{ V}$, $V_{CC} = 5.0 \text{ V}$, $V_{CL} = 15 \text{ pF}$, $V_{THHL} = 2.0 \text{ V}$	7, 8, 9, 10, 13	
			0.9	5			$I_F = 1.5 \text{ mA},$ $R_L = 10 \text{ k}\Omega$			
			2	10			$I_F = 0.8 \text{ mA},$ $R_L = 27 \text{ k}\Omega$			
Pulse Width \Distortion	PWD		0.35	0.45	μs	T _A = 25°C		kHz, Duty cycle =		2, 3,
				0.85	-		$R_L = 1.9 \text{ k}\Omega$,	mA, $V_{CC} = 5.0 \text{ V}$, $C_L = 15 \text{ pF}$, $V_{THLH} = 2.0 \text{ V}$		4
Propagation Delay Difference	PDD		0.35	0.5	μs	T _A = 25°C	Pulse: f = 10	kHz, Duty cycle =		2, 3,
Between Any 2 Parts				0.9	-		$R_L = 1.9 \text{ k}\Omega$,	50%, $I_F = 10 \text{ mA}$, $V_{CC} = 5.0 \text{ V}$, $R_L = 1.9 \text{ k}\Omega$, $C_L = 15 \text{ pF}$, $V_{THHL} = 1.5 \text{ V}$, $V_{THLH} = 2.0 \text{ V}$		5
Common Mode Transient Immunity at Logic High Output	CM _H	15	30		kV/ μs	$I_F = 0 \text{ mA}$	$V_{CM} = 1500 \text{ V}$ $V_{CC} = 5 \text{ V}, T_A$	V_{p-p} , R _L = 1.9 kΩ, = 25° C	14	6
Common Mode Transient Immunity at Logic Low Output	CM _L	15	30		kV/ μs	I _F = 10 mA	_			
Common Mode Transient Immunity at Logic High Output	CM _H		5		kV/ μs	$I_F = 0 \text{ mA}$	$V_{CM} = 1500 \text{ V}$ $V_{CC} = 5 \text{ V}, T_A$	V_{p-p} , $R_L = 10 \text{ k}\Omega$, = 25° C	14	6
Common Mode Transient Immunity at Logic Low Output	CM _L		5		kV/ μs	I _F = 1.5 mA	-			

Package Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage*	V _{ISO}	4000			V _{RMS}	RH \leq 50%, t = 1 min; T _A = 25°C		7, 8
Input-Output Resistance	R _{I-O}		10 ¹⁴		Ω	V _{I-O} = 500 Vdc		7
Input-Output Capacitance	C _{I-O}		0.6		pF	$f = 1 \text{ MHz}; V_{I-O} = 0 \text{ Vdc}$		7

^{*} The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating.

Notes:

- 1. Current Transfer Ratio in percent is defined as the ratio of output collector current, I_D, to the forward LED input current, I_F, times 100.
- 2. Use of a 0.1 μ F bypass capacitor connected between pins 5 and 8 is recommended.
- 3. The 1.9 k Ω load represents 1 TTL unit load of 1.6 mA and the 5.6 k Ω pull-up resistor.
- 4. Pulse Width Distortion (PWD) is defined as |t_{PHL} t_{PLH}| for any given device.
- 5. The difference between t_{PLH} and t_{PHL} between any two parts under the same test condition.
- 6. Common transient immunity in a Logic High level is the maximum tolerable (positive) dV_{CM}/dt on the rising edge of the common mode pulse, V_{CM} , to assure that the ouput will remain in a Logic High state (i.e., $V_O > 2.0$ V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dV_{CM}/dt on the falling edge of the common mode pulse signal, V_{CM} to assure that the output will remain in a Logic Low state (i.e., $V_O < 0.8$ V).
- 7. Device considered a two terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
- 8. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage \geq 6000 V_{RMS} for 1 second.

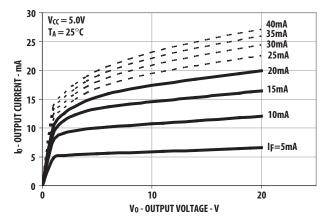


Figure 1. DC and Pulsed Transfer Characteristics

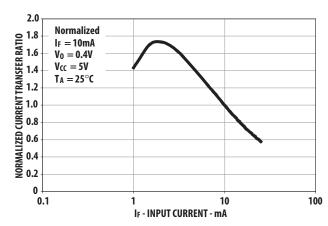


Figure 2. Current Transfer Ratio vs. Input Current

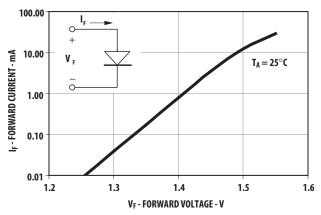


Figure 3. Input Current vs. Forward Voltage

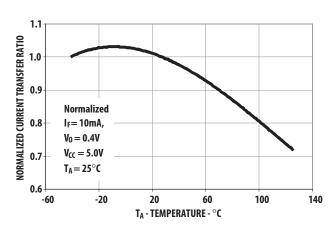


Figure 4. Current Transfer Ratio vs. Temperature

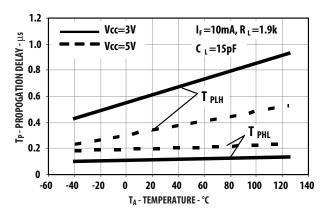


Figure 5. Propagation Delay vs. Temperature

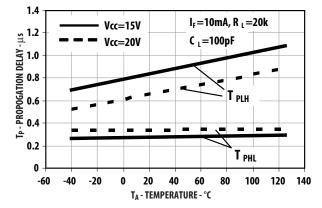


Figure 6. Propagation Delay vs. Temperature

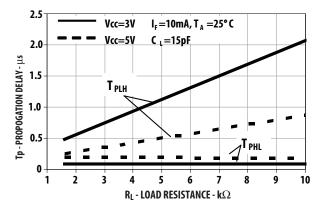


Figure 7. Propagation Delay Time vs. Load Resistance

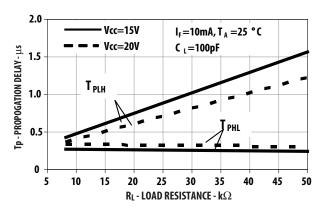


Figure 8. Propagation Delay Time vs. Load Resistance

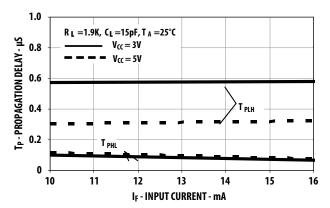


Figure 9. Propagation Delay Time vs. Input Current

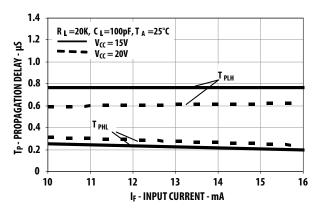


Figure 10. Propagation Delay Time vs. Input Current

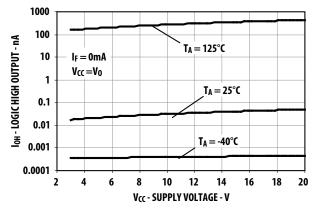


Figure 11. Logic High Output Current vs. Supply Voltage

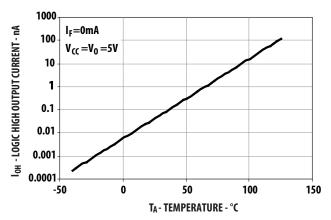
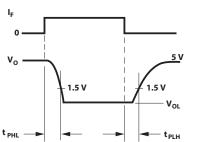



Figure 12. Logic High Output Current vs. Temperature

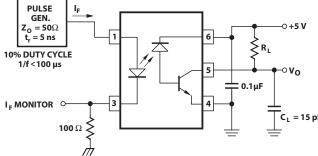


Figure 13. Switching Test Circuit

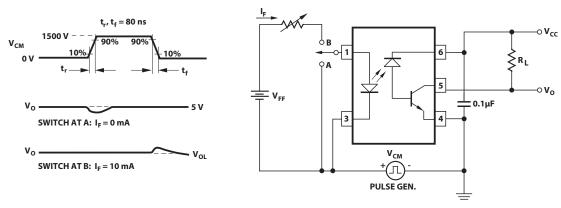


Figure 14. Test Circuit for Transient Immunity and Typical Waveforms