

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

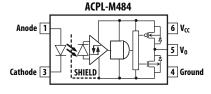
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

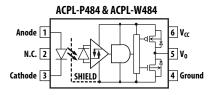
ACPL-M484/P484/W484

Positive Logic High CMR Intelligent Power Module and Gate Drive Interface Optocoupler

Data Sheet


Description

The ACPL-M484/P484/W484 fast speed optocoupler contains a AlGaAs LED and photo detector with built-in Schmitt trigger to provide logic-compatible waveforms, eliminating the need for additional wave shaping. The totem pole output eliminates the need for a pull up resistor and allows for direct drive Intelligent Power Module or gate drive. Minimized propagation delay difference between devices makes these optocouplers excellent solutions for improving inverter efficiency through reduced switching dead time.


Applications

- IPM Interface Isolation
- Isolated IGBT/MOSFET Gate Drive
- AC and Brushless DC Motor Drives
- Industrial Inverters
- General Digital Isolation

Functional Diagram

Note: A 0.1 μ F bypass capacitor must be connected between pins Vcc and Ground.

Truth Table (Positive Logic)

LED	V ₀
ON	HIGH
OFF	LOW

Truth Table Guaranteed: Vcc from 4.5 V to 30 V

Features

- Positive output type (totem pole output)
- Truth Table Guaranteed: Vcc from 4.5 V to 30 V
- Performance Specified for Common IPM Applications Over Industrial Temperature Range.
- Short Maximum Propagation Delays
- Minimized Pulse Width Distortion (PWD)
- Very High Common Mode Rejection (CMR)
- Hysteresis
- Available in SO-5 (ACPL-M484) and Stretched SO-6 package (ACPCL-P484/W484).
- Package Clearance/Creepage at 8 mm (ACPL-W484)
- Safety Approval:
 - UL Recognized with 5000 V_{rms} (ACPL-W484) for 1 minute per UL1577.
 - CSA Approved.
 - IEC/EN/DIN EN 60747-5-5 Approved with $V_{IORM}=567~V_{peak}$ for ACPL-M484 and $V_{IORM}=891~V_{peak}$ for ACPL-P484 and $V_{IORM}=1140~V_{peak}$ for ACPL-W484, under option 060.

Specifications

- Wide operating temperature range: -40° C to 105° C
- Maximum propagation delay t_{PHL} / t_{PLH} = 150/120 ns
- Maximum Pulse Width Distortion (PWD) = 90 ns
- Propagation Delay Difference Min/Max = -130/130 ns
- Wide Operating V_{CC} Range: 4.5 to 30 Volts
- 30 kV/ μ s minimum common mode rejection (CMR) at $V_{CM} = 1000 \text{ V}$

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Ordering Information

ACPL-M484/P484/W484 is UL recognized with 3750/3750/5000 Vrms/1 minute rating per UL 1577.

	Option				IEC/EN/DIN	
Part number	RoHS Compliant	Package	Surface Mount	Tape & Reel	EN 60747-5-5	Quantity
ACPL-M484	-000E	SO-5	Х			100 per tube
	-500E		X	Х		1500 per reel
	-060E		X		Х	100 per tube
	-560E		X	Х	Х	1500 per reel
CPL-P484	-000E	Stretched	Х			100 per tube
ACPL-W484	-500E	SO-6	X	Х		1000 per reel
	-060E		X		Х	100 per tube
	-560E		X	Х	Х	1000 per reel

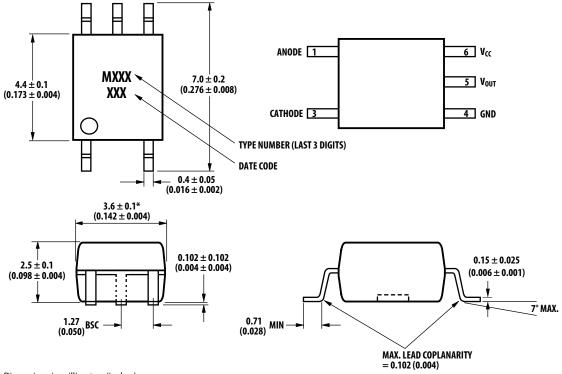
To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ACPL-P484-560E to order product of Stretched SO-6 Surface Mount package in Tape and Reel packaging with IEC/EN/ DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Example 2:

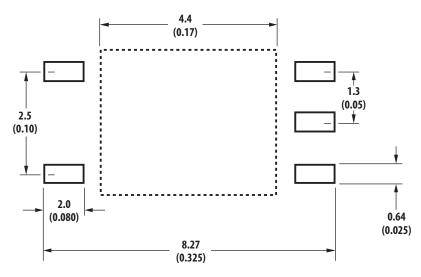
ACPL-P484-000E to order product of Stretched SO-6 Surface Mount package in Tube packaging and RoHS compliant.


Example 3:

ACPL-M484-000E to order product of SO-5 Surface Mount package in Tube packaging and RoHS compliant.

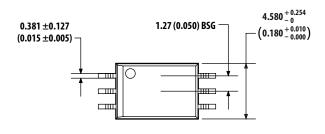
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

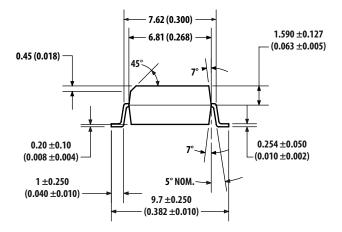
Package Outline Drawings


ACPL-M484 SO-5 Package, 5 mm Creepage & Clearance

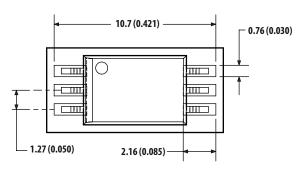
Dimensions in millimeters (inches).

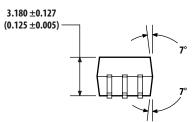
Note: Foating Lead Protrusion is 0.15 mm (6 mils) max.


Land Pattern Recommendation

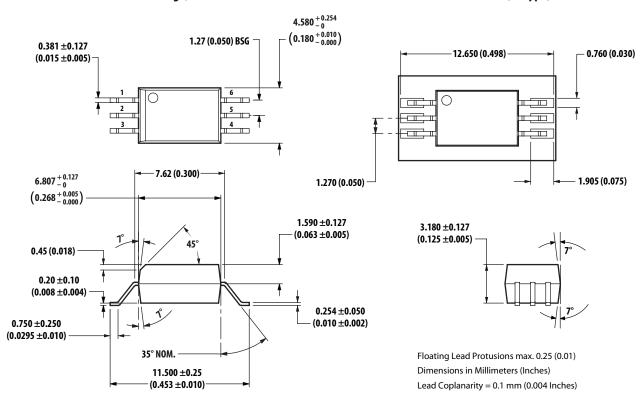


Dimension in millimeters (inches)


^{*} Maximum Mold flash on each side is 0.15 mm (0.006).


ACPL-P484 Stretched SO-6 Package, 7 mm clearance

Land Pattern Recommendation



Floating Lead Protusions max. 0.25 (0.01) Dimensions in Millimeters (Inches) Lead Coplanarity = 0.1 mm (0.004 Inches)

ACPL-W484 Stretched SO-6 Package, 8 mm clearance

Land Pattern Recommendation (W-type)

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Regulatory Information

The ACPL-M484/P484/W484 is approved by the following organizations:

IEC/EN/DIN EN 60747-5-5 (Option 060 only)

Approved with Maximum Working Insulation Voltage $V_{IORM} = 567 V_{peak}$ for ACPL-M484, $V_{IORM} = 891 V_{peak}$ for ACPL-P484 and $V_{IORM} = 1140 V_{peak}$ for ACPL-W484

UL

Approval under UL 1577, component recognition program up to $V_{ISO} = 3750 \, V_{RMS}$ File E55361 for ACPL-M484 & ACPL-P484;

Approval under UL 1577, component recognition program up to $V_{ISO} = 5000 V_{RMS}$ File E55361 for ACPL-W484;

CSA

Approval under CSA Component Acceptance Notice #5, File CA 88324.

Table 1. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (ACPL-M484/P484/W484 Option 060)

Description	Symbol	ACPL-M484	ACPL-P484	ACPL-W484	Unit
Installation classification per DIN VDE 0110/1.89, Table 1					
for rated mains voltage ≤ 150 V _{rms}		I - IV	I - IV	I - IV	
for rated mains voltage ≤ 300 V _{rms}		I – III	I – III	I – III	
for rated mains voltage \leq 600 V_{rms}		I – II	I – II	I – II	
Climatic Classification		55/105/21	55/105/21	55/105/21	
Pollution Degree (DIN VDE 0110/1.89)		2	2	2	
Maximum Working Insulation Voltage	V _{IORM}	567	891	1140	V _{peak}
Input to Output Test Voltage, Method b*	V_{PR}	1063	1670	2137	V_{peak}
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ sec,					
Partial discharge < 5 pC					
Input to Output Test Voltage, Method a*	V_{PR}	907	1426	1824	V_{peak}
V_{IORM} x 1.6 = V_{PR} , Type and Sample Test, $t_m = 10$ sec,					•
Partial discharge < 5 pC					
Highest Allowable Overvoltage	V _{IOTM}	6000	6000	8000	V _{peak}
(Transient Overvoltage $t_{ini} = 60$ sec)	- 101111				- peak
Safety-limiting values – maximum values allowed in					
the event of a failure.	Ts	175	175	175	°C
Case Temperature	I _{S, INPUT}	230	230	230	mA
Input Current	P _S , OUTPUT	600	600	600	mW
Output Power	5, 5011 01				
Insulation Resistance at T _S , V _{IO} = 500 V	R_S	>109	>109	>109	Ω

^{*} Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-2) for a detailed description of Method a and Method b partial discharge test profiles.

Table 2. Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-M484	ACPL-P484	ACPL-W484	Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	5.0	7.0	8.0	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	5.0	8.0	8.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	CTI	>175	>175	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa	Illa	Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

Table 3. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	T _S	-55	125	°C	
Operating Temperature	T _A	-40	105	°C	
Average Input Current	I _{F(avg)}		10	mA	
Peak Transient Input Current (<1 μs pulse width, 300 pps) (<200 μs pulse width, < 1% duty cycle)	I _{F(tran)}		1.0 40	A mA	
Reverse Input Voltage	V _R		5	V	
Average Output Current	I _O		50	mA	
Supply Voltage	V_{CC}	0	35		
Output Voltage	V _O	-0.5	35		
Total Package Power Dissipation (ACPL-M484)	P_{T}		145	mW	1
Total Package Power Dissipation	P _T		210	mW	1
Solder Reflow Temperature Profile	See Reflov	v Thermal Pro	file.		

Table 4. Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Power Supply Voltage (1)	V _{CC}	4.5	30	V	2
Forward Input Current (ON)	I _{F(ON)}	4	7	mA	
Forward Input Voltage (OFF)	$V_{F(OFF)}$	-	0.8	V	
Operating Temperature	T_A	-40	105	°C	

Note:

^{1.} Truth Table guaranteed: $4.5\,\mathrm{V}$ to $30\,\mathrm{V}$

Table 5. Electrical Specifications

Over recommended operating conditions $T_A = -40^\circ$ C to 105° C, $V_{CC} = +4.5$ V to 30 V, $I_{F(ON)} = 4$ mA to 7 mA, $V_{F(OFF)} = 0$ V to 0.8 V, unless otherwise specified. All typical values at $T_A = 25^\circ$ C.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Logic Low Output Voltage	V _{OL}			0.3	V	I _{OL} = 3.5 mA	1, 3	
				0.5		I _{OL} = 6.5 mA		
Logic High Output Voltage	V _{OH}	V _{CC} -0.3	V _{CC} -0.04		V	I _{OH} = -3.5 mA	2, 3, 7	
		Vcc -0.5	V _{CC} -0.07			I _{OH} = -6.5 mA		
Logic Low Supply Current	I _{CCL}		1.5	3.0	mA	$V_{CC} = 5.5 \text{ V}, V_F = 0 \text{ V}, I_0 = 0 \text{ mA}$		
			1.7	3.0	mA	$V_{CC} = 20 \text{ V}, V_F = 0 \text{ V}, I_0 = 0 \text{ mA}$		
Logic High Supply Current	I _{CCH}		1.5	3.0	mA	$V_{CC} = 5.5 \text{ V}, I_F = 7 \text{ mA}, I_O = 0 \text{ mA}$		
			1.7	3.0	mA	$V_{CC} = 30 \text{ V}, I_F = 7 \text{ mA}, I_O = 0 \text{ mA}$		
Threshold Input Current Low to High	I _{FLH}		0.8	2.2	mA			
Threshold Input Voltage High to Low	V _{FHL}	0.8			V	I _F = 4 mA		
Logic Low Short Circuit	I _{OSL}	125	200		mA	$V_O = V_{CC} = 5.5 \text{ V}, V_F = 0 \text{ V}$		3
Output Current		125	200		mA	$V_O = V_{CC} = 30 \text{ V}, V_F = 0 \text{ V}$		_
Logic High Short Circuit	I _{OSH}		-200	-125	mA	$V_{CC} = 5.5 \text{ V}, I_F = 7 \text{ mA}, V_O = \text{GND}$		3
Output Current			-200	-125	mA	$V_{CC} = 20 \text{ V}, I_F = 7 \text{ mA}, V_O = GND$		_
Input Forward Voltage	V _F	1.3	1.5	1.7	V	$T_A = 25^{\circ} \text{ C, I}_F = 4 \text{ mA}$	4	
				1.85	V	I _F = 4 mA		
Input Reverse Breakdown Voltage	BV _R	5			V	$I_R = 10 \mu A$		
Input Diode Temperature Coefficient	$\Delta V_F/\Delta T_A$		1.7		mV/°C	I _F = 4 mA		
Input Capacitance	C _{IN}		60		pF	f = 1 MHz, V _F = 0 V		4

Table 6. Switching Specifications

Over recommended operating conditions $T_A = -40^{\circ}$ C to 105° C, $V_{CC} = +4.5$ V to 30 V, $I_{F(ON)} = 4$ mA to 7 mA, $V_{F(OFF)} = 0$ V to 0.8 V, unless otherwise specified. All typicals at $T_A = 25^{\circ}$ C.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time	t _{PHL}		95	150	ns	$C_L = 100 \text{ pF, } I_F(ON) = 4 \text{ mA} \rightarrow V_F = 0 \text{ V}$	5, 6, 8	6
to Logic Low Output Level				150	_	Loaded as per Fig. 5	_	
Propagation Delay Time	t _{PLH}		85	120	ns	$C_L = 100 \text{ pF, } V_F = 0 \text{ V} \rightarrow I_F(ON) = 4 \text{ mA}$	5, 6, 8	6
to Logic High Output Level				120		Loaded as per Fig. 5		
Pulse Width Distortion	t _{PHL} - t _{PLH}			90	ns	C _L = 100 pF		9
	= PWD			90		Loaded as per Fig. 5		
Propagation Delay	PDD	-130		130	ns	C _L = 100 pF		10
Difference Between Any 2 Parts		-130		130	_	Loaded as per Fig. 5	_	
Output Rise Time (10-90%)	t _r		6		ns		5	
Output Fall Time (90-10%)	t _f		6		ns		5	
Logic High Common Mode Transient Immunity	CM _H	30			kV/μs	V _{CM} = 1000 V, I _F = 4.0 mA, V _{CC} = 5 V, T _A = 25° C	9	7
Logic Low Common Mode Transient Immunity	CM _L	30			kV/μs	$ V_{CM} = 1000 \text{ V}, V_F = 0 \text{ V},$ $V_{CC} = 5 \text{ V}, T_A = 25^{\circ} \text{ C}$	9	7

Table 7. Package Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage*	V_{ISO}	3750 (ACPL-M484/P484) 5000 (ACPL-W484)			V_{rms}	RH < 50%, $t = 1$ min. $T_A = 25^{\circ}$ C		5, 8
Input-Output Resistance	R_{I-O}		10 ¹²		Ohm	$V_{I-O} = 500 V_{dc}$		5
Input-Output Capacitance	C _{I-O}		0.6		рF	$f = 1 \text{ MHz}, V_{I-O} = 0 V_{dc}$		5

^{*} The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating, refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable).

UVLO

Figure 10a & b show typical output waveforms during Power-up and Power-down processes.

Notes:

- 1. Derate total package power dissipation, P_T, linearly above 70° C free-air temperature at a rate of 4.5mW/°C(ACPL-P484/W484) and linearly above 85° C free-air temperature at a rate of 0.75mW/°C(ACPL-M484).
- 2. Detector requires a Vcc of 4.5 V or higher for stable operation as output might be unstable if Vcc is lower than 4.5 V. Be sure to check the power ON/OFF operation other than the supply current.
- 3. Duration of output short circuit time should not exceed 500 μs .
- 4. Input capacitance is measured between pin 1 and pin 3.
- 5. Device considered a two-terminal device: pins 1, 2 and 3 shorted together and pins 4, 5 and 6 shorted together.
- 6. The t_{PLH} propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The t_{PHL} propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
- 7. CM_H is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, $V_O > 2.0$ V. CM_L is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, $V_O < 0.8$ V. Note: Equal value split resistors (Rin/2) must be used at both ends of the LED.
- 8. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 V_{RMS} for one second (leakage detection current limit, I_{I-O} < = 5 μA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table, if applicable.
- 9. Pulse Width Distortion (PWD) is defined as |t_{PHL} t_{PLH}| for any given device.
- 10. The difference of t_{PLH} and t_{PHL} between any two devices under the same test condition.
- 11. Use of a 0.1 μF bypass capacitor connected between pins Vcc and Ground is recommended.

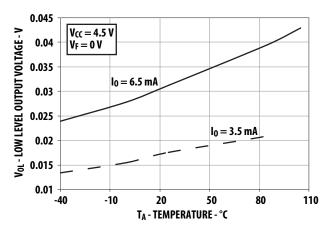


Figure 1. Typical Logic Low Output Voltage vs. Temperature

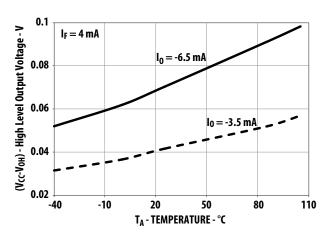


Figure 2. Typical Logic High Output Current vs. Temperature

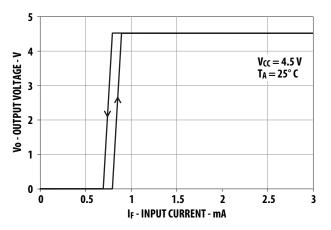


Figure 3. Typical Output Voltage vs. Forward Input Current

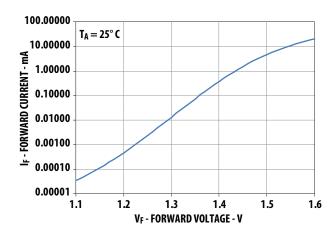


Figure 4. Typical Input Diode Forward Characteristic

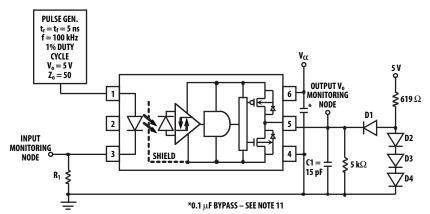
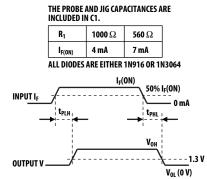



Figure 5. Circuit for t_{PLH}, t_{PHL}, t_r, t_f

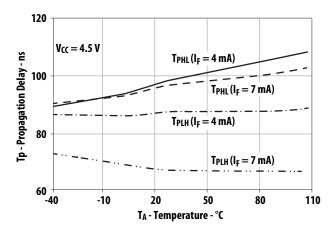


Figure 6. Typical Propagation Delays vs. Temperature

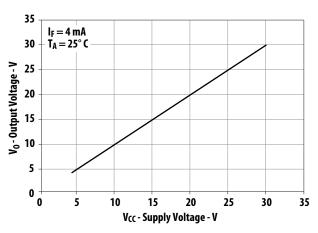


Figure 7. Typical Logic High Output Voltage vs. Supply Voltage

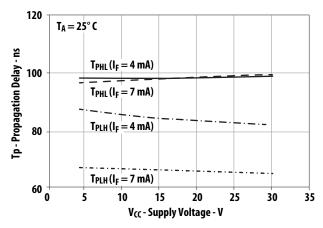


Figure 8. Typical Propagation Delay vs. Supply Voltage

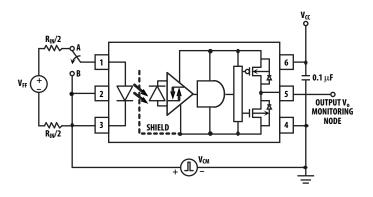
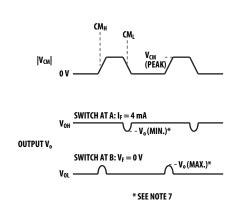



Figure 9. Test Circuit for Common Mode Transient Immunity and Typical Waveforms

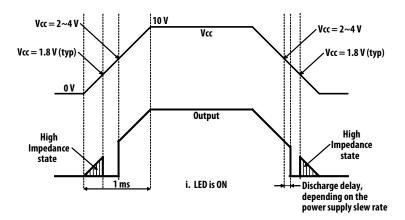


Figure 10a. Vcc Ramp when LED is ON

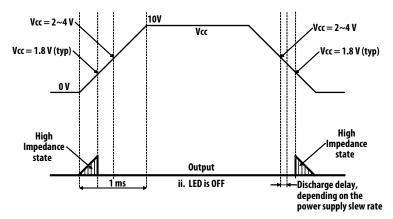


Figure 10b. Vcc Ramp when LED is OFF

Thermal Model for ACPL-M484 S05 Package Optocoupler

Definitions

R₁₁: Junction to Ambient Thermal Resistance of LED due to heating of LED

R₁₂: Junction to Ambient Thermal Resistance of LED due to heating of Detector (Output IC)

R₂₁: Junction to Ambient Thermal Resistance of Detector (Output IC) due to heating of LED.

R₂₂: Junction to Ambient Thermal Resistance of Detector (Output IC) due to heating of Detector (Output IC).

P₁: Power dissipation of LED (W).

P₂: Power dissipation of Detector / Output IC (W).

 T_1 : Junction temperature of LED (°C).

T₂: Junction temperature of Detector (°C).

T_a: Ambient temperature.

 ΔT_1 : Temperature difference between LED junction and ambient (°C).

 ΔT_2 : Temperature deference between Detector junction and ambient.

Ambient Temperature: Junction to Ambient Thermal Resistances were measured approximately 1.25cm above optocoupler at ~23°C in still air

Description

This thermal model assumes that an 5-pin single-channel plastic package optocoupler is soldered into a 7.62 cm x 7.62 cm printed circuit board (PCB). The temperature at the LED and Detector junctions of the optocoupler can be calculated using the equations below.

$$T_1 = (R_{11} * P_1 + R_{12} * P_2) + T_a - (1)$$

$$T_2 = (R_{21} * P_1 + R_{22} * P_2) + T_a -- (2)$$

Jedec Specifications	R ₁₁	R ₁₂ , R ₂₁	R ₂₂	
low K board	191	77, 91	99	
high K board	126	26, 35	51	

Notes:

1. Maximum junction temperature for above parts: 125 °C.

Thermal Model for ACPL-P484/W484 S06 Package Optocoupler

Definitions

R₁₁: Junction to Ambient Thermal Resistance of LED due to heating of LED

R₁₂: Junction to Ambient Thermal Resistance of LED due to heating of Detector (Output IC)

R₂₁: Junction to Ambient Thermal Resistance of Detector (Output IC) due to heating of LED.

R₂₂: Junction to Ambient Thermal Resistance of Detector (Output IC) due to heating of Detector (Output IC).

P₁: Power dissipation of LED (W).

P₂: Power dissipation of Detector / Output IC (W).

 T_1 : Junction temperature of LED (°C).

T₂: Junction temperature of Detector (°C).

T_a: Ambient temperature.

 ΔT_1 : Temperature difference between LED junction and ambient (°C).

 ΔT_2 : Temperature deference between Detector junction and ambient.

Ambient Temperature: Junction to Ambient Thermal Resistances were measured approximately 1.25cm above optocoupler at ~23°C in still air

Description

This thermal model assumes that an 6-pin single-channel plastic package optocoupler is soldered into a 7.62 cm x 7.62 cm printed circuit board (PCB). The temperature at the LED and Detector junctions of the optocoupler can be calculated using the equations below.

$$T_1 = (R_{11} * P_1 + R_{12} * P_2) + T_a - (1)$$

$$T_2 = (R_{21} * P_1 + R_{22} * P_2) + T_a - (2)$$

Jedec Specifications	R ₁₁	R_{12}, R_{21}	R ₂₂	
low K board	167	64, 81	89	
high K board	117	31, 39	54	

Notes:

1. Maximum junction temperature for above parts: 125 °C.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

