mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

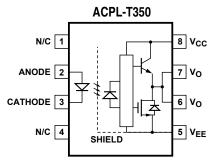
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ACPL-T350 2.5 Amp Output Current IGBT Gate Driver Optocoupler with Low I_{CC}


Data Sheet

Description

The ACPL-T350 contains a GaAsP LED. The LED is optically coupled to an integrated circuit with a power output stage. These optocouplers are ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and current supplied by these optocouplers make them ideally suited for directly driving IGBTs with ratings up to 1200 V/100 A. For IGBTs with higher ratings, the ACPL-T350 series can be used to drive a discrete power stage whichs drives the IGBT gate. The ACPL-T350 has an insulation voltage of V_{IORM} = 630 Vpeak (Option 060).

Functional Diagram

Note: A 0.1 μF bypass capacitor must be connected between pins V_{CC} and $V_{EE}.$

UVLO Truth Table

LED	V _{CC} – V _{EE} "POSITIVE GOING" (i.e., TURN-ON)	V _{CC} – V _{EE} "NEGATIVE GOING" (i.e., TURN-OFF)	Vo
OFF	0 - 30 V	0 - 30 V	LOW
ON	0 - 11 V	0 - 9.5 V	LOW
ON	11 - 13.5 V	9.5 - 12 V	TRANSITION
ON	13.5 - 30 V	12 - 30 V	HIGH

Features

- 2.5A Absolute Maximum Peak Output Current
- + 15 kV/ μs minimum Common Mode Rejection (CMR) at V_{CM} = 1500 V
- 1.5 V maximum low level output voltage (V_{OL})
- I_{CC} = 4 mA maximum supply current
- Under Voltage Lock-Out protection (UVLO) with hysteresis
- Wide operating V_{CC} range: 15 to 30 Volts
- 500 ns maximum switching speeds
- Industrial temperature range: -40°C to 100°C
- Safety Approval
 - UL Recognized 3750 Vrms for 1 min.
 - CSA Approval
 - IEC/EN/DIN EN 60747-5-5 Approved $V_{IORM} = 630 V_{peak}$ (Option 060)

Applications

- IGBT/MOSFET gate drive
- Inverter for Home Appliances
- Industrial Inverters
- Switching Power Supplies (SPS)

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Ordering Information

Part	Option	-				IEC/EN/DIN EN	
number	RoHS Compliant	Package	Surface Mount	Gull Wing	Tape& Reel	60747-5-5	Quantity
ACPL-T350	-000E	300mil DIP-8					50 per tube
	-300E	-	Х	Х			50 per tube
	-500E/500ME	-	Х	Х	Х		1000 per reel
	-060E	-				Х	50 per tube
	-360E	-	X	Х		Х	50 per tube
	-560E/560ME	-	Х	Х	Х	Х	1000 per reel

ACPL-T350 is UL Recognized with 3750 Vrms for 1 minute per UL1577.

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ACPL-T350-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Example 2:

ACPL-T350-000E to order product of 300mil DIP package in tube packaging and RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Remarks: The notation '#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use '-XXXE'.

Regulatory Information

The ACPL-T350 is approved by the following organizations:

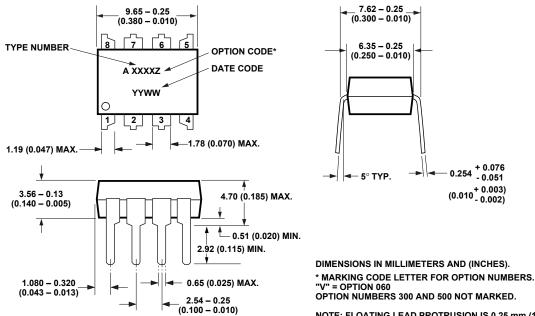
IEC/EN/DIN EN 60747-5-5 (ACPL-T350 Option 060 only)

Approval under: DIN EN 60747-5-5 (VDE 0884-5):2011-11 EN 60747-5-5:2011

UL

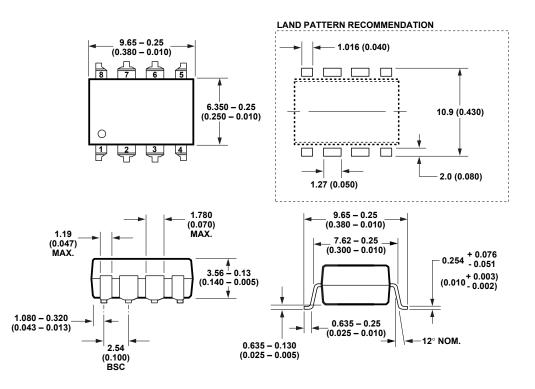
Approval under UL 1577, component recognition program, File E55361.

CSA


Approval under CSA Component Acceptance Notice #5, File CA 88324.

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.


Package Outline Drawings

ACPL-T350 Outline Drawing

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

ACPL-T350 Outline Drawing

DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES).

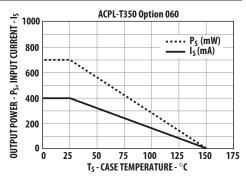

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Table 1. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (ACPL-T350 Option 060)

		ACPL-T350	
Description	Symbol	Option 060	Unit
Installation classification per DIN VDE 0110/39, Table 1			
for rated mains voltage \leq 150 V _{rms}		I – IV	
for rated mains voltage \leq 300 V _{rms}		I – IV	
for rated mains voltage \leq 450 V _{rms}		I – III	
Climatic Classification		55/100/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	V _{IORM}	630	V _{peak}
Input to Output Test Voltage, Method b*	V _{PR}	1181	V _{peak}
V_{IORM} x 1.875= V_{PR} , 100% Production Test with t _m =1 sec, Partial discharge < 5 pC			·
Input to Output Test Voltage, Method a*	V _{PR}	1008	V _{peak}
V_{IORM} x 1.6= V_{PR} , Type and Sample Test, t _m =10 sec, Partial discharge < 5 pC			
Highest Allowable Overvoltage (Transient Overvoltage t _{ini} = 60 sec)	VIOTM	6000	V _{peak}
Safety-limiting values – maximum values allowed in the event of a failure			
Case Temperature	Ts	175	°C
Input Current	Is, input	230	mA
Output Power	P _S , output	600	mW
Insulation Resistance at T_S , $V_{IO} = 500 V$	R _S	>109	Ω

* Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

Note: These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classification is Class A in accordance with CECC 00802.

Table 2. Insulation and Safety Related Specifications

	•	-		
Parameter	Symbol	ACPL-T350	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	7.1	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	7.4	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	СТІ	> 175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

All Avago data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions are needed as a starting point for the equipment designer when determining the circuit insulation requirements. However, once mounted on a printed circuit board, minimum creepage and clearance requirements must be met as specified for individual equipment standards. For creepage, the shortest distance path along the surface of a printed circuit board between the solder fillets of the input and output leads must be considered (the recommended Land Pattern does not necessarily meet the minimum creepage of the device). There are recommended techniques such as grooves and ribs which may be used on a printed circuit board to achieve desired creepage and clearances. Creepage and clearance distances will also change depending on factors such as pollution degree and insulation level.

Table 3. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	Ts	-55	125	°C	
Operating Temperature	T _A	-40	100	°C	
Average Input Current	I _{F(AVG)}		25	mA	1
Peak Transient Input Current (<1 µs pulse width, 300pps)	I _{F(TRAN)}		1.0	А	
Reverse Input Voltage	V _R		5	V	
"High" Peak Output Current	I _{OH(PEAK)}		2.5	А	2
"Low" Peak Output Current	I _{OL(PEAK)}		2.5	А	2
Supply Voltage	$V_{CC} - V_{EE}$	0	35	V	
Input Current (Rise/Fall Time)	$t_{r(IN)}/t_{f(IN)}$		500	ns	
Output Voltage	V _{O(PEAK)}	0	V _{CC}	V	
Output Power Dissipation	Po		250	mW	3
Total Power Dissipation	PT		295	mW	4
Lead Solder Temperature	260°C for 10 sec	., 1.6 mm below	seating plane		

Table 4. Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Power Supply	V _{CC} - V _{EE}	15	30	V	
Input Current (ON)	I _{F(ON)}	7	16	mA	
Input Voltage (OFF)	V _{F(OFF)}	- 3.6	0.8	V	
I _{OH(PEAK)} / I _{OL (PEAK)}	T _A	- 2.0	2.0	А	
Operating Temperature	TA	- 40	100	°C	

Table 5. Electrical Specifications (DC)

Over recommended operating conditions ($T_A = -40$ to 100°C, $I_{F(ON)} = 7$ to 16 mA, $V_{F(OFF)} = -3.6$ to 0.8 V, $V_{CC} = 15$ to 30 V, $V_{EE} =$ Ground) unless otherwise specified. All typical values at $T_A = 25$ °C and $V_{CC} - V_{EE} = 30$ V, unless otherwise noted.

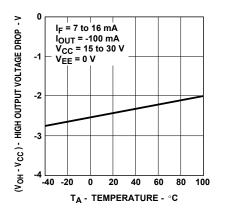
Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
I _{OH}	0.5	1.6		А	$V_O = V_{CC} - 4 V$	2, 3, 15	5
	2.0			А	$V_{O} = V_{CC} - 15 V$		2
I _{OL}	0.5	1.6		А	$V_{O} = V_{EE} + 2.5 V$	5, 6, 16	5
	2.0			А	$V_{O} = V_{EE} + 15 V$		2
V _{OH}	V _{CC} -4	V _{CC} -3		V	I _O = -100 mA	1, 3, 17	6, 7
V _{OL}		V _{EE} +0.5	1.5	V	l _O = 100 mA	4, 6, 18	
I _{CCH}		2.0	4.0	mA	Output open, I _F = 7 to 16 mA	7, 8	
I _{CCL}		2.0	4.0	mA	Output open, V _F = -3.0 to +0.8 V		
I _{FLH}		2.0	5	mA	$I_0 = 0 \text{ mA}, V_0 > 5 \text{ V}$	9, 19	
V _{FHL}	0.8			V	$I_0 = 0 \text{ mA}, V_0 > 5 \text{ V}$		
V _F	1.2	1.5	1.8	V	$I_F = 10 \text{ mA}$		
$\Delta V_F / \Delta T_A$		-2.0		mV/°C	I _F = 10 mA		
BV _R	5			V	$I_R = 10 \ \mu A$		
C _{IN}		60		pF	$f = 1 MHz, V_F = 0 V$		
V _{UVLO+}	11.0	12.3	13.5	V	$I_F = 10 \text{ mA}, V_O > 5 \text{ V}$	14, 20	
V _{UVLO} _	9.5	10.7	12.0	V	$I_F = 10 \text{ mA}, V_O > 5 \text{ V}$		
UVLO _{HYS}		1.6		V	$I_F = 10 \text{ mA}, V_O > 5 \text{ V}$		
	Iol VOH VOL ICCH ICCL IFLH VFHL VF ΔVF/ΔTA BVR CIN VUVLO+ VUVLO-	2.0 IOL 0.5 2.0 VOH VcC-4 VOL I ICCH I ICCL I IFLH 0.8 VFHL 0.8 VF 1.2 ΔVF/ΔTA 5 CIN VUVLO+ VUVLO- 9.5	2.0 loL 0.5 1.6 2.0 2.0 VOH VCC-4 VCC-3 VOL VEE+0.5 ICCH 2.0 ICCL 2.0 IFLH 2.0 VFHL 0.8 VF 1.2 ΔVF/ΔTA -2.0 BVR 5 CIN 60 VUVLO+ 11.0 12.3 VUVLO- 9.5 10.7	2.0 l_{OL} 0.5 1.6 2.0 2.0 V_{OH} V_{CC} -4 V_{CC} -3 V_{OL} V_{CC} -4 V_{CC} -3 I_{CCH} 2.0 4.0 I_{CCL} 2.0 4.0 I_{FLH} 2.0 5 V_{FHL} 0.8 - V_F 1.2 1.5 1.8 $\Delta V_{F/\Delta T_A}$ -2.0 - BV_R 5 - - C_{IN} 60 - V_{UVLO+} 11.0 12.3 13.5 V_{UVLO-} 9.5 10.7 12.0	$\begin{array}{c c c c c c c } 2.0 & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c } 2.0 & A & V_{O} = V_{CC} - 15 \ V \\ \hline I_{OL} & 0.5 & 1.6 & A & V_{O} = V_{EE} + 2.5 \ V & 5, 6, 16 \\ \hline 2.0 & A & V_{O} = V_{EE} + 15 \ V \\ \hline V_{OH} & V_{CC} - 4 & V_{CC} - 3 & V & I_{O} = -100 \ mA & 1, 3, 17 \\ \hline V_{OL} & V_{EE} + 0.5 & 1.5 & V & I_{O} = 100 \ mA & 4, 6, 18 \\ \hline I_{CCH} & 2.0 & 4.0 & mA & Output open, \\ I_{CCL} & 2.0 & 4.0 & mA & Output open, \\ I_{CCL} & 2.0 & 5 & mA & I_{O} = 0 \ mA, V_{O} > 5 \ V & 9, 19 \\ \hline V_{FHL} & 0.8 & V & I_{O} = 0 \ mA, V_{O} > 5 \ V & I_{O} = 0 \ mA, V_{O} > 5 \ V & V_{F} = -3.0 \ to +0.8 \ V \\ \hline V_{FHL} & 0.8 & V & I_{C} = 0 \ mA, V_{O} > 5 \ V & I_{C} = 10 \ mA & -2.0 & mV'^{\circ}C & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = 10 \ mA & -2.0 & V & I_{F} = $

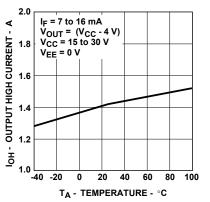
Table 6. Switching Specifications (AC)

Over recommended operating conditions ($T_A = -40$ to 100°C, $I_{F(ON)} = 7$ to 16 mA, $V_{F(OFF)} = -3.6$ to 0.8 V, $V_{CC} = 15$ to 30 V, $V_{EE} =$ Ground) unless otherwise specified. All typical values at $T_A = 25$ °C and $V_{CC} - V_{EE} = 30$ V, unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to High Output Level	t _{PLH}	0.05	0.25	0.5	μs	$\label{eq:result} \begin{array}{l} Rg = 10\ \Omega, Cg = 10\ nF, \\ f = 10\ kHz, \end{array}$	10, 11, 12, 21	8
Propagation Delay Time to Low Output Level	t _{PHL}	0.05	0.25	0.5	μs	Duty Cycle = 50%		
Pulse Width Distortion	PWD			0.3	μs	_		9
Propagation Delay Difference Between Any Two Parts or Channels	PDD (t _{PHL} – t _{PLH})	-0.35		0.35	μs	-		10
Rise Time	t _R		15		ns	_	21	
Fall Time	t _F		20		ns	_		
Output High Level Common Mode Transient Immunity	CM _H	15	20		kV/μs	$T_A = 25^{\circ}C,$ $I_F = 10 \text{ to } 16 \text{ mA},$ $V_{CM} = 1500 \text{ V},$ $V_{CC} = 30 \text{ V}$	22	11, 12
Output Low Level Common Mode Transient Immunity	CML	15	20		kV/μs	$\begin{split} T_A &= 25^\circ C, V_F = 0 \; V, \\ V_{CM} &= 1500 \; V \; , \\ V_{CC} &= 30 \; V \end{split}$	22	11, 13

Table 7. Package Characteristics


Over recommended temperature ($T_A = -40$ to 100°C) unless otherwise specified. All typicals at $T_A = 25$ °C.


Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage**	V _{ISO}	3750			Vrms	RH < 50%, t = 1 min., T _A = 25℃		14, 15
Resistance Input-Output)	R _{I-O}		10 ¹²		Ω	$V_{I-O} = 500 V$		15
Capacitance Input-Output)	CI-O		0.6		рF	Freq=1 MHz		
LED-to-Case Thermal Resistance	θ_{LC}		467		°C/W	Thermocouple located		
LED-to-Detector Thermal Resistance	θ_{LD}		442		°C/W	at center underside of		
Detector-to-Case Thermal Resistance	θ_{DC}		126		°C/W	– package		

** The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refers to your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage."

Notes:

- 1. Derate linearly above 70°C free-air temperature at a rate of 0.3 mA /°C.
- 2. Maximum pulse width = $10 \mu s$.
- 3. Derate linearly above 70° C free-air temperature at a rate of 4.8 mW /°C.
- 4. Derate linearly above 70° C free-air temperature at a rate of 5.4 mW /°C. The maximum LED junction temperature should not exceed 125°C.
- 5. Maximum pulse width = $50 \ \mu s$
- 6. In this test VOH is measured with a dc load current. When driving capacitive loads VOH will approach V_{CC} as I_{OH} approaches zero amps.
- 7. Maximum pulse width = 1 ms
- 8. This load condition approximates the gate load of a 1200 V/100A IGBT.
- 9. Pulse Width Distortion (PWD) is defined as $\left|t_{PHL} t_{PLH}\right|$ for any given device.
- 10. The difference between t_{PHL} and t_{PLH} between any two ACPL-T350 parts under the same test condition.
- 11. Pins 1 and 4 need to be connected to LED common.
- 12. Common mode transient immunity in the high state is the maximum tolerable dV_{CM}/dt of the common mode pulse, V_{CM} , to assure that the output will remain in the high state (i.e., $V_O > 15.0$ V).
- 13. Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, V_{CM}, to assure that the output will remain in a low state (i.e., V_O < 2.0 V).
- 14. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage \geq 4500 Vrms for 1 second (leakage detection current limit, I_{I-O} \leq 5 µA).
- 15. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.

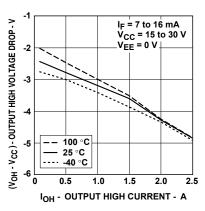


Figure 1. V_{OH} vs. temperature.

Figure 4. V_{OL} vs. temperature.

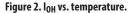
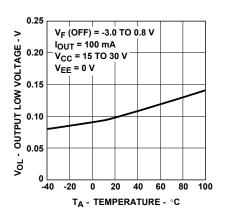
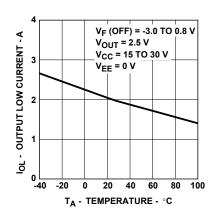




Figure 5. IoL vs. temperature.

3.00

Figure 3. V_{OH} vs. I_{OH}.

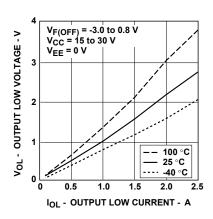
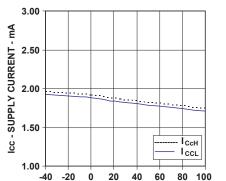



Figure 6. Vol vs. lol.

TA - TEMPERATURE - °C

 Y
 2.50

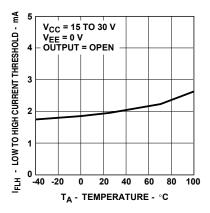
 W
 2.50

 W
 2.00

 Image: Second se

20

25


Vcc - SUPPLY VOLTAGE - V

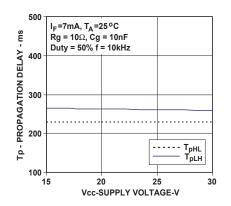

30

Figure 7. I_{CC} vs. Temperature

15

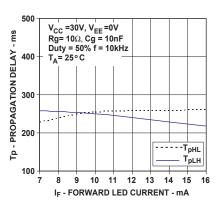
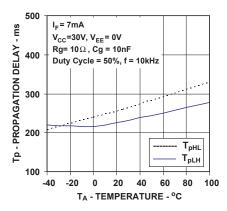



Figure 9. IFLH vs. temperature.

Figure 10. Propagation delay vs. V_{CC}.

Figure 11. Propagation delay vs. IF.

1000 T_A = 25°C ١Ę IF - FORWARD CURRENT - mA 100 5 10 1.0 0.1 0.01 0.001 1.10 1.20 1.30 1.40 1.50 1.60 VF - FORWARD VOLTAGE - VOLTS

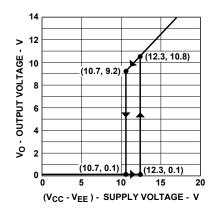


Figure 12. Propagation delay vs. Temperature

Figure 13. Input current vs. forward voltage.

Figure 14. Under voltage lock out.

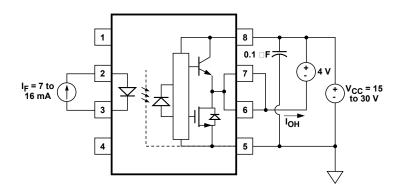
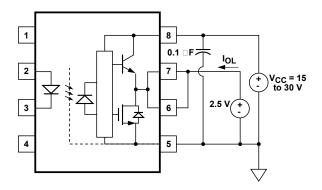



Figure 15. I_{OH} test circuit.

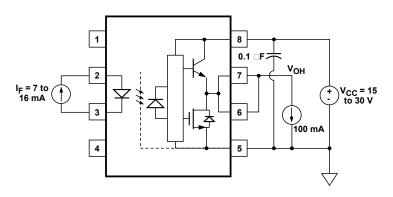


Figure 16. I_{OL} Test circuit.

Figure 17. V_{OH} Test circuit.

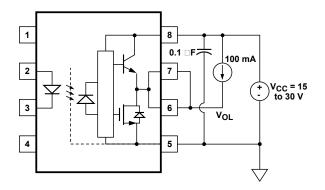


Figure 18. V_{OL} Test circuit.

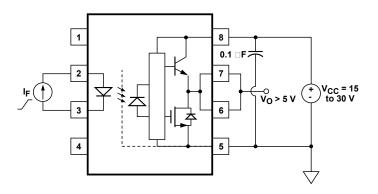


Figure 19. I_{FLH} Test circuit.

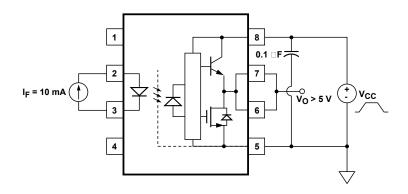
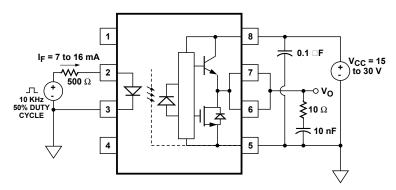



Figure 20. UVLO Test Circuit

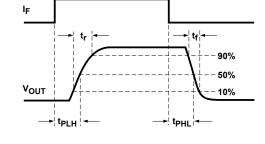


Figure 21. t_{PLH} , t_{PHL} , t_r , and t_f test circuit and waveforms.



Figure 22. CMR test circuit and waveforms.

Typical Application Circuit

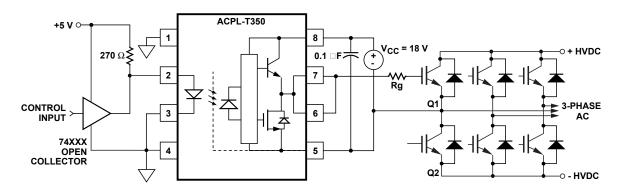


Figure 23. Recommended LED drive and application circuit.

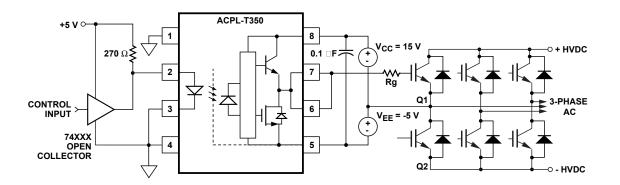


Figure 24. Typical application circuit with negative IGBT gate drive.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2012-2016 Avago Technologies Limited. All rights reserved. AV02-0308EN - September 23, 2016