imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

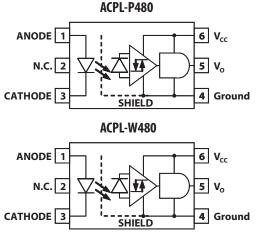
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ACPL-P480 and ACPL-W480

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler


Data Sheet

Description

The ACPL-P480 and ACPL-W480 fast speed optocouplers contain a GaAsP LED and photo detector with built-in Schmitt trigger to provide logic-compatible waveforms, eliminating the need for additional wave shaping. The totem pole output eliminates the need for a pull up resistor and allows for direct drive Intelligent Power Module or gate drive. Minimized propagation delay difference between devices make these optocouplers excellent solutions for improving inverter efficiency through reduced switching dead time.

Functional Diagrams

Note: A 0.1 μF bypass capacitor must be connected between pins 4 and 6.

Truth Table (Positive Logic)

LED	VO
ON	HIGH
OFF	LOW

Features

- Performance Specified for Common IPM Applications Over Industrial Temperature Range.
- Short Maximum Propagation Delays
- Minimized Pulse Width Distortion (PWD)
- Very High Common Mode Rejection (CMR)
- Hysteresis
- Totem Pole Output (No Pull-up Resistor Required)
- Available in Stretched SO-6 package.
- Safety Approval:

UL Recognized with 3750 V_{rms} for 1 minute (5000 Vrms for 1 minute for all ACPL-W480 devices and Option 020 device for ACPL-P480) per UL1577.

CSA Approved.

IEC/EN/DIN EN 60747-5-5 Approved: V_{IORM} = 891 V_{peak} for ACPL-P480, and V_{IORM} = 1140 V_{peak} for ACPL-W480.

Specifications

- Wide operating temperature range: -40°C to 100°C.
- Maximum propagation delay $t_{PHL} / t_{PLH} = 350$ ns
- Maximum Pulse Width Distortion (PWD) = 250 ns.
- Propagation Delay Difference: Min. –100 ns, Max. 250 ns
- Wide Operating V_{CC} Range: 4.5 to 20 Volts
- + 20 kV/ μs minimum common mode rejection (CMR) at V_{CM} = 1000 V.

Applications

- IPM Interface Isolation
- Isolated IGBT/MOSFET Gate Drive
- AC and Brushless DC Motor Drives
- Industrial Inverters
- General Digital Isolation

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

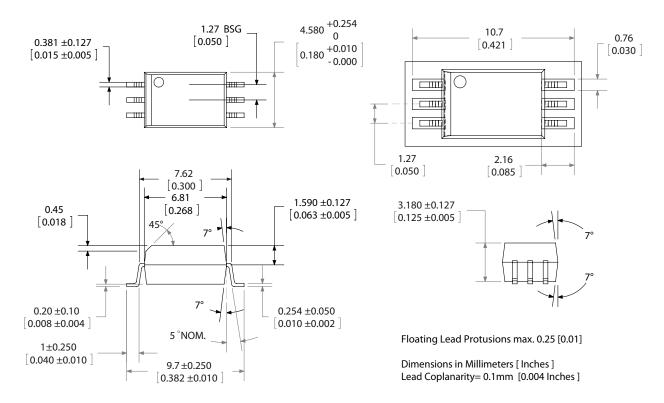
Ordering Information

ACPL-P480 is UL Recognized with 3750 Vrms for 1 minute and ACPL-W480 is UL Recognized with 5000 Vrms for 1 minute per UL1577. Both are approved under CSA Component Acceptance Notice #5, File CA 88324.

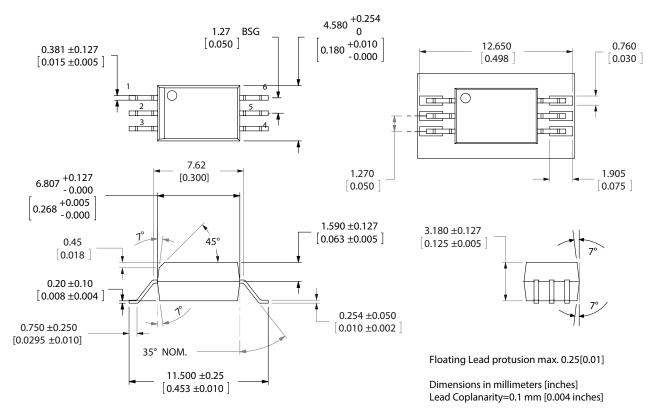
	Option				UL 1577		
Part number	RoHS Compliant	Package	Surface Mount	Tape & Reel	5000VRMS / 1 Minute Rating	IEC/EN/DIN EN 60747-5-5	Quantity
	-000E		Х				100 per tube
	-500E		Х	Х			1000 per reel
ACPL-P480	-020E	7mm Stretched	Х		Х		100 per reel
ACTL-7480	-520E	SUPERCIPED	Х	Х	Х		1000 per reel
	-060E		Х			Х	100 per tube
	-560E		Х	Х		Х	1000 per reel
	-000E		Х		Х		100 per tube
	-500E	8mm	Х	Х	Х		1000 per reel
ACPL-W480	-060E	Stretched SO-6	Х		Х	Х	100 per tube
	-560E		Х	Х	Х	Х	1000 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:


ACPL-P480-560E to order product of Stretched SO-6 package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Example 2:


ACPL-P480-000E to order product of Stretched SO-6 package in tube packaging and RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings ACPL-P480 Stretched SO-6 Package, 7 mm clearance

ACPL-W480 Stretched SO-6 Package, 8 mm clearance

Solder Reflow Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Regulatory Information

The ACPL-P480 and ACPL-W480 are approved by the following organizations:

IEC/EN/DIN EN 60747-5-5 (Option 60 only)

Approval under: IEC 60747-5-5 : 2007 EN 60747-5-5 : 2011 DIN EN 60747-5-5 (VDE 0884-5) : 2011-11

CSA

Approval under CSA Component Acceptance Notice #5, File CA 88324.

UL

ACPL-P480: Approval under UL 1577, component recognition program up to $V_{\rm ISO}=3750\,V_{\rm RMS}.$ File E55361.

ACPL-W480 and ACPL-P480 (option 020): Approval under UL 1577, component recognition program up to $V_{\rm ISO}$ = 5000 $V_{\rm RMS}.$ File E55361.

Table 1. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (Option 060)

		Charac	teristic	
Description	Symbol	ACPL-P480	ACPL-P480 ACPL-W480	
Installation classification per DIN VDE 0110/39, Table 1				
for rated mains voltage ≤ 300 Vrms		I - IV	I - IV	
for rated mains voltage \leq 450 Vrms		-	I - IV	
for rated mains voltage \leq 600 Vrms		I - III	I - IV	
Climatic Classification		55/1	00/21	
Pollution Degree (DIN VDE 0110/39)			2	
Maximum Working Insulation Voltage	V _{IORM}	891	1140	Vpeak
Input to Output Test Voltage, Method b* V _{IORM} x 1.875 = V _{PR} , 100% Production Test with tm = 1 sec, Partial discharge < 5 pC	V _{PR}	1670	2137	Vpeak
Input to Output Test Voltage, Method a* V _{IORM} x 1.6 = V _{PR} , Type and Sample Test with tm = 10 sec, Partial discharge < 5 pC	V _{PR}	1426	1824	Vpeak
Highest Allowable Overvoltage (Transient Overvoltage tini = 60 sec)	VIOTM	6000	8000	Vpeak
Safety-limiting values - maximum values allowed in the event of a failure.				
Case Temperature	Ts	1	75	°C
Input Current	I _{S,INPUT}	2	30	mA
Output Power	P _{S,OUTPUT}	6	00	mW
Insulation Pesistance at TS, VIO = 500 V	RS	>1	10 ⁹	Ω

* Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/ DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

Table 2. Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-P480	ACPL-W480	Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	7.0	8.0	mm	Measured from input terminals to output terminals shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	8.0	8.0	mm	Measured from input terminals to output terminals shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	1		0.08		Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Minimum Internal Tracking (Internal Creepage)		١	NA	mm	Measured from input terminals to output tereminals, along internal cavity.
Tracking Resistance (Comparative Tracking Index)	CTI	>`	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group			lla		Material Group (DIN VDE 0110, 1/89, Table 1)

Table 3. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	Ts	-55	125	°C	
Operating Temperature	T _A	-40	100	°C	
Average Input Current	I _{F(avg)}		10	mA	
Peak Transient Input Current (<1 μs pulse width, 300 pps) (<200 μs pulse width, < 1% duty cycle)	I _{F(tran)}		1.0 40	A mA	
Reverse Input Voltage	V _R		5	V	
Average Output Current	IO		25	mA	
Supply Voltage	V _{CC}	0	25		
Output Voltage	Vo	-0.5	25		
Total Package Power Dissipation	PT		210	mW	1

Table 4. Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Power Supply Voltage	V _{CC}	4.5	20	V	
Forward Input Current (ON)	I _{F(ON)}	6	10	mA	
Forward Input Voltage (OFF)	V _{F(OFF)}	-	0.8	V	
Operating Temperature	T _A	-40	100	°C	

Notes:

1. Derate total package power dissipation, P_T, linearly above 70°C free-air temperature at a rate of 4.5 mW/°C.

Table 5. Electrical Specifications

Over recommended operating conditions $T_A = -40$ °C to 100 °C, $V_{CC} = +4.5$ V to 20 V, $I_{F(ON)} = 6$ mA to 10 mA, $V_{F(OFF)} = 0$ V to 0.8 V, unless otherwise specified. All typicals at $T_A = 25$ °C.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Logic Low Output Voltage	V _{OL}			0.5	V	l _{OL} = 6.4 mA	1, 3, 9, 10	
Logic High Output Voltage ACPL-P480 ACPL-W480	V _{OH}	2.4 2.7 2.7	V _{CC} - 1.1		V	I _{OH} = -2.6 mA I _{OH} = -0.4 mA I _{OH} = -1.6 mA	2, 3, 7, 9, 10	
Threshold Input Current Low to High	I _{FLH}		2.2	5.5	mA			
Output Leakage Current	I _{ОНН}			100	μΑ	$V_{CC} = 5 V, I_F = 10 mA$		
$(V_{O} = V_{CC} + 0.5V)$				500	μΑ	$V_{CC} = 20 \text{ V}, I_F = 10 \text{mA}$		
Logic Low Supply Current	I _{CCL}		1.9	3.0	mA	V_{CC} = 5.5 V, V_{F} = 0 V, I_{O} = Open		
			2.0	3.0	mA	$V_{CC} = 20 \text{ V}, V_F = 0 \text{ V}, I_O = \text{Open}$		
Logic High Supply Current	I _{CCH}		1.5	2.5	mA	V _{CC} = 5.5 V, I _F = 10 mA, I _O = Open		
			1.6	2.5	mA	V _{CC} = 20 V, IF = 10 mA I _O = Open		
Logic Low Short Circuit	I _{OSL}	25			mA	$V_{O} = V_{CC} = 5.5 V, V_{F} = 0V$		1
Output Current		50			mA	$V_{O} = V_{CC} = 20 \text{ V}, V_{F} = 0 \text{ V}$		
Logic High Short Circuit	I _{OSH}			-25	mA	$V_{CC} = 5.5 \text{ V}, I_F = 6 \text{mA}, V_O = G \text{ND}$		1
Output Current				-50	mA	$V_{CC} = 20 \text{ V}, I_F = 6 \text{mA}, V_O = \text{GND}$		
Input Forward Voltage	V _F		1.5	1.7	V	$T_A = 25$ °C, $I_F = 6mA$	4	
				1.85	V	I _F =6mA		
Input Reverse Breakdown Voltage	BV _R	5			V	I _R = 10 μA		
Input Diode Temperature Coefficient	$\Delta V_F / \Delta T_A$		1.7		mV/°C	$I_F = 6 \text{ mA}$		
Input Capacitance	CIN		60		рF	$f = 1 MHz, V_F = 0 V$		2

Notes:

1. Duration of output short circuit time should not exceed 10 ms.

2. Input capacitance is measured between pin 1 and pin 3.

Table 6. Switching Specifications

Over recommended operating conditions $T_A = -40$ °C to 100 °C, $V_{CC} = +4.5$ V to 20 V, $I_{F(ON)} = 6$ mA to 10 mA, $V_{F(OFF)} = 0$ V to 0.8 V, unless otherwise specified. All typicals at $T_A = 25$ °C.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low Output Level	t _{PHL}		150	350	ns	With Peaking Capacitor	5,6	1
Propagation Delay Time to Logic High Output Level	t _{PLH}		110	350	ns	With Peaking Capacitor	5,6	1
Pulse Width Distortion	t _{PHL} - t _{PLH} = PWD			250	ns			2
Propagation Delay Difference Between Any 2 Parts	PDD	-100		250	ns			3
Output Rise Time (10-90%)	t _r		16		ns		5,8	
Output Fall Time (90-10%)	t _f		20	·	ns		5, 8	
Logic High Common Mode Transient Immunity	CM _H	20			kV/µs	$ V_{CM} = 1000 \text{ V}, I_F = 6.0 \text{ mA}, V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$	11	4
Logic Low Common Mode Transient Immunity	CML	20			kV/µs	$ V_{CM} = 1000 V, V_F = 0 V,$ $V_{CC} = 5 V, T_A = 25^{\circ}C$	11	4

Table 7. Package Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary	V _{ISO}	3750**			V _{rms}	RH < 50%, t = 1 min.		5,6
Withstand Voltage*		5000***				$T_A = 25^{\circ}C$		
Input-Output Resistance	R _{I-O}		10 ¹²			$V_{I-O} = 500 \text{ Vdc}$		5
Input-Output Capacitance	C _{I-O}		0.6			$f = 1 MHz, V_{I-O} = 0 Vdc$		5

* The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable).

** For all ACPL-P480 devices except Option 020

*** For ACPL-W480 and Option 020 of ACPL-P480)

Notes:

- 1. The t_{PLH} propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The t_{PHL} propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
- 2. Pulse Width Distortion (PWD) is defined as $\left|t_{PHL}$ $t_{PLH}\right|$ for any given device.
- 3. The difference between t_{PLH} and t_{PHL} between any two devices under the same test condition.
- CM_H is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, V₀ > 2.0 V. CM_L is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, V₀ < 0.8 V.
 Device considered a two-terminal device rate 1, 2 and 3 shorted together and pins 4, 5 and 6 chorted together.
- 5. Device considered a two-terminal device: pins 1, 2 and 3 shorted together and pins 4, 5 and 6 shorted together.
- 6. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage \geq 4500 V_{RMS} for one second (leakage detection current limit, I_{I-O} \leq 5 µA). ; each optocoupler with option 020 is proof tested by applying an insulation test voltage \geq 6000 V_{RMS} for 1 second (leakage detection current limit, I_{I-O} \leq 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable.
- 7. Use of a 0.1 μ F bypass capacitor connected between pins 4 and 6 is recommended.

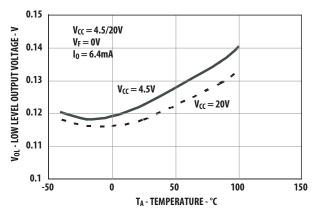


Figure 1. Typical Logic Low Output Voltage vs. Temperature

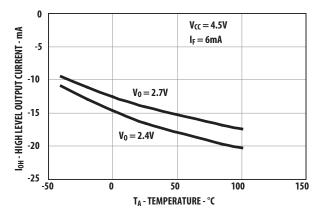


Figure 2. Typical Logic High Output Current vs. Temperature

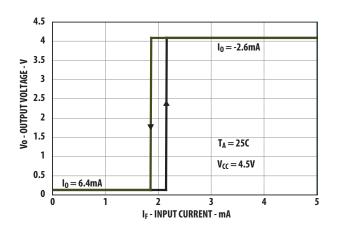


Figure 3. Typical Output Voltage vs. Forward Input Current

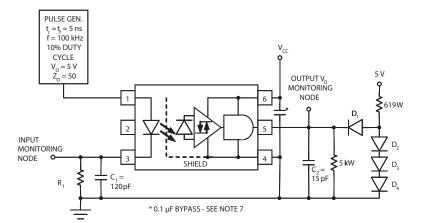
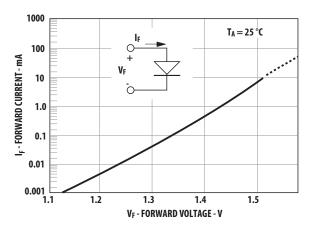
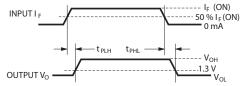



Figure 5. Circuit for t_{PLH} , t_{PHL} , t_r , t_f



THE PROBE AND JIG CAPACITANCES ARE INCLUDED IN C₁ AND C₂.

	-	=
R ₁	580 W	330 W
I _{F(ON)}	6 mA	10 mA

ALL DIODES ARE 1N916 OR 1N3064.

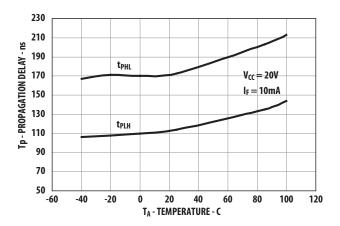


Figure 6. Typical Propagation Delays vs. Temperature.

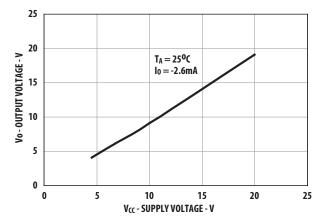


Figure 7. Typical Logic High Output Voltage vs. Supply Voltage

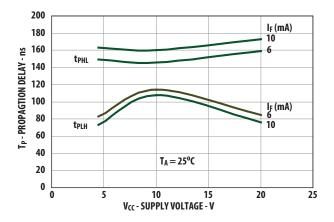


Figure 8. Typical Propagation Delay vs. Supply Voltage

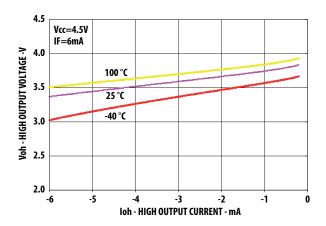


Figure 9. Voh vs Ioh Across Temperatures

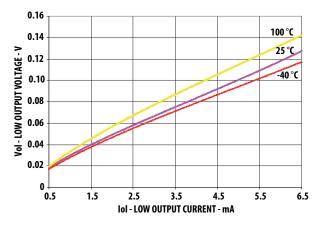


Figure 10. Vol vs Iol Across Temperatures

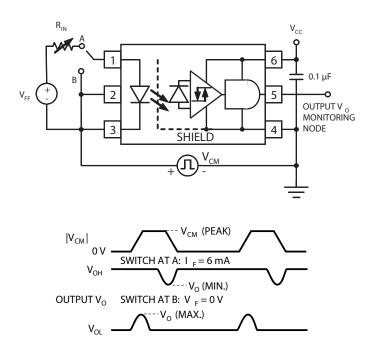


Figure 11. Test Circuit for Common Mode Transient Immunity and Typical Waveforms

For product information and a complete list of distributors, please go to our web site: www

www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2005-2012 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0646EN AV02-1305EN - December 21, 2012

