imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

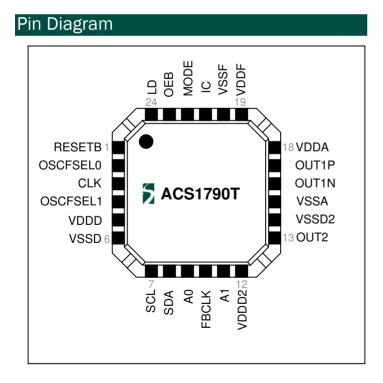
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FINAL DATASHEET


PLL Frequency Synthesizer with Integrated VCO

ADVANCED COMMUNICATIONS PRODUCT GROUP

Introduction

The ACS1790T is a high-performance, low phase noise, programmable frequency synthesizer with ultra-fine dynamic output frequency control. It can be used as a companion to a compatible ToPSync[™] device to generate outputs locked to an external reference source or standalone for standard frequency generation for common applications. The circuit includes an integrated VCO, loop filter, phase-and-frequency detector and output dividers. The default power-up mode is definable by pin settings and once operational the ACS1790T is fully-programmable via an I²C interface. The ACS1790T requires only a low-speed external clock input for operation.

When used in conjunction with a compatible ToPSync[®] device in a Synchronous Ethernet system the ACS1790T allows the Ethernet transmit clocks to be derived initially from the local reference oscillator and subsequently frequency-locked to an external reference source once the system is fully configured, simplifying system design and reducing component count and BOM cost.

Features

- Optimised for Synchronous Ethernet, SONET and SDH operation
- Meets RMS jitter requirements of Gigabit Ethernet, 10 Gigabit Ethernet and OC-48 / STM-16
- Default options for 25 MHz & 125 MHz or 25 MHz & 156.25 MHz outputs at reset
- High frequency LVPECL output: 10 MHz – 200 MHz, 1 ppb step
- Low frequency LVCMOS output: 2 kHz – 125 MHz 1.8V, 2.5V and 3.3V operation
- Very-low frequency feedback clock output for connection to ToPSync® or external PFD
- Tunable over +/- 500 ppm range without loss of lock
- Integrated VCO, PFD and loop filter
- 2.3 2.7 GHz VCO frequency
- Typical RMS jitter performance for target application masks: OC-48, STM-16 (ANSI T1.105.03 & ITU-T G.813) 0.56 ps (12 kHz - 20 MHz)
 1G Ethernet (IEEE 802.3-2008 38 & 39) 0.15 ps (637 kHz - 20 MHz)
 XAUI (IEEE 802.3-2008 Clause 47) 0.11 ps (1.875 MHz - 20 MHz)
 10G Ethernet (IEEE 802.3-2008 53 & 54) 0.29 ps (4 MHz - 80 MHz)
- Reference spurs: < -67 dBc
- 10, 12.8, 20 or 25 MHz input clock
- Operating voltage: 3.0 3.6V
- I²C -bus interface
- Four selectable slave addresses to allow multiple devices to be used with a single controlling master
- Lock detect output
- Pin and register output enable control
- Temperature range: -40 to 85C
- 4 x 4 mm QFN 24 package
- Pb-Free, Halogen free, RoHS/WEEE compliant product

ADVANCED COMMUNICATIONS PRODUCT GROUP

FINAL DATASHEET

Table of Contents

PIN DIAGRAM 1 FEATURES 1 BLOCK DAGRAM 5 PIN DESCRIPTION 6 DEVICE OPERATION 7 ThE COUPTOR DIVER BLOCK 7 The COUPTOR DIVER BLOCK 7 The COUPTOR DIVER BLOCK 8 THE COUPTOR STAGE 8 THE COUPTOR BLOCK 8 THE COUPTOR BLOCK 8 Reset 9 USING THE ACS1790T 9 HARDWARE DEVICE CONFIGURATION 9 Input Clock frequency selection 9 Input Clock frequency selection 10 PC Stave address selection 10 PC Stave address selection 10 PC Stave address selection 11 PC Register map 12 Register map 12 Register map 13 VOC OLIBRATION AND LOCK DETECTION 18 The OUT SLEW MATE CONTROL 19 OUT1 and OUT2 19 OUT1 and OUT2 19 OUT1 and OUT2 19 OUT1 and OUT2 21 MAXMUM RATINGS	INTRODUCTION	1
BLOCK DIAGRAM 5 PIN DESCRIPTION 6 DEVICE OPERATION 7 The VCO PLL BLOCK 7 The VCO PLL BLOCK 7 The OUTPOT STAGE 8 THE OUTPOT STACE 8 THE OUTPOT STACE 8 THE OUTPOT STACE 9 USING THE ACS1790T 9 HAROWARE DEVICE CONFIGURATION 9 Input clock frequency selection 9 Input clock frequency selection 10 Reset 11 I/C Flave address selection 10 I/C Stave address selection 10 I/C Read 11 I/C Read 12 Register Descriptions 12 OUTT UT ENABLE CONTROL AND SQUELCHING 19 OUTT 2 SUE-ATE AND VOLTAGE CONTROL 20 PEGLK 19 OUTT 2 SUE-ATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 OUTT 2 SUE-ATE AND VOLTAGE CO	PIN DIAGRAM	1
PIN DESCRIPTION 6 DEVICE OPERATION 7 The VCO PLL BLOCK 7 The OUTPUT DWIDER BLOCK 8 THE OUTPUT STARE 8 THE CONTROL BLOCK 8 Reset 9 USING THE ACS1790T 9 HARDWARE DEVICE CONFIGURATION 9 Input clock frequency selection 9 Default output frequency selection 10 I ² C slave address selection 10 I ² C slave address selection 10 I ² C Read 11 Register map 12 Register Descriptions 13 VCO CALIBRATION AND LOCK DETECTION 18 OUTT and OUT2 19 FRACTIONAL DWIDER DIFERING 18 OUTT and OUT2 19 OUT2 SLEW-RATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 MAXIMUM RATINGS 21 OPERATING CONDITIONS 22 REQUENTIONS INFORMATION 28 USING THE ACS1790T TIM A STANDALOR APPLICATION 28 USING THE ACS179OT TIM A STANDALOR APPLICATION 28 </td <td>FEATURES</td> <td>1</td>	FEATURES	1
PIN DESCRIPTION 6 DEVICE OPERATION 7 The VCO PLL BLOCK 7 The OUTPUT DWIDER BLOCK 8 THE OUTPUT STARE 8 THE CONTROL BLOCK 8 Reset 9 USING THE ACS1790T 9 HARDWARE DEVICE CONFIGURATION 9 Input clock frequency selection 9 Default output frequency selection 10 I ² C slave address selection 10 I ² C slave address selection 10 I ² C Read 11 Register map 12 Register Descriptions 13 VCO CALIBRATION AND LOCK DETECTION 18 OUTT and OUT2 19 FRACTIONAL DWIDER DIFERING 18 OUTT and OUT2 19 OUT2 SLEW-RATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 MAXIMUM RATINGS 21 OPERATING CONDITIONS 22 REQUENTIONS INFORMATION 28 USING THE ACS1790T TIM A STANDALOR APPLICATION 28 USING THE ACS179OT TIM A STANDALOR APPLICATION 28 </td <td>BLOCK DIAGRAM</td> <td>5</td>	BLOCK DIAGRAM	5
DEVICE OPERATION 7 THE VCO PLL BLOCK 7 THE OUTPUT DWIDER BLOCK 8 THE OUTPUT STARE 8 THE CONTROL BLOCK 8 Reset 9 USING THE ACS1790T 9 HARDWARE DEVICE CONFIGURATION 9 Input clock frequency selection 9 Default output frequency selection 10 I/2 stave address selection 10 I/2 stave address selection 10 I/2 read 11 Register Map 12 Register Desciptions 13 VCO CLIBRATION AND LOCK DETECTION 18 OUTUT ENABLE CONTROL AND SQUELCHING 19 OUTUT ENABLE CONTROL AND SQUELCHING 19 OUTUT AND OUTZ 19 OUTU 1 and OUTZ 19 OUTU 2 SLEW-RATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 MAXIMUM RATINGS 21 OPERATING CONDITION 22 USING THE ACS1790T WITH TOPSYNC 28 USING THE ACS179OT WITH TOPSYNC 28 USING THE ACS179OT WITH TOPSYNC 28	PIN DESCRIPTION	6
THE VCO PLL BLOCK 7 THE OUTPUT DWDER BLOCK. 8 THE OUTPUT STAGE. 8 THE CONTROL BLOCK 8 Reset 9 USING THE ACS1790T 9 HARDWARE DEVICE CONFIGURATION. 9 Default output frequency selection 9 Default output frequency selection 10 RCSISTER-BASED DEVICE CONFIGURATION 10 I'C Silver address selection 10 I'C Write 11 I'C Read 11 Register map 12 Register map 13 VCO CALIBRATION AND LOCK DETECTION 18 OutPut Fraue Controls and Squelching 19 OUT1 and OUT2 19 FECLK 19 OUT2 SLEW-RATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 DeFATING CONDITIONS 21 DEFATING CONDITIONS 21 DC CHARACTERISTICS 21 MAXIMUM RATINGS 21 OPERATING CONDITIONS 22 USING THE ACS1790T IN A STATIO APPLICATION 30 USING THE ACS		
THE OUTPUT DIVIDER BLOCK		
THE OUTPUT STAGE 8 THE CONTROL BLOCK 8 Reset 9 USING THE ACS1790T 9 HARDWARE DEVICE CONFIGURATION 9 Input clock frequency selection 10 PC slave address selection 10 I ² C Write 11 I ² C Read 13 VCO CALIBRATION AND LOCK DETECTION 18 FRACTIONAL DIVIER DITHERING 19 OUTPUT ENABLE CONTROL AND SQUELCHING 19 OUT1 and OUT2 19 FBCLK 19 OUT2 LEW-PATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 OPERATING CONDITI		
Reset 9 USING THE ACS1790T 99 HARDWARE DEVICE CONFIGURATION 9 Input clock frequency selection 9 Default output frequency selection 10 Resister PassED DEVICE CONFIGURATION 10 IPC slave address selection 10 IPC Read 11 IPC Read 11 Register map 12 Register map 12 Register Descriptions 13 VCO CALIBRATION AND LOCK DETECTION 18 FRACTIONAL DIVICEND DITHERING 18 OUTPUT ENABLE CONTROL AND SQUELCHING 19 OUT1 and OUT2 19 FBCLK 19 OUT2 SLEW-RATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 DOFERATING CONDITIONS 21 DC CHARACTERISTICS 22 RF CHARACTERISTICS 22 RF CHARACTERISTICS 24 APPLICATIONS INFORMATION 28 USING THE ACS1790T WITH TOPSYNC 28 USING THE ACS1790T WITH TOPSYNC 28 USING THE ACS1790T IN A STANDALONE APPLICATION		
USING THE AC\$1790T 9 HARDWARE DEVICE CONFIGURATION 9 Input clock frequency selection 9 Default output frequency selection 10 REGISTER-BASED DEVICE CONFIGURATION 10 IPC Stave address selection 10 IPC Krite 11 IPC Read 11 IPC Read 11 Register map 12 Register map 12 Register Descriptions 13 VCO CAUBRATION AND LOCK DETECTION 18 FRACTIONAL DIVIDER DITHERING 19 OUT1 and OUT2 19 FBCLK 19 OUT2 SLEW-RATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 MAXIMUM RATINGS 21 OPERATING CONDITIONS 21 OPERATING CONDITIONS 22 RF CHARACTERISTICS 24 APLICATIONS INFORMATION 28 USING THE ACS1790T WITH TOPSYNC 28 USING THE ACS1790T WITH TOPSYNC 28 USING THE ACS1790T WITH TOPSYNC 28 USING THE ACS1790T NITH A STANDALONE APPLICATION 30 <td>THE CONTROL BLOCK</td> <td>8</td>	THE CONTROL BLOCK	8
HARDWARE DEVICE CONFIGURATION 9 Input clock frequency selection 9 Default output frequency selection 10 Resister Assed Device CONFIGURATION 10 IPC virte 10 IPC Read 11 IPC Read 11 IPC Read 11 Register Descriptions 13 VCO CALIBRATION AND LOCK DETECTION 18 OUTPUT ENABLE CONTROL AND SQUELCHING 19 OUT1 and OUT2 19 FBCLK 19 OUT2 SLEW-RATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 MAXIMUM RATINGS 21 DOFERATIONS 21 DC CHARACTERISTICS 21 DC CHARACTERISTICS 21 DC CHARACTERISTICS 22 R FULCATIONS INFORMATION 28 USING THE ACS1790T WITH TOPSYNC 28 USING THE ACS1790T IN A STANDALONE APPLICATION 30	Reset	9
Input clock frequency selection9Default output frequency selection10RecistER-BASED DEVICE CONFIGURATION10IPC Write10IPC Write11IPC Read11Register map12Register Descriptions13VCO CALIBRATION AND LOCK DETECTION18FRACTIONAL DIVDER DIFFERING19OUT1 and OUT219OUT2 SLEW-RATE AND VOLTAGE CONTROL20ELECTRICAL SPECIFICATIONS21MAXIMUM RATINGS21OPERATING CONDITIONS21DC CHARACTERISTICS21DC CHARACTERISTICS22RF CHARACTERISTICS21DC CHARACTERISTICS22RF CHARACTERISTICS22RF CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION30USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T IN A STANDALONE APPLICATION30COKINGURATION FOR A PARTICULAR OUTPLIFREQUENCY31Programming for the OUT1 output31Programming for the OUT1 output35Programming to use both outputs37	USING THE ACS1790T	9
Default output frequency selection10Register-BASED DEVICE CONFIGURATION10I²C slave address selection10I²C Write11I²C Read11I²C Read11Register map12Register map13VCO calibration AND LOCK DETECTION18FRACTIONAL DIVIDER DITHERING18OUTU TENABLE CONTROL AND SQUELCHING19OUT1 and OUT219FBCLK19OUT2 SLEW-RATE AND VOLTAGE CONTROL20ELECTRICAL SPECIFICATIONS21MAXIMUM RATINGS21OPERATING CONDITIONS21DC CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION28USING THE ACS179OT WITH TOPSYNC28USING THE ACS179OT WITH TOPSYNC28USING THE ACS179OT IN A STANDALONE APPLICATION30USING THE ACS179OT IN A STANDALONE APPLICATION30Second USING THE		
Register-BASED DeVICE CONFIGURATION 10 I²C slave address selection 10 I²C Write 11 I²C Read 11 I²C Read 11 Register map 12 Register Descriptions 13 VCO CALIBRATION AND LOCK DETECTION 18 FRACTIONAL DIVIDER DITHERING 18 OUTPUT ENABLE CONTROL AND SQUELCHING 19 OUT1 and OUT2 19 OUT2 SLEW-RATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 MAXIMUM RATINGS 21 OPERATING CONDITIONS 21 DC CHARACTERISTICS 22 RF CHARACTERISTICS 22 RF CHARACTERISTICS 24 APPLICATIONS INFORMATION 28 USING THE ACS179OT WITH TOPSYNC 28 USING THE ACS179OT IN A STANDALONE APPLICATION 30 USING THE ACS179OT IN A ST		
I ² C slave address selection 10 I ² C Write 11 I ² C Read 11 Register map 12 Register Descriptions 13 VCO CALIBRATION AND LOCK DETECTION 18 FRACTIONAL DIVORE DITHERING 18 OUTPUT ENABLE CONTROL AND SQUELCHING 19 OUT1 and OUT2 19 FBCLK 19 OUT2 SLEW-RATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 MAXIMUM RATINGS 21 OPERATING CONDITIONS 21 OPERATING CONDITIONS 21 OPERATING CONDITIONS 21 OPERATING SINFORMATION 22 RF CHARACTERISTICS 22 RF CHARACTERISTICS 24 APPLICATIONS INFORMATION 28 USING THE ACS179OT WITH TOPSYNC 28 USING THE ACS179OT IN A STANDALONE APPLICATION 30 USING THE ACS179OT NA STANDALONE APPLICATION 30 USING THE ACS179OT IN A STANDALONE APPLICATION 30 USING THE ACS179OT IN A STANDALONE APPLICATION 30 USING THE ACS179OT IN A STANDALONE APPLICATION 3		
IPC Write 11 IPC Read 11 Register map 12 Register Descriptions 13 VCO CALIBRATION AND LOCK DETECTION 18 FRACTIONAL DIVIDER DITHERING 18 OUTPUT ENABLE CONTROL AND SQUELCHING 19 OUT1 and OUT2 19 FBCLK 19 OUT2 SLEW-RATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 MAXIMUM RATINGS 21 OPERATING CONDITIONS 21 DC CHARACTERISTICS 21 DC CHARACTERISTICS 21 DC CHARACTERISTICS 22 RF CHARACTERISTICS 22 RF CHARACTERISTICS 22 USING THE ACS1790T WITH TOPSYNC 28 USING THE ACS1790T WITH TOPSYNC 28 USING THE ACS1790T NA STANDALONE APPLICATION 30 USING THE ACS1790T WITH TOPSYNC 28		
IPC Read11Register map12Register Descriptions13VCO CALIBRATION AND LOCK DETECTION18FRACTIONAL DIVIDER DITHERING18OUTPUT ENABLE CONTROL AND SQUELCHING19OUT1 and OUT219PBCLK19OUT2 SLEW-RATE AND VOLTAGE CONTROL20ELECTRICAL SPECIFICATIONS21MAXIMUM RATINGS21OPERATING CONDITIONS21DC CHARACTERISTICS21DC CHARACTERISTICS22RF CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T N A STANDALONE APPLICATION30USING THE ACS1790T N A STANDALONE APPLICATION31Programming for the OUT1 output31Programming for the OUT2 output35Programming for the OUT2 output35Programming to use both outputs37		
Register map12Register Descriptions.13VCO CALIBRATION AND LOCK DETECTION18FRACTIONAL DIVIDER DITHERING.18OUTPUT ENABLE CONTROL AND SQUELCHING.19OUT1 and OUT2.19FBCLK19OUT2 SLEW-RATE AND VOLTAGE CONTROL20ELECTRICAL SPECIFICATIONS.21MAXIMUM RATINGS.21OPERATING CONDITIONS.21DC CHARACTERISTICS22RF CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION28USING THE ACS179OT WITH TOPSYNC28USING THE ACS179OT WITH TOPSYNC30CONFIGURATION NA STANDALONE APPLICATION30CONFIGURATION FOR APARTICULAR OUTPUT FREQUENCY31Programming for the OUT1 output31Programming for the OUT2 output35Programming to use both outputs37		
Register Descriptions 13 VCO caliBration and Lock DETECTION 18 Fractional Divider Dithering 18 OUTPUT ENABLE CONTROL AND SQUELCHING 19 OUT1 and OUT2 19 FBCLK 19 OUT2 SLEW-RATE AND VOLTAGE CONTROL 20 ELECTRICAL SPECIFICATIONS 21 MAXIMUM RATINGS 21 OPERATING CONDITIONS 21 DC CHARACTERISTICS 22 RF CHARACTERISTICS 22 RF CHARACTERISTICS 22 RF CHARACTERISTICS 24 APPLICATIONS INFORMATION 28 USING THE ACS1790T WITH TOPSYNC 28 USING THE ACS1790T IN A STANDALONE APPLICATION 30 CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY 31 Programming for the OUT1 output 31 Programming for the OUT2 output 35 Programming to use both outputs 37		
VCO CALIBRATION AND LOCK DETECTION18FRACTIONAL DIVIDER DITHERING18OUTPUT ENABLE CONTROL AND SQUELCHING19OUT1 and OUT219FBCLK19OUT2 SLEW-RATE AND VOLTAGE CONTROL20ELECTRICAL SPECIFICATIONS21MAXIMUM RATINGS21OPERATING CONDITIONS21DC CHARACTERISTICS22RF CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T IN A STANDALONE APPLICATION30CONFIGURATION FOR A PART OF A PHASE-LOCKED LOOP30CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY.31Programming for the OUT1 output.35Programming for the OUT2 output.35Programming to use both outputs37		
FRACTIONAL DIVIDER DITHERING.18OUTPUT ENABLE CONTROL AND SQUELCHING19OUT1 and OUT2.19FBCLK19OUT2 SLEW-RATE AND VOLTAGE CONTROL.20ELECTRICAL SPECIFICATIONS.21MAXIMUM RATINGS.21OPERATING CONDITIONS21DC CHARACTERISTICS.21DC CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION.28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T IN A STANDALONE APPLICATION30USING THE ACS1790T AS PART OF A PHASE-LOCKED LOOP.30CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY.31Programming for the OUT1 output.31Programming for the OUT2 output.35Programming to use both outputs37		
OUTPUT ENABLE CONTROL AND SQUELCHING19OUT1 and OUT219FBCLK19OUT2 SLEW-RATE AND VOLTAGE CONTROL20ELECTRICAL SPECIFICATIONS21MAXIMUM RATINGS21OPERATING CONDITIONS21DC CHARACTERISTICS21DC CHARACTERISTICS22RF CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T IN A STANDALONE APPLICATION30USING THE ACS1790T AS PART OF A PHASE-LOCKED LOOP30CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY31Programming for the OUT1 output31Programming for the OUT2 output35Programming to use both outputs37		
OUT1 and OUT219FBCLK19OUT2 SLEW-RATE AND VOLTAGE CONTROL20ELECTRICAL SPECIFICATIONS21MAXIMUM RATINGS21OPERATING CONDITIONS21DC CHARACTERISTICS21DC CHARACTERISTICS22RF CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T IN A STANDALONE APPLICATION30USING THE ACS1790T AS PART OF A PHASE-LOCKED LOOP30CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY31Programming for the OUT1 output31Programming for the OUT2 output35Programming to use both outputs37		
FBCLK19OUT2 SLEW-RATE AND VOLTAGE CONTROL20ELECTRICAL SPECIFICATIONS21MAXIMUM RATINGS21OPERATING CONDITIONS21DC CHARACTERISTICS21DC CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T IN A STANDALONE APPLICATION30USING THE ACS1790T IN A STANDALONE APPLICATION30Programming for the OUT1 output31Programming for the OUT1 output35Programming to use both outputs37	•	
ELECTRICAL SPECIFICATIONS21MAXIMUM RATINGS21OPERATING CONDITIONS21DC CHARACTERISTICS22RF CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T IN A STANDALONE APPLICATION30USING THE ACS1790T AS PART OF A PHASE-LOCKED LOOP30CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY31Programming for the OUT1 output31Programming for the OUT2 output35Programming to use both outputs37		
Maximum Ratings21OPERATING CONDITIONS21DC CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T IN A STANDALONE APPLICATION30USING THE ACS1790T A SPART OF A PHASE-LOCKED LOOP30CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY31Programming for the OUT1 output31Programming for the OUT2 output35Programming to use both outputs37	OUT2 SLEW-RATE AND VOLTAGE CONTROL	
OPERATING CONDITIONS21DC CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T IN A STANDALONE APPLICATION30USING THE ACS1790T AS PART OF A PHASE-LOCKED LOOP30CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY31Programming for the OUT1 output31Programming for the OUT2 output35Programming to use both outputs37	ELECTRICAL SPECIFICATIONS	
OPERATING CONDITIONS21DC CHARACTERISTICS22RF CHARACTERISTICS24APPLICATIONS INFORMATION28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T IN A STANDALONE APPLICATION30USING THE ACS1790T AS PART OF A PHASE-LOCKED LOOP30CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY31Programming for the OUT1 output31Programming for the OUT2 output35Programming to use both outputs37		21
RF CHARACTERISTICS24APPLICATIONS INFORMATION28USING THE ACS1790T WITH TOPSYNC28USING THE ACS1790T IN A STANDALONE APPLICATION30USING THE ACS1790T AS PART OF A PHASE-LOCKED LOOP.30CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY.31Programming for the OUT1 output31Programming for the OUT2 output35Programming to use both outputs37		
APPLICATIONS INFORMATION. 28 USING THE ACS1790T WITH TOPSYNC 28 USING THE ACS1790T IN A STANDALONE APPLICATION 30 USING THE ACS1790T AS PART OF A PHASE-LOCKED LOOP. 30 CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY. 31 Programming for the OUT1 output. 31 Programming for the OUT2 output. 35 Programming to use both outputs 37	DC CHARACTERISTICS	
USING THE ACS1790T WITH TOPSYNC 28 USING THE ACS1790T IN A STANDALONE APPLICATION 30 USING THE ACS1790T AS PART OF A PHASE-LOCKED LOOP. 30 CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY. 31 Programming for the OUT1 output 31 Programming for the OUT2 output 35 Programming to use both outputs 37	RF CHARACTERISTICS	24
USING THE ACS1790T IN A STANDALONE APPLICATION 30 USING THE ACS1790T AS PART OF A PHASE-LOCKED LOOP. 30 CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY. 31 Programming for the OUT1 output 31 Programming for the OUT2 output 35 Programming to use both outputs 37	APPLICATIONS INFORMATION	
USING THE ACS1790T AS PART OF A PHASE-LOCKED LOOP. 30 CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY. 31 Programming for the OUT1 output. 31 Programming for the OUT2 output. 35 Programming to use both outputs 37	USING THE ACS1790T WITH TOPSYNC	
CONFIGURATION FOR A PARTICULAR OUTPUT FREQUENCY. 31 Programming for the OUT1 output 31 Programming for the OUT2 output 35 Programming to use both outputs 37		
Programming for the OUT1 output		
Programming for the OUT2 output	•	
Programming to use both outputs		
Configuration for common output frequencies		

FINAL DATASHEET

SEMTECH

ADVANCED COMMUNICATIONS PRODUCT GROUP

DESIGN CONSIDERATIONS PCB placement	43 43
Output clock termination	43
Power supplies and filtering	
APPLICATION EXAMPLE	45
PACKAGING INFORMATION	46
REVISION STATUS/ HISTORY	47
DRDERING INFORMATION	48
DISCLAIMERS CONTACTS	48 48

List of Tables

Table 1 : ACS1790T Pin Description	6
Table 2 : Input Clock Frequency Selection	9
Table 3 : Default Output Frequency Selection	
Table 4 : I ² C Interface Slave Address Selection	
Table 5 : ACS1790T Register Map	
Table 6 : OUT1 and OUT2 Output Control	
Table 7 : FBCLK Output Control	
Table 8 : OUT2 Drive-Type Setting	
Table 9 : Absolute Maximum Ratings	
Table 10 : Operating Conditions	
Table 11 : DC Characteristics	
Table 12 : RF Characteristics	
Table 13 : I ² C Timing Specification	
Table 14 : OUT1 Output Division Ratios	
Table 15 : VCO PLL Prescaler Division Ratios	
Table 16 : VCO PLL Reference Frequencies	
Table 17 : Register Settings for 155.52 MHz Output	
Table 18 : OUT2 Output Division Ratios	
Table 19 : Register Settings for 10.24 MHz Output	
Table 20 : Register Settings for Ethernet (25MHz input)	
Table 21 : Feedback Clock Output Division Ratios	
Table 22 : Register Settings for Common Frequencies (Input clock 10 or 20 MHz)	
Table 23 : Register Settings for Common Frequencies (Input clock 12.8 MHz)	
Table 24 : Register Settings for Common Frequencies (Input clock 25 MHz)	
Table 25 : Ordering Information	

FINAL DATASHEET

ADVANCED COMMUNICATIONS PRODUCT GROUP

List of Figures

Figure 1 : ACS1790T Block Diagram	5
Figure 2 : ACS1790T VC0 PLL	7
Figure 3 : ACS1790T Output Divider Structure	8
Figure 4 : I ² C Write Operation	
Figure 5 : I ² C Read Operation	
Figure 6 : I ² C Start and Stop Timing	
Figure 7 : I ² C Data Timing	25
Figure 8 : OUT1 Phase Noise (fin = 12.8 MHz, fout = 155.52 MHz)	
Figure 9 : OUT1 Phase Noise (fin = 12.8 MHz, fout = 125 MHz)	
Figure 10 : OUT1 Phase Noise (f _{in} = 12.8 MHz, f _{out} = 156.25 MHz)	
Figure 11 : OUT2 Phase Noise (f _{in} = 12.8 MHz, f _{out} = 25 MHz)	
Figure 12 : ToPSync and ACS1790T Operation with Separate Oscillators	
Figure 13 : ToPSync and ACS1790T Operation with a Shared Oscillator	
Figure 14 : ToPSync and ACS1790T Operation with a Shared VCXO	
Figure 15 : Standalone ACS1790T Operation	
Figure 16 : Using the ACS1790T as Part of a PLL	
Figure 17 : Simplified View of OUT1 Output Path	31
Figure 18 : Simplified View of OUT2 Output Path	35
Figure 19 : Simplified View of Both Output Paths	
Figure 20 : FBCLK Output Path	
Figure 21 : Recommended LVPECL DC Termination	
Figure 22 : Recommended LVPECL AC Termination	
Figure 23 : Recommended Power Supply Filtering	
Figure 24 : Example Synchronous Ethernet Application	
Figure 25 : QFN-24 Physical Package Detail	
Figure 26 : Recommended PCB Land Pattern	

ADVANCED COMMUNICATIONS PRODUCT GROUP

FINAL DATASHEET

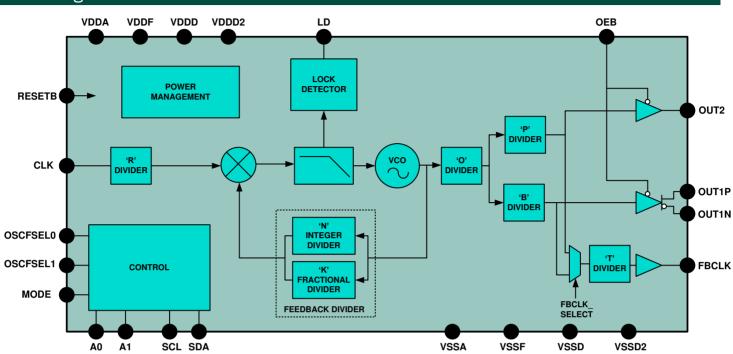


Figure 1 : ACS1790T Block Diagram

FINAL DATASHEET

ADVANCED COMMUNICATIONS PRODUCT GROUP

Pin Description

The ACS1790T uses a QFN 24 package with 24 device pins and a center thermal pad that is connected to the device ground. Table 1 shows the pin definitions.

Number	Name	Туре	Description
1	RESETB	I	Active Low Reset
2	OSCFSELO	PD	Input Clock Frequency Selection
3	CLK	1	Input Clock
4	OSCFSEL1	[PD	Input Clock Frequency Selection
5	VDDD	Power	Digital Power Supply for Internal Logic and FBCLK Output
6	VSSD	Ground	Digital Ground for Internal Logic and FBCLK Output
7	SCL	1	I ² C Clock (requires external pull up resistor)
8	SDA	I/O	I ² C Data (requires external pull up resistor)
9	AO	IPD	I ² C Address Selection
10	FBCLK	0	Feedback Clock to ToPSync (LVCMOS)
11	A1	[PD	I ² C Address Selection
12	VDDD2	Power	Digital Power Supply for OUT2 Clock Output
13	OUT2	0	Single-ended Output Clock (LVCMOS)
14	VSSD2	Power	Digital Ground for OUT2 Clock Output
15	VSSA	Ground	Analogue Ground
16	OUT1N	0	Differential Output Clock (LVPECL)
17	OUT1P	0	Differential Output Clock (LVPECL)
18	VDDA	Power	Analogue Supply
19	VDDF	Power	RF Supply
20	VSSF	Ground	RF Ground
21	IC	-	Internally connected pin – do not connect
22	MODE	IPD	Initial Mode Select
23	OEB	1	Output Enable
24	LD	0	Lock Detect (Open Drain)
25	GND	Ground	Center Body Contact. Connect to ground

Table 1 : ACS1790T Pin Description

I/O – Bidirectional pin

IPD – Input with internal pull-down

Device Operation

Figure 1 shows the internal architecture of the ACS1790T. The ACS1790T can be divided into a number of main blocks – the voltage-controlled oscillator phase-locked-loop (VCO PLL) block, the output divider block, the output stage and the control block.

The VCO PLL block

The VCO PLL block is a fully self-contained phase-locked loop that generates an output frequency of between 2.3 and 2.7 GHz that is phase-locked to the clock input. This block is shown in Figure 2.

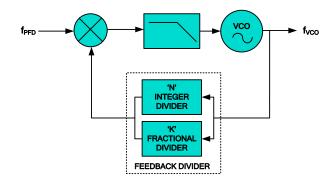


Figure 2 : ACS1790T VCO PLL

The VCO frequency, f_{VCO} is determined by a divider in the feedback path that supports fractional division ratios and that locks the VCO output to a multiple of the reference frequency, f_{PFD} , which is the input frequency after passing through the R-divider shown in Figure 1. For input frequencies of 10 and 12.8 MHz the R-divider is in bypass mode, making f_{PFD} equal to 10 or 12.8 MHz respectively. For input frequencies of 20 and 25 MHz the R-divider is set to divide by two, making f_{PFD} equal to 10 or 12.5 MHz respectively. The high resolution of the fractional feedback divider provides ultra-fine control of the VCO output. Any frequency within the VCO operating range can be achieved with an accuracy of better than 1 ppb. The design of the VCO and the corresponding phase-and-frequency detector ensure that the output has very low jitter and is not adversely affected by noise and jitter on the input clock that falls above the ACS179OT's PLL bandwidth.

Locking of the VCO to an arbitrary frequency, including immediately after reset, is a two stage process. Firstly, the ACS1790T performs a calibration operation to select the optimal VCO operating point for the selected frequency. When this operation is complete the ACS1790T transitions to a "fine-lock" state in which the VCO output frequency is tuned until it is phase-locked to the reference clock. Once in the fine-lock state, the output frequency of the ACS1790T can be adjusted by up to +/- 500 ppm from the frequency at which the calibration operation was performed without requiring further calibration. However, if the frequency is moved outside of this range then a new calibration cycle must be initiated. At reset the VCO frequency is set to 2.5 GHz. Therefore, once calibrated, the actual output frequency can be set to any value between 2.49875 GHz and 2.50125 GHz without needing to reinitiate the calibration process. This +/- 500 ppm adjustment range should be adequate for any application in which the output frequency is set and subsequently fine-tuned. Refer to the *Applications Information* section for further details of setting the VCO output frequency and initiating recalibration.

The VCO PLL block provides a lock detect signal, LD, to indicate when lock has been achieved after a recalibration cycle. This is an open-drain pin that is pulled low until lock is established, at which time it is released and pulled high by an external pull-up resistor. This allows the LD pins of multiple ACS1790T devices to be connected together to provide a single overall lock indication.

FINAL DATASHEET

The output divider block

The output of the VCO PLL block drives the divider block that consists of a number of cascaded dividers, and a multiplexer, as shown in Figure 3.

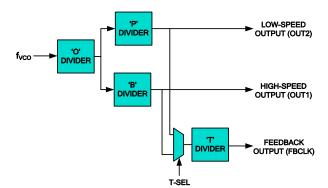
Figure 3 : ACS1790T Output Divider Structure

The O-divider is a shared prescaler whereas the B- and P-dividers are specific to the OUT1 and OUT2 outputs respectively. The Tdivider further divides down either the OUT1 or OUT2 output to generate the feedback clock that is used when the ACS1790T forms the controllable oscillator portion of an external phase-locked loop, such as when the ACS1790T is used in conjunction with a suitable ToPSync device.

The O, P, B and T-dividers are individually programmable, and together with the frequency of the VCO, determine the ACS1790T output frequencies. Additionally, the P and B-dividers can be individually disabled in the case that only a single output is being used to reduce power consumption and device noise. The T-divider, which is responsible for generating the low-speed feedback output, FBCLK, can be driven from the output of either the P or B-divider through the multiplexer shown in Figure 3.

Refer to the Using the ACS1790T section for further information on the output dividers.

The output stage


The ACS1790T provides a total of three clock outputs – a high-speed LVPECL output, OUT1; a low-speed LVCMOS output, OUT2 and; a low-speed LVCMOS feedback clock, FBCLK.

The OUT2 output features a separate power supply pin for the output buffer, allowing operation at 1.8V, 2.5V or 3.3V. There is also a slew-rate limiting option on the OUT2 output to slow the edge-rate of the output clock. The FBCLK output operates at a fixed 3.3V level.

An active-low output enable signal, OEB, is provided to disable the OUT1 and OUT2 outputs, and these outputs can also be disabled under software control.

The control block

The control block is responsible for control of the other parts of the ACS1790T and includes a set of registers accessible to an external device through a standard I²C interface. These registers allow configuration of the VCO PLL, output dividers and output stage, as well as monitoring of the ACS1790T's status. The registers are fully documented in the section entitled *Register-based Device Configuration*.

FINAL DATASHEET

Reset

The control block is also responsible for handling device reset. The ACS1790T includes a power monitor to reset the device automatically at power-up, and an external, active-low, reset pin, RESETB.

During reset, all the registers are reset to their default values, the I²C interface is reset and the clock outputs are held inactive. Immediately after reset, the registers are loaded with default values dependent on the state of the MODE and OSCFSEL[1:0] pins (see the section entitled *Hardware Device Configuration*) to enable generation of frequencies for 1G or 10G Ethernet designs. The VCO will automatically enter a calibration cycle during which the lock-detect pin, LD, is driven low. Once the calibration cycle is complete the LD pin is released and the outputs are activated (unless disabled). The ACS1790T is now fully functional and can be programmed under software control.

Using the ACS1790T

There are two methods of programming the ACS1790T. The initial operating mode is determined by the state of various device pins that are sampled at power-up and reset. Subsequent control, and status monitoring, is provided through a set of registers accessible to an external microprocessor through an I²C-compatible interface.

Hardware device configuration

There are three device pins that determine the initial operating state at power-up and reset – OSCFSEL0, OSCFSEL1 and MODE.

The state of these pins is sampled during reset and the pins have internal pull-down mechanisms to ensure that valid inputs are sensed even if the pin is left floating. In a typical application these configuration pins would be connected to a static level, either by tying them directly to ground or 3.3V as appropriate, or connecting them to ground or 3.3V through a pull-up/pull-down resistor. The presence of the internal pull-down means that care needs to be taken when using an external pull-up resistor to ensure that the voltage at the pin exceeds the minimum $V_{\rm H}$ threshold. A single 4.7Kohm resistor per pin, or a 1Kohm resistor shared between up to three pins, is recommended to ensure this requirement is met.

Should dynamic control of the hardware configuration pins be required then they can be actively driven from logic. However, since the state of these pins is only sampled at reset, it is necessary to reset the ACS1790T, by asserting RESETB, whenever the state of the configuration pins is changed.

Input clock frequency selection

The two OSCFSEL pins determine the frequency of the ACS1790T's input clock. Table 2 shows the acceptable frequencies.

	Table 2 . Input Gock Trequency Selection								
OSCFSEL1	OSCFSELO	Input Frequency of CLK							
0	0	20 MHz							
0	1	10 MHz							
1	0	12.8 MHz							
1	1	25 MHz							

Table 2 : Input Clock Frequency Selection

The 10, 12.8 and 20 MHz options correspond to the supported reference clock frequencies of the ToPSync family allowing a single oscillator and OSCFSEL setting to be shared between the two parts when the ACS1790T is used as a companion to a ToPSync device. The 25 MHz input frequency is not supported by the ToPSync but is a frequency commonly found in Ethernet applications and easily generated using very-low cost oscillators.

Default output frequency selection

The MODE pin determines the initial output frequencies from the ACS1790T as shown in Table 3.

MODE	OUT1	OUT2	Typical Application
0	125 MHz	25 MHz	Gigabit Ethernet
1	156.25 MHz	25 MHz	10 Gigabit Ethernet

Table 3 : Default Output Frequency Selection

When the ACS1790T is used in a Synchronous Ethernet application the MODE pin will typically be set to generate the appropriate output frequencies for the desired Ethernet speed. This allows the ACS1790T's outputs to provide clocks to the Ethernet circuitry immediately after reset prior to any additional configuration being performed.

When the ACS1790T is used for an application other than Synchronous Ethernet, for example as a Sonet clock generator, it is unlikely that either setting of the MODE pin will provide the desired output frequency. In this case, the MODE pin setting is arbitrary and the ACS1790T output frequency must be set via the I²C interface, either from a microprocessor or a companion ToPSync, prior to the output clocks being used.

Register-based device configuration

The ACS1790T incorporates eleven user-accessible registers accessed by a microprocessor or companion ToPSync through an industry-standard I²C interface. This section documents these registers and the method of accessing them. Since the I²C bus is a widely-adopted standard, non-ACS1790T specific details, such as the general I²C protocol, are not included here. For this information refer to the I²C specification, which can be obtained from NXP Semiconductors.

The ACS1790T I²C interface meets the requirements of an F/S-mode I²C device as defined in the I²C specification. The ACS1790T is able to complete register accesses faster than the I²C bus and therefore cycle-stretching is unnecessary and SCL is an input only to the ACS1790T. For full electrical and timing characteristics of the I²C interface refer to the *Electrical Specifications* section.

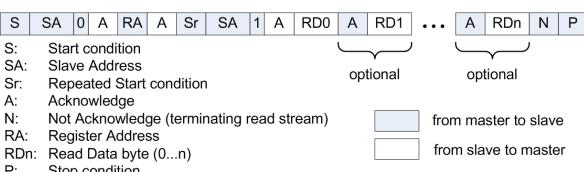
I²C slave address selection

The ACS1790T provides two address selection pins, A0 and A1, to allow one of four different I²C slave addresses to be selected as shown in Table 4. This allows a single device, such as a ToPSync, to control up to four associated ACS1790T devices.

14									
A1	AO	I ² C Slave Address (0x0)							
0	0	C0 (b'1100 000x)							
0	1	C2 (b'1100 001x)							
1	0	C4 (b'1100 010x)							
1	1	C6 (b'1100 011x)							

The AO and A1 address pins should be connected to static levels on the PCB – either directly to power or ground or through 4.7K-ohm, or lower, resistors. The state of these pins should not be changed during operation.

P: Stop condition



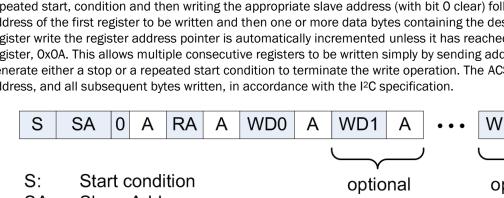
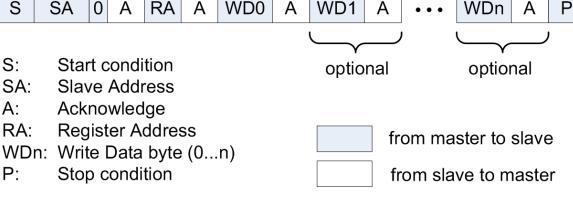

Page 11

Figure 4 : I²C Write Operation

I²C Read

Figure 5 shows the process used to read one or more registers. It starts off in the same way as a register write operation, with the host writing the slave address (with bit 0 clear) followed by the address of the register to access. However, the host must then issue a repeated start condition, or optionally a stop followed by a start, followed by a write of the slave address with bit 0 set to initiate a read operation. The host can then read consecutive registers as required until generating a final stop condition. As for write operations, the auto-increment of the address stops at the last register, allowing this register to be polled with repeated reads without needing to re-write the register address. In accordance with the I²C specification, the host must acknowledge receipt of each byte read, by driving SDA low during the ninth bit time of the byte, except for the last byte that must not be acknowledged (by allowing SDA to float). This signals the ACS1790T to not drive SDA during the next bit time so that the host can generate the stop condition.



ADVANCED COMMUNICATIONS PRODUCT GROUP

I²C Write

Figure 4 shows the process used to write one or more registers. The operation is initiated by the host generating a start, or repeated start, condition and then writing the appropriate slave address (with bit 0 clear) followed immediately by the eight bit address of the first register to be written and then one or more data bytes containing the desired register contents. After each register write the register address pointer is automatically incremented unless it has reached the address of the highest register, 0x0A. This allows multiple consecutive registers to be written simply by sending additional data bytes. The host must generate either a stop or a repeated start condition to terminate the write operation. The ACS1790T acknowledges the slave address, and all subsequent bytes written, in accordance with the I²C specification.

FINAL DATASHEET

ACS1790T

Register map

Table 5 shows the ACS1790T register map.

	ഗ	ц.		Bit significance						
Register name	Address	Default	7 (MSB)	6	5	4	3	2	1	0 (LSB)
reg_status	00	*		mode	oscfsel1	oscfselO	a0	al	oeb	lock
reg_output	01	6C		fbclk_	out1/2_	fbclk_	out1_	out2_	out2_	out2_
				auto_	auto_	enable	enable	enable	slew-	drive
				squelch	squelch				rate	
reg_n_div	02	*		integer portion of VCO feedback divider						
reg_k_div_hi	03	*		bits [2	3:16] of fra	ctional por	tion of VCC) feedback	(divider	
reg_k_div_med	04	00		k	oits [15:8] o	of fractional	portion of	VCO feed	back divide	er
reg_k_div_lo	05	00		k	oits [7:0] of	fractional p	ortion of N	/CO feedba	ack divider	r
reg_o_div	06	*					l	prescaler o	division rat	tio
reg_b_div	07	*					<u> </u>	out	1 division	ratio
reg_t_div	08	00	fbclk_					facedbook	-lividor rot	
			select					feedback	ulviuer rau	10
reg_p_div	09	*		1			out	2 division i	ratio	
reg_vco	OA	01								vco_ calibrate
reg_dither	1B	*	(pres	serve)	dither			(preserve))	

Table 5 : ACS1790T Register Map

Address and default values are in hexadecimal

* indicates that the default value of this register is determined by the state of the hardware configuration pins at reset

Other register addresses are reserved for factory test purposes. For correct operation undocumented addresses must not be read or written.

FINAL DATASHEET

Register Descriptions

Status Register

	S	Software name	Address	s (0x0)	Access	Defaul	t value	
		reg_status	00 Read-only			0***	0*** ***0	
Desci	ription Statu	s register						
Bit	Bit name	Bit description		Value	Bit settings		Reset	
7	-	not used		-	-		0	
6	mode	Indicates the state of the MODE	pin as	0	MODE is low (gigabit Ethernet	mode)	*	
		sampled at power-up or last rese	t	1	MODE is high (10-gigabit Ethe	ernet mode)		
5	oscfsel1	Indicates the state of the OSCFSI	EL1 pin	0	OSCFSEL1 is low		*	
		as sampled at power-up or last re	eset	1	OSCFSEL1 is high			
4	oscfsel0	Indicates the state of the OSCFSI	ELO pin	0	OSCFSELO is low		*	
		as sampled at power-up or last re	eset	1	OSCFSEL0 is high			
3	a0	Indicates the state of the A0 I ² C a	address	0	A0 is low		*	
		pin as sampled at power-up or la	st reset	1	AO is high			
2	al	Indicates the state of the A1 I ² C a	address	0	A1 is low		*	
		pin as sampled at power-up or la	st reset	1	A1 is high			
1	oeb	Indicated the current state of the	output	0	OEB is low (outputs are enable	ed)	*	
		enable pin		1	OEB is high (outputs are disat	oled)		
0	lock	VCO PLL lock status		0	VCO PLL is not locked		0	
				1	VCO PLL is locked			

Output control register

	S	oftware name	Address	s (0x0)	Access	Default	value
		reg_output	01	1	Read-write	0110	1100
Desci	ription Outpu	t control register					
Bit	Bit name	Bit description		Value	Bit settings		Reset
7	-	not used		-	-		0
6	fbclk_auto_ squelch	Controls whether the feedback cl output is deactivated (held low) v VCO PLL is out not locked		0 1	FBCLK toggling when VCO PLL r FBCLK low when VCO PLL not lo	1	
5	out1/2_ auto_ squelch	Controls whether the OUT1 and OUT2 clock outputs are deactivated (held low) when the VCO PLL is out not locked		0 1	OUT1/2 toggling when VCO PLL OUT1/2 low when VCO PLL not I		1
4	fbclk_ enable	Controls whether the feedback cl output is enabled	ock	0 1	FBCLK is held low FBCLK is driven by output of T-d	livider	0

FINAL DATASHEET

ADVANCED COMMUNICATIONS PRODUCT GROUP

3	out1_	Controls whether the OUT1 clock output is enabled	0	OUT1 is held low	1
	enable		1	OUT1 is driven by output of B-divider	
2	out2_	Controls whether the OUT2 clock output	0	OUT2 is held low	1
	enable	is enabled	1	OUT2 is driven by output of P-divider	
1	out2_slew_	Controls the OUT2 pin slew rate	0	Fast OUT2 edge rate	0
	rate		1	Slow OUT2 edge rate	
0	out2_	Controls the OUT2 pin drive strength	0	Low OUT2 drive (2.5V and 3.3V)	0
	drive		1	High OUT2 drive (1.8V)	

VCO PLL feedback divider registers

	Software name			(0x0)	Access	Default	value
	reg_n_div				Read-write	****	****
Descr	iption VCO P	LL feedback divider (integer portio	n)				
Bit	Bit name	Bit description		Value	Bit settings		Reset
[7:0]	n_div[7:0]	Holds the integer portion of the V feedback divider – 67 For correct operation, division rat result in the VCO frequency being outside the range 2.3 – 2.7 GHz i not be programmed	ios that { must	0x00 0x01 : 0xF7 0xF8	Integer division ratio = 67 Integer division ratio = 68 : Integer division ratio = 314 Integer division ratio = 315 (Do not program values 0xF9- 0xF	F)	

		Software name	Address (0x0)	Access	Default value
		reg_k_div_hi	03	Read-write	**** ****
Descr	iption Bits	[23:16] of the VCO PLL feedback div	vider (fractional pai	rt)	•
Bit	Bit name	Bit description	Value	Bit settings	Reset
[7:0]	k_div [23:16]	Bits [23:16] of the fractional part VCO PLL feedback divider * 2 ²⁴ (Bit 23 corresponds to a value of			

		Software name	Address (0x0)	Access	Default value
reg_k_div_med			04	Read-write	0000 0000
Descr	iption Bi	s [15:8] of the VCO PLL feedback d	ivider (fractional part)		•
Bit	Bit nam	e Bit description	Value	Bit settings	Reset
[7:0]	k_div [15:8]	Bits [15:8] of the fractional pa VCO PLL feedback divider * 2 ² (Bit 15 corresponds to a value	24		

ADVANCED COMMUNICATIONS PRODUCT GROUP

FINAL DATASHEET

	S	oftware name	Address (0x0)	Access	Default value
	reg_k_div_lo			Read-write	0000 0000
Descri	iption Bits []	7:0] of the VCO PLL feedback divide	er (fractional part)		
Bit	Bit name	Bit description	Value	Bit settings	Reset
[7:0]	k_div [7:0]	Bits [7:0] of the fractional part of VCO PLL feedback divider $* 2^{24}$ (Bit O corresponds to a value of 2 A write to this register forces the PLL feedback divider to by update the values programmed into the	2 ⁻²⁴) VCO ed with		

Output divider control registers

	S	oftware name	Address	s (0x0)	Access	Default value
		reg_o_div	06	6	Read-write	0000 ****
Descr	iption The O	-divider (prescaler) division ratio				
Bit	Bit name	Bit description		Value	Bit settings	Reset
[7:4]	-	not used		-	-	0000
[3:0]	o_div	Sets the division ratio of the O-div	vider,	0000	Prescaler divides by 4	****
	[3:0] which is the VCO PLL prescaler sh		0001	Prescaler divides by 6		
		between the OUT1 and OUT2 out	puts	0010	Prescaler divides by 8	
				0011	Prescaler divides by 10	
				0100	Prescaler divides by 12	
				0101	Prescaler divides by 14	
				0110	Prescaler divides by 16	
				0111	Prescaler divides by 18	
				1000	Prescaler divides by 20	
				1001	Prescaler divides by 22	
				1010	Prescaler divides by 24	
				1011	Prescaler divides by 26	
				1100	Prescaler divides by 28	
				1101	Prescaler divides by 30	
				1110	Do not use	
				1111	Do not use	

FINAL DATASHEET

ACS1790T

	S	oftware name	Address	s (0x0)	Access	Default value
	reg_b_div		0	7	Read-write	0000 0***
Descr	iption The B	-divider (OUT1) division ratio				
Bit	Bit name	Bit description		Value	Bit settings	Reset
[7:3]	-	not used		-	-	00000
[2:0]	b_div	Sets the division ratio of the B-div	,	000	Disable B-divider (OUT1 is held low	v) ***
	[2:0]	which is used to drive the OUT1 of	output	001	Bypass divider	
				010	Divide by 2	
				011	Divide by 4	
				100	Divide by 8	
				101	Divide by 16	
				110	Do not use	
				111	Do not use	

	,	Software name	Address (0x0)	Access	Default	value
	reg_t_div			Read-write	0000	0000
Descr	iption The	-divider (FBCLK) division ratio				
Bit	Bit name	Bit description	Value	Bit settings		Reset
7	fbclk_ select	T-divider clock source select	0	The T-divider is driven with th frequency	e OUT1 clock	0
			1	The T-divider is driven with th frequency	e OUT2 clock	
[6:4]	-	not used	-	-		000
[3:0]	t_div	Sets the division ratio of the T-div	,	T-divider is disabled (FBCLK i	s held low)	0000
	[2:0] which divides either the OUT1 or OU output frequency to generate the Fi	0001	Bypass divider			
		output output	BCLK 0010	Divide by 2		
			0011	Divide by 4		
			0100	Divide by 8		
			0101	Divide by 16		
			0110	Divide by 32		
			0111	Divide by 64		
			1000	Divide by 128		
			1001	Divide by 256		
			1010	Divide by 512		
			1011	Divide by 1024		
			1100	Divide by 2048		
			1101	Divide by 4096		
			1110	Divide by 8192		
			1111	Divide by 16384		

FINAL DATASHEET

	S	Software name	Addres	ss (0x0)	Access	Default	value
		reg_p_div	()9	Read-write	000*	****
Descr	iption The P	divider (OUT1) division ratio					
Bit	Bit name	Bit description		Value	Bit settings		Reset
[7:5]	-	not used		-	-		000
[4:0]	p_div	Sets the division ratio of the P-div	vider,	00000	Disable P-divider (OUT2 is held lo	w)	*****
	[4:0]	which is used to drive the OUT2 of	output	00001	Divide by 2		
				00010	Divide by 4		
				00011	Divide by 5		
				00100	Divide by 8		
				00101	Divide by 10		
				00110	Divide by 16		
				00111	Divide by 25		
				01000	Divide by 32		
				01001	Divide by 64		
				01010	Divide by 128		
				01011	Divide by 256		
				01100	Divide by 512		
				01101	Divide by 1024		
				01110	Divide by 2048		
				01111	Divide by 4096		
				10000	Divide by 8192		
				10001	Divide by 16384		
				10010	Divide by 32768		
				10011	Divide by 65536		
				10100			
				:	Do not use values 10100 - 1111	1	
				11111			

VCO calibration request register

	Software name			Access	Default value	
		reg_vco	OA Read-write		0000 0001	
Descr	iption Contr	ols the VCO calibration process				
Bit	Bit name	Bit description	Value	Bit settings	Reset	
[7:1]	-	not used	-	-	0	
0	vco_ calibrate	Setting this bit forces the VCO to recalibrate to its optimum operat point after a large frequency cha (Bit is cleared automatically)	ing	No action (write) / Calibration complete (read) Force calibration (write) / Calibration in process (read)	1	

ADVANCED COMMUNICATIONS PRODUCT GROUP

FINAL DATASHEET

Software name reg_dither		Address (0x0)	Access Def	Default value	
		1B	Read-write **		
Descri	iption Statu	s register			
Bit	Bit name	Bit description	Value	Bit settings	Reset
[7:6]	-	Reserved ¹	-	-	*
5	dither	Enable fractional divider dithering	0	K-divider value is used as programmed	0
			1	K-divider value is extended with one additional fractional bit forced to 1	
[4:0]	-	Reserved ¹	-	-	*

VCO calibration and lock detection

The VCO can generate any frequency between 2.3 and 2.7 GHz, with an ultra-fine resolution of less than 1 ppb. However, locking to an arbitrary frequency requires the VCO to be calibrated to select its optimal operating point. The VCO calibration process is initiated automatically at power-up or reset to set the VCO to its default frequency of 2.5 GHz, and can be retriggered at any time by writing a '1' to the *vco_calibrate* bit (bit 0 of *reg_vco*). This bit will remain set while the calibration process is executed and will be automatically cleared once it is complete and the VCO PLL is locked.

Once the VCO PLL has been calibrated for a given frequency, the actual frequency can be adjusted by up to 500 ppm either side of the original frequency without needing to reinitiate a calibration cycle. However, if it is desired to change the output frequency by more than this amount then a recalibration cycle must be initiated once the new frequency has been programmed.

The active low, open-drain, lock-detect pin, LD, indicates the lock state of the VCO PLL. Whenever an out-of-lock condition is detected LD is pulled low to indicate that the output frequency cannot be relied on. If the auto-squelch option is enabled then the corresponding output is automatically held low until lock is established. Initiating a recalibration cycle causes the LD pin to be driven low immediately.

Fractional divider dithering

By default, the programmed K-divider value is used directly to determine the ratio of the VCO output frequency to the reference clock frequency (after scaling by the R-divider). This allows the output frequency to be determined precisely, subject to the resolution of the K-divider. However, for K-divider values in which the fractional portion is $1/2^n$ (0.5, 0.25, 0.125 etc.), the nature of fractional division can result in excessive deterministic jitter being generated on the output. To avoid this, the *dither* bit (bit 5 of *reg_dither*) can be set to append a fixed '1' bit to the fractional portion of the K-divider, effectively adding $1/2^{-25}$ to the programmed value.

Using this dither feature can significantly reduce the deterministic jitter for certain K-divider settings. However, it will also result in a fixed error in the output frequency of the order of 0.25 ppb. In applications where the ACS1790T is operated as part of a closed loop system, such as when being controlled by a ToPSync device with the output frequency monitored through the FBCLK pin, the control loop will remove this fixed error over time so the average output frequency will be correct. However, when the ACS1790T is operated in an open-loop mode, either to generate a non-disciplined output frequency or when the reference clock itself is disciplined, for example when ToPSync is tuning a VCXO, then the fixed error will not be removed and the resultant output frequency will show a corresponding inaccuracy resulting in an unbounded Maximum Time Interval Error (MTIE) measurement. Whether this fixed error is acceptable or not will depend on the application, and therefore the overall system requirements should be considered before enabling the dithering feature in open-loop operation.

Output enable control and squelching

OUT1 and OUT2

The behavior of the OUT1 and OUT2 outputs is determined by a number of factors which control whether the pins are actively driven with the corresponding output frequency, held inactive or tri-stated. Table 6 indicates the behavior of the outputs under various conditions.

The automatic squelch capability shown in Table 6 allows the outputs to be forced inactive at any time the VCO is unlocked, as indicated by the LD pin being pulled low. This capability is enabled by setting the out1/2_Auto_Squelch bit (bit 5 of reg_output).

	Input Pin Setting			Register Settings		ngs	Clock Output State	
	RESETB	OEB	Power- on reset	Lock State	out1/2_ Auto_ Squelch	outn_ Enable	B (OUT1) or P (OUT2) Divider Disabled	OUTn
	Х	Х	Yes	Not locked	1	1	Х	Hi-impedance
Reset	0	0	No	Not locked	1	1	Х	Driven Low
	0	1	No	Not locked	1	1	Х	Hi-impedance
Hardware Control	1	1	No	Х	Х	Х	Х	Hi-impedance
	1	0	No	Not locked	0	0	Х	Hi-impedance
Unlocked	1	0	No	Not locked	0	1	No	Active (Toggling)
Operation	1	0	No	Not locked	1	0	Х	Hi-impedance
	1	0	No	Not locked	1	1	Х	Driven Low
	1	0	No	Not locked	Х	1	Yes	Driven Low
	1	0	No	Locked	0	0	Х	Hi-impedance
Normal	1	0	No	Locked	0	1	No	Active (Toggling)
Operation	1	0	No	Locked	1	0	Х	Hi-impedance
	1	0	No	Locked	1	1	No	Active (Toggling)
	1	0	No	Locked	Х	1	Yes	Driven Low

Table 6 : OUT1 and OUT2 Output Control

FBCLK

The low-speed feedback clock output pin, FBCLK, is simpler in operation than the OUT1 and OUT2 clocks since it doesn't support a tri-state option, and therefore is unaffected by the state of the OEB pin. Table 7 summarizes the behavior of the FBCLK output under various conditions.

The FBCLK output also features an auto-squelch feature with the same functionality as that of the OUT1 and OUT2 outputs. However, it is controlled by a separate bit – *fbclk_auto_squelch* in the *reg_output* register.

ACS1790T

FINAL DATASHEET

	Input Pin Setting	Power-		R	legister Set	tings Clock Output State		
	RESETB	on reset	Lock State	FBCLK_ Auto_ Squelch	FBCLK_ Enable	T-Divider Disabled	FBCLK	
Reset	Х	Yes	Not locked	1	0	Х	Driven Low	
Neset	0	No	Not locked	1	0	Х	Driven Low	
	1	No	Not locked	0	0	Х	Driven Low	
Unlocked	1	No	Not locked	0	1	No	Active (Toggling)	
Operation	1	No	Not locked	1	0	Х	Driven Low	
	1	No	Not locked	1	1	Х	Driven Low	
	1	No	Not locked	Х	1	Yes	Driven Low	
	1	No	Locked	0	0	Х	Driven Low	
Normal	1	No	Locked	0	1	No	Active (Toggling)	
Operation	1	No	Locked	1	0	Х	Driven Low	
	1	No	Locked	1	1	No	Active (Toggling)	
	1	No	Locked	Х	1	Yes	Driven Low	

Table 7 : FBCLK Output Control

OUT2 slew-rate and voltage control

The OUT2 CMOS clock output is capable of operating at 1.8V, 2.5V and 3.3V LVCMOS standards. It also supports a slew-rate limiting capability which can improve signal quality in some circumstances, such as when the output is driving a lengthy PCB trace, by reducing the rise and fall times of the clock edges.

The OUT2 pin has a separate dedicated power supply pin – VDDD2. This pin must be connected to 1.8V, 2.5V or 3.3V to set the OUT2 pin signalling level as required. Additionally, when operating at 1.8V it is necessary to set the *out2_drive* bit in the *reg_output* register to increase the drive strength of the output buffer. Failure to do so will result in reduced signal quality on the OUT2 output.

Table 8 summarises the requirements for each output standard on the OUT2 pin.

OUT2 I/O Standard	Maximum Voltage Swing	VDDD2 Voltage	out2_drive Bit Setting							
LVCM0S18	1.8V	1.8V	1							
LVCM0S25	2.5V	2.5V	0							
LVCM0S33	3.3V	3.3V	0							

Table 8 : OUT2 Drive-Type Setting

The slew-rate of the OUT2 pin is controlled by the *out2_slew_rate* bit in the *reg_output* register. When this bit is clear the OUT2 signal is driven with fast rise and fall times. Setting the *out2_slew_rate* bit increases the rise and fall times of the OUT2 signal. This in turn allows the OUT2 pin to drive considerably longer PCB traces (as long as several inches) without needing any termination. The *out2_slew_rate* bit is set by default.

Electrical Specifications

Maximum Ratings

Important Note: The Absolute Maximum Ratings, in the table below, are stress ratings only, and functional operation of the device at conditions other than those indicated in the Operating Conditions sections of this specification are not implied. Exposure to the absolute maximum ratings, where different to the operating conditions, for an extended period may reduce the reliability or useful lifetime of the product.

Parameter	Symbol	Minimum	Maximum	Units
Supply Voltage VDDA, VDDD, VDDD2, VDDF	V dd	-0.5	3.7	V
Input Voltage (non-supply pins)	Vin	-	3.7	V
Operating Junction Temperature	Тлст	-	125	°C
Reflow Temperature	T _{RE}	-	260	°C
Storage Temperature	T _{stor}	-50	150	°C
ESD (Human Body Model)	ESDнвм	-	2	kV
ESD (Charged Device Model)	ESD _{CDM}	-	1	kV
Latchup	Ιω	-100	100	mA

Table 9 : Absolute Maximum Ratings

Operating Conditions

Table 10 : Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units
Power Supply VDDA, VDDD, VDDF	V _{DD}	3.0	3.3	3.6	V
Power Supply VDDD2 (1.8V operation)	V _{DDD2}	1.71	1.8	1.89	V
Power Supply VDDD2 (2.5V operation)	VDDD2	2.375	2.5	2.625	V
Power Supply VDDD2 (3.3V operation)	V _{DDD2}	3.0	3.3	3.6	V
Ambient Temperature Range	TA	-40	-	+85	°C
Supply Current Inputs & digital	I _{DDD}	-	5	8	mA
Supply Current Synthesizer only	IDDF	-	52	60	mA

ACS1790T

ACS1790T

	FINAL	. DATASHEET
--	-------	-------------

Supply Current HF output ¹	IDDA	-	19	28	mA
Supply Current LF output ²	IDDD2	-	12	15	mA
Total Power Dissipation ^{1,2}	Ртот	-	290	400	mW
Package Thermal Resistance – still air	Θ _{JA}	-	-	32.2	c/w
Package Thermal Resistance – 1 m/s	Θ _{JA}	-	-	29.9	c/w
Package Thermal Resistance – 2 m/s	Θја	-	-	28.1	c/w

Notes:

1. Assumes 200 MHz OUT1 output into 50 ohm LVPECL load terminated as shown in Figure 21.

2. Assumes 125 MHz OUT2 output driving 10 pF unterminated load.

DC Characteristics

Across all operating conditions, unless otherwise stated

Table 11 : DC Characteristics

DC Input Characteristics: CLK, OEB, AO, A1, OSCFSELO, OSCFSEL1, MODE, RESETB pins

Parameter	Symbol	Minimum	Typical	Maximum	Units
V _{IN} High	VIH	2.0	-	-	V
VIN LOW	VIL	-	-	0.8	V
Pull-down Resistor (A0, A1, MODE, OSCFSELO, OSCFSEL1)	R _{PD}	28	36	44	kΩ
Input Low Current (V _{IN} = VSSD)	lı.	-	-	1	μА
Input High Current (V _{IN} = VDDD)	Ін	-	-	130	μΑ

DC Input Characteristics: SDA and SCL pins

Parameter	Symbol	Minimum	Typical	Maximum	Units
V _{IN} High	VIH	0.7 * VDDD	-	-	V
VIN LOW	VIL	-	-	0.3 * VDDD	V
Input Low Current (V _{IN} = VSSD)	IIL	-	-	1	μΑ
Input High Current (V _{IN} = VDDD)	IIH	-	-	1	μΑ
Noise margin at low level	V _{nL}		200		mV
Noise margin at high level	V _{nH}		200		mV

DC Output Characteristics: FBCLK pin

Parameter	Symbol	Minimum	Typical	Maximum	Units
Vout Low (IoI = 4mA)	V _{OL}	0	-	0.3	V
Vout High (loh = -4mA)	Vон	2.4	-	-	V
Output Low Current	I _{OL}	-	-	4	mA
Output High Current	Іон	-	-	-4	mA

DC Output Characteristics: SDA, LD pins

Parameter	Symbol	Minimum	Typical	Maximum	Units
Vout Low (IoI = 4mA)	Vol	0	-	0.4	V
Output Low Current	lo∟	-	-	4	mA

DC Output Characteristics: OUT2 pin

Parameter	Symbol	Minimum	Typical	Maximum	Units
Vout Low (VDDD2 = 1.8V, IoI = 1mA)	Vol	0	-	0.3	V
Vout High (VDDD2 = 1.8V, loh = -1mA)	Vон	1.3	-	-	V
Vout Low (VDDD2 = 2.5V, IoI = 2mA)	Vol	0	-	0.3	V
Vout High (VDDD2 = 2.5V, loh = -2mA)	Vон	1.7	-	-	V
Vout Low (VDDD2 = 3.3V, IoI = 4mA)	V _{OL}	0	-	0.3	V
Vout High (VDDD2 = 3.3V, loh = -4mA)	Vон	2.4	-	-	V
Output Low Current	I _{OL}	-	-	4	mA
Output High Current	Іон	-	-	-4	mA

DC Characteristics: OUT1P, OUT1N pins

Parameter	Symbol	Minimum	Typical	Maximum	Units		
Vout Low ¹	V _{OL}	VDD - 2.1	-	VDD - 1.62	V		
Vout High ¹	Voн	VDD - 1.45	-	VDD - 1.0	V		
Differential Output Voltage ¹	Vod	550	-	900	mV		
Notes:							
1) Driving into a LVPECL 50 Ω load biased to VDD – 2V							

ACS1790T

FINAL DATASHEET

RF Characteristics

Across all operating conditions, unless otherwise stated

Parameter	Symbol	Test Condition	Minimum	Typical	Maximum	Units
CLK Input Frequency	FREF	External Clock Source	10	12.8	25	MHz
PFD Update Frequency ¹	fφ	fø= FREF/R	10	-	12.8	MHz
VCO Center Frequency Range	fcen		2.3	2.5	2.7	GHz
OUT1 Integrated Jitter ^{2,3}	JITT1	155.52 MHz (12 kHz – 20 MHz)	-	0.56	0.8	ps (rms)
OUT1 Integrated Jitter ^{2,3}	JITT1	125 MHz (637 kHz – 20 MHz)	-	0.15	0.8	ps (rms)
OUT1 Integrated Jitter ^{2,3}	JITT1	125 MHz (1.875 MHz – 20 MHz)	-	0.11	0.8	ps (rms)
OUT1 Integrated Jitter ^{2,3}	JITT1	156.25 MHz (4 MHz – 80 MHz)	-	0.29	0.8	ps (rms)
OUT2 Integrated Jitter ^{2,3,4}	JITT2	25 MHz (12 kHz to 5 MHz)	-	0.8	1.0	ps (rms)
Loop Bandwidth	BW	Closed Loop	-	160	-	kHz
Harmonic Suppression	H2	Second Harmonic	TBA	-20	-	dBc
Output Reference Spurs		Offset = 12.8MHz	-	-67	-	dBc
Settling Time	T _{SET}	Across entire tuning range to 1 ppm precision	-	250	500	ms
Narrowband Lock Range	T _{RI}	Across entire tuning range	500	-	-	ppm
Tuning Step Size	f _{STEP}		-	-	1	ppb
Lock Time From Reset ⁵	TLOCKR		-	-	20	ms
Lock Time From Calibration ⁵	Тьоскс		-	-	10	ms
	1				1	1

Table 12 : RF Characteristics

Notes:

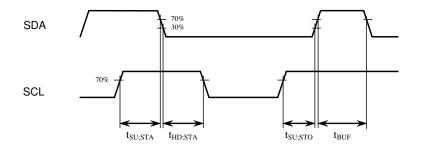
1) Value of $f\phi$ is dependent on the input divider

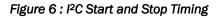
2) Measured using Rakon CFPO-DO reference clock (12.8 MHz)

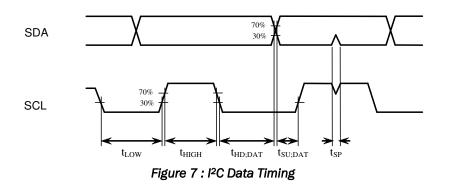
3) Measured using bandpass filter range and carrier frequency specified in "Test Condition" column

4) Measured using VDDD2 = 2.5V

5) As indicated by LD pin state


ACS1790T


FINAL DATASHEET


Table 13 : I²C Timing Specification

Parameter ¹	Symbol	Conditions	Min	Тур	Max	Unit
SCL Clock Frequency	f _{SCL}		0	-	400	kHz
SCL low period	tLow		1.3	-	-	us
SCL high period	t _{ніGH}		0.6	-	-	us
Data setup time	tsu:dat		100	-	-	ns
Data hold time	t _{HD:DAT}		0	-	-	ns
Repeated start setup time	tsu:sta		0.6	-	-	us
Start condition hold time	t _{su:sta}		0.6	-	-	us
Stop condition hold time	tsu:sto		0.6	-	-	us
Bus free time between stop and start	tвuғ		1.3	-	-	us
Input glitch suppression	tsp			-	50	ns
Notes: 1) Timing specifications refer to voltage levels (VIL, VIH, V	/₀∟) defined ir	n DC Characte	eristics			

The interface complies with slave F/S mode as described by NXP: "I²C-bus specification, Rev. 03 – 19 June 2007".

