imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FEATURES AND BENEFITS

- AEC-Q100 automotive qualified
- High bandwidth, 1 MHz analog output
- · Differential Hall sensing rejects common-mode fields
- High-isolation SOIC16 wide body package provides galvanic isolation for high-voltage applications
- Industry-leading noise performance with greatly improved bandwidth through proprietary amplifier and filter design
- UL60950-1 (ed. 2) certified
 - \Box Dielectric Strength Voltage = 3.6 kV_{RMS}
 - \Box Basic Isolation Working Voltage = 616 V_{RMS}
- Fast and externally configurable overcurrent fault detection
- $1 \text{ m}\Omega$ primary conductor resistance for low power loss and high inrush current withstand capability
- Options for 3.3 V and 5 V single supply operation
- Output voltage proportional to AC and DC current
- Factory-trimmed sensitivity and quiescent output voltage for improved accuracy
- Nearly zero magnetic hysteresis
- Ratiometric output from supply voltage

PACKAGE: 16-Pin SOICW (suffix LA)

Not to scale

DESCRIPTION

The ACS732 and ACS733 are a new generation of high bandwidth current sensor ICs from Allegro[™]. These devices provide a compact, fast, and accurate solution for measuring high-frequency currents in DC/DC converters and other switching power applications. The ACS732 and ACS733 offer high isolation, high bandwidth Hall-effect-based current sensing with user-configurable overcurrent fault detection. These features make them ideally suited for high-frequency transformer and current transformer replacement in applications running at high voltages.

The ACS732 and ACS733 are suitable for all markets, including automotive, industrial, commercial, and communications systems. They may be used in motor control, load detection and management, switch-mode power supplies, and overcurrent fault protection applications.

The wide body SOIC-16 package allows for easy implementation. Applied current flowing through the copper conduction path generates a magnetic field that is sensed by the IC and converted to a proportional voltage. Current is sensed differentially in order to reject external common-mode fields. Device accuracy is optimized through the close proximity of the magnetic field to the Hall transducers. A precise, proportional voltage is provided by the Hall IC, which is factory-programmed after packaging for high accuracy. The fully integrated package has an internal copper conductive path with a typical resistance of 1 m Ω , providing low power loss.

The current-carrying pins (pins 1 through 8) are electrically isolated from the sensor leads (pins 9 through 16). This allows the devices to be used in high-side current sensing applications without the use of high-side differential amplifiers or other costly isolation techniques.

Continued on next page ...

CB Certificate Number:

US-23711-UL

ACS732/ACS733 outputs an analog signal, V_{IOUT} , that changes proportionally with the bidirectional AC or DC primary sensed current, I_{P} , within the specified measurement range.

The overcurrent threshold may be set with a resistor divider tied to the V_{OC} pin.

Figure 1: Typical Application Circuit

DESCRIPTION (continued)

The ACS732 and ACS733 are provided in a small, low profile, surface-mount SOIC-16 wide-body package. The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb)

free printed circuit board assembly processes. Internally, the device is lead-free. These devices are fully calibrated prior to shipment from the Allegro factory.

SELECTION GUIDE

Part Number	Optimized Range, I _P (A)	Sensitivity ^[1] , Sens(Typ) (mV/A)	Nominal Supply Voltage, V _{CC} , (V)	T _A (°C)	Packing ^[2]
ACS732KLATR-20AB-T	±20	100	5.0		
ACS732KLATR-40AB-T	±40	50	3.0		
ACS733KLATR-20AB-T	±20	66		40 to 125	Tana and real 1000 pieces per real
ACS733KLATR-40AB-T	±40	33		-40 10 125	Tape and reel, 1000 pieces per reel
ACS733KLATR-40AU-T	40	66	- 3.3		
ACS733KLATR-65AB-T	±65	20			

^[1] Measured at Nominal Supply Voltage, V_{CC}.

^[2] Contact Allegro for additional packing options.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Notes	Rating	Units
Supply Voltage	V _{CC}		6	V
Reverse Supply Voltage	V _{RCC}		-0.1	V
Output Voltage	V _{IOUT}		6	V
Reverse Output Voltage	V _{RIOUT}		-0.1	V
Fault Output Voltage	V _{FAULT}		6	V
Reverse Fault Output Voltage	V _{RFAULT}		-0.1	V
Forward V _{OC} Voltage	V _{VOC}		6	V
Reverse V _{OC} Voltage	V _{VOC}		0.1	V
Output Current	I _{OUT}	Maximum survivable sink or source current on the output	15	mA
Nominal Operating Ambient Temperature	T _A	Range K	-40 to 125	°C
Maximum Junction Temperature	T _J (max)		165	°C
Storage Temperature	T _{stg}		-65 to 170	°C

ISOLATION CHARACTERISTICS

Characteristic	Symbol	Notes		Units
Dielectric Strength Test Voltage	V _{ISO}	Agency type-tested for 60 seconds per UL 60950-1 (edition 2). Production Tested at 2250 $\rm V_{RMS}$ per UL 60950-1.	3600	V _{RMS}
Working Voltage for Pagia Indiation	M	Maximum approved working voltage for basic (single) isolation	870	$V_{\text{PK}} \text{or} V_{\text{DC}}$
Working voltage for basic isolation	V WVBI	according to UL 60950-1 (edition 2).		V _{RMS}
Clearance	D _{CL}	Minimum distance through air from IP leads to signal leads.	7.5	mm
Creepage	D_{CR}	Minimum distance along package body from IP leads to signal leads.	7.5	mm

THERMAL CHARACTERISTICS^[1]

Characteristic Symbol Test Conditions		Value	Unit	
Junction-to-Ambient Thermal Resistance	R _{θJA}	Mounted on the Allegro ASEK732/3 evaluation board. Performance values include the power consumed by the PCB. ^[2]	17	°C/W
Junction-to-Lead Thermal Resistance	R _{θJL}	Mounted on the Allegro ASEK732/3 evaluation board. ^[2]	5	°C/W

^[1] Refer to the die temperature curves versus DC current plot (p. 29). Additional thermal information is available on the Allegro website.

[2] The Allegro evaluation board has 1500 mm² of 2 oz. copper on each side, connected to pins 1 through 4 and pins 5 through 8, with thermal vias connecting the layers. Performance values include the power consumed by the PCB. Further details on the board are available from the Frequently Asked Questions document on our website. Further information about board design and thermal performance also can be found in the Applications Information section of this datasheet.

PINOUT DIAGRAM AND TERMINAL LIST TABLE

Package LA, 16-Pin SOICW Pinout Diagram

Terminal List Table

Number	Name	Description
1,2,3,4	IP+	Positive terminals for current being sensed; fused internally.
5,6,7,8	IP-	Negative terminals for current being sensed; fused internally.
9,10	GND	Device ground terminal.
11	PROGRAM	Programming input pin for factory calibration. Connect to ground for best ESD performance.
12	VIOUT	Analog output signal.
13	FAULT	Overcurrent Fault output. Open drain.
14	VOC	Set the overcurrent fault threshold via external resistor divider on this pin.
15,16	VCC	Device power supply terminal.

FUNCTIONAL BLOCK DIAGRAM

Figure 2: Functional Block Diagram

COMMON ELECTRICAL CHARACTERISTICS: Over full range of T_A , over supply voltage range $V_{CC(MIN)}$ through $V_{CC(MAX)}$ of a sensor variant, $C_{BYPASS} = 0.1 \ \mu$ F, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Unit
Ourse had the test		ACS732	4.75	5.0	5.25	V
Supply voltage	V _{CC}	ACS733	3.14	3.3	3.46	V
Cumply Cumpat		ACS732; V _{CC} = 5.0 V	-	24	35	mA
Supply Current	ICC	ACS733; V _{CC} = 3.3 V	-	20	35	mA
Bypass Capacitor ^[2]	CBYPASS	V _{CC} to GND	0.1	_	_	μF
Output Capacitance Load	CL	V _{IOUT} to GND	-	_	220	pF
Output Resistive Load	RL	V _{IOUT} to GND	50	_	_	kΩ
	M	V_{CC} = 5.0 V, T _A = 25°C, R _{L(PULLDOWN)} = 50 kΩ to GND	V _{CC} - 0.3	_	_	V
Output Saturation Voltage	V SAT(HIGH)	V_{CC} = 3.3 V, T _A = 25°C, R _{L(PULLDOWN)} = 50 k Ω to GND	V _{CC} - 0.3	_	_	V
	N/	V_{CC} = 5.0 V, T _A = 25°C, R _{L(PULLDOWN)} = 50 k Ω to VCC	_	-	0.5	V
	V _{SAT(LOW)}	V_{CC} = 3.3 V, T _A = 25°C, R _{L(PULLDOWN)} = 50 k Ω to VCC	_	_	0.3	V
Primary Conductor Resistance	R _{IP}	T _A = 25°C	-	1	_	mΩ
Primary Hall Coupling Factor	C _{F(P)}	$T_A = 25^{\circ}C$	-	10.8	_	G/A
Secondary Hall Coupling Factor	C _{F(s)}	T _A = 25°C	-	4.3	_	G/A
Hall Plate Sensitivity Matching	Sens _{match}	$T_A = 25^{\circ}C$	-	1	_	%
Power On Delay Time	t _{POD}	$T_A = 25^{\circ}C$; when $V_{CC} \ge V_{CC(MIN)}$ until $V_{IOUT} = 90\%$ of steady state value	_	180	_	μs
Internal Bandwidth	BW	Small signal –3 dB; C _L = 220 pF	-	1	_	MHz
Rise Time ^[3]	t _r	$T_{A} = 25^{\circ}C, C_{I} = 220 \text{ pF}.$	-	0.7	_	μs
Response Time ^[3]	t _{RESPONSE}	input step with 1 µs rise time,	-	0.2	_	μs
Propagation Delay Time [3]	t _{pd}	1 V step on output	-	0.14	_	μs
Zero Current Output Ratiometry Error	E _{RAT(Q)}	$T_A = 25$ °C, $V_{CC} = \pm 5$ % variation of nominal supply voltage	-12	±10	12	mV
Sensitivity Ratiometry Error	E _{RAT(SENS)}	$T_A = 25$ °C, $V_{CC} = \pm 5$ % variation of nominal supply voltage	-2	±1.72	2	%
Ratiometry Bandwidth	BW _{RAT}	±100 mV on V _{CC}	-	10	_	kHz
Linearity Error ^[4]	E _{LIN}	$T_A = 25^{\circ}C$, up to full-scale I_P	-	±0.5	_	%
Naise Density	1	V_{CC} = 5.0 V, T _A = 25°C, C _L = 220 pF; input referred	-	55	_	µA/√Hz
NOISE DELISILY	IND	V_{CC} = 3.3 V, T _A = 25°C, C _L = 220 pF; input referred	_	80	_	µA/√Hz

Continued on next page...

ACS732 and **ACS733**

1 MHz, Bandwidth, Galvanically Isolated Current Sensor IC in SOIC-16 Package

COMMON ELECTRICAL CHARACTERISTICS (continued): Over full range of T_A, over supply voltage range V_{CC(MIN)} through $V_{CC(MAX)}$ of a sensor variant, C_{BYPASS} = 0.1 µF, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Unit
OVERCURRENT FAULT CHARACT	ERISTICS					
FAULT Response Time ^[5]	t _{RESPONSE(F)}	Time from I _P > I _{FAULT} to when FAULT pin is pulled below V _{FAULT} ; input current step from 0 to 1.2 × I _{FAULT}	0.2	0.5	0.75	μs
FAULT Release Time ^[5]	t _{C(F)}	Time from I _P falling below $I_{FAULT} - I_{HYS}$ to when V_{FAULT} is pulled above V_{FAULTL} ; 100 pF from FAULT to ground	0.1	-	0.45	μs
FAULT Range	FAULT	Relative to the full scale of I_{PR} ; set via the VOC pin	0.5 × I _{PR}	_	2 × I _{PR}	А
FAULT Output Low Voltage	VFAULT	In fault condition; $R_{F(PULLUP)} = 10 \text{ k}\Omega$	-	_	0.4	V
FAULT Pull-Up Resistance	R _{F(PULLUP)}		10	_	500	kΩ
FAULT Leakage Current	IFAULT(LEAKAGE)		-	±2	-	nA
FAULT Hysteresis ^[6]	I _{HYST}		_	0.05 × I _{PR}	-	А
FAULT Error ^[7]	EFAULT	Tested at V_{VOC} = 0.2 × V_{CC} (I _{FAULT} threshold = 100% × I _{PR})	_	±5	-	%
V _{OC} Input Range	V _{VOC}		0.1 × V _{CC}	_	$0.4 \times V_{CC}$	V
V _{OC} Input Current	I _{VOC}		_	10	100	nA

^[1] Typical values are mean ± 3 sigma values.

^[2] Use of a bypass capacitor is required to increase output stability.

^[3] See definitions of Dynamic Response Characteristics section of this datasheet.

^[4] The sensor will continue to respond to current beyond the range of I_{PR} until the high or low output saturation voltage. However, the nonlinearity in this region may be worse than the nominal operating range.

^[5] Guaranteed by design.

[7] Fault error is defined as the value at which a fault is reported relative to the desired threshold for I_{FAULT} .

ACS732KLATR-20AB PERFORMANCE CHARACTERISTICS: Valid at T_A = -40°C to 125°C, V_{CC} = 5 V, C_{BYPASS} = 0.1 µF,

unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур. [1]	Max.	Unit				
NOMINAL PERFORMANCE	NOMINAL PERFORMANCE									
Current Sensing Range	I _{PR}		-20	-	20	А				
Sensitivity	Sens		-	100	_	mV/A				
Zero Current Output Voltage	V _{IOUT(Q)}		_	$0.5 \times V_{CC}$	_	V				
TOTAL OUTPUT ERROR COMPONENTS	^[2] E _{TOT} = E _{SE}	_{NS} + 100 × V _{OE} / (Sens × I _P)								
		$I_P = I_{PR(max)}, T_A = 25^{\circ}C$	-2.5	±1.6	2.5	%				
Total Output Error ^[3]	E _{TOT}	$I_P = I_{PR(max)}, T_A = 125^{\circ}C$	-3	±2	3	%				
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C$	-7.5	±4.5	7.5	%				
	E _{SENS}	$I_P = I_{PR(max)}, T_A = 25^{\circ}C$	-1.5	±0.75	1.5	%				
Sensitivity Error		$I_P = I_{PR(max)}, T_A = 125^{\circ}C$	-1.5	±1.25	1.5	%				
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C$	-3	±2	3	%				
		I _P = 0 A, T _A = 25°C	-55	±30	55	mV				
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	-25	±18	25	mV				
		$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C}$	-120	±100	120	mV				
LIFETIME DRIFT CHARACTERISTICS [4]									
Tatal Output Error Including Lifetime Drift	-	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-5.5	±2.8	5.5	%				
	⊏TOT(DRIFT)	$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 25°C	-10	±4.4	10	%				
Consitivity Error Including Lifetime Drift	-	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-2.7	±2.1	2.7	%				
Sensitivity Error including Lifetime Drift	SENS(DRIFT)	$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 25°C	-4	±3.7	4	%				
Offect Veltage Error Including Lifetime Drift		$T_A = 25^{\circ}C$ to $125^{\circ}C$	-67	±42	67	mV				
	VOE(DRIFT)	$T_A = -40^{\circ}C$ to $25^{\circ}C$	-120	±93	120	mV				

[1] Typical values with ± are mean ±3 sigma values, except for lifetime drift which are the average value including drift after AEC-Q100 qualification.

[2] A single part will not have both the maximum sensitivity error and the maximum offset voltage, as that would violate the maximum/minimum total output error

ACS732KLATR-40AB PERFORMANCE CHARACTERISTICS: Valid at T_A = -40°C to 125°C, V_{CC} = 5 V, C_{BYPASS} = 0.1 µF,

unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур. [1]	Max.	Unit				
NOMINAL PERFORMANCE										
Current Sensing Range	I _{PR}		-40	-	40	A				
Sensitivity	Sens		-	50	_	mV/A				
Zero Current Output Voltage	V _{IOUT(Q)}		_	$0.5 \times V_{CC}$	_	V				
TOTAL OUTPUT ERROR COMPONENTS	^[2] E _{TOT} = E _{SEI}	_{NS} + 100 × V _{OE} / (Sens × I _P)								
		$I_P = I_{PR(max)}, T_A = 25^{\circ}C$	-2.5	±1.6	2.5	%				
Total Output Error ^[3]	E _{TOT}	$I_P = I_{PR(max)}, T_A = 125^{\circ}C$	-2.5	±1	2.5	%				
		$I_{\rm P} = I_{\rm PR(max)}, T_{\rm A} = -40^{\circ}{\rm C}$	-6.5	±3.4	6.5	%				
	E _{SENS}	$I_P = I_{PR(max)}, T_A = 25^{\circ}C$	-2	±1.5	2	%				
Sensitivity Error		$I_{\rm P}$ = $I_{\rm PR(max)}$, $T_{\rm A}$ = 125°C	-2	±0.9	2	%				
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C$	-4	±2.7	4	%				
		I _P = 0 A, T _A = 25°C	-45	±27	45	mV				
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	-25	±8	25	mV				
		$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C}$	-95	±58	95	mV				
LIFETIME DRIFT CHARACTERISTICS [4]									
Tatal Output Error Including Lifetime Drift	-	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-5.5	±2.8	5.5	%				
	⊏TOT(DRIFT)	$I_P = I_{PR(max)}, T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	-6.5	±4.4	6.5	%				
Considiuity Emeryla chudia a Lifedina a Daift	_	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-2.7	±2.1	2.7	%				
	SENS(DRIFT)	$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 25°C	-4	±3.7	4	%				
Offect Veltage Error Including Lifetime Drift		$T_A = 25^{\circ}C$ to $125^{\circ}C$	-67	±42	67	mV				
	V _{OE(DRIFT)}	$T_A = -40^{\circ}C$ to 25°C	-95	±93	95	mV				

^[1] Typical values with ± are mean ±3 sigma values, except for lifetime drift which are the average value including drift after AEC-Q100 qualification.

[2] A single part will not have both the maximum sensitivity error and the maximum offset voltage, as that would violate the maximum/minimum total output error

ACS733KLATR-20AB PERFORMANCE CHARACTERISTICS: Valid at T_A = -40°C to 125°C, V_{CC} = 3.3 V, C_{BYPASS} = 0.1 µF,

unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ^[1]	Max.	Unit					
NOMINAL PERFORMANCE	NOMINAL PERFORMANCE										
Current Sensing Range	I _{PR}		-20	-	20	А					
Sensitivity	Sens		_	66	_	mV/A					
Zero Current Output Voltage	V _{IOUT(Q)}		_	$0.5 \times V_{CC}$	_	V					
TOTAL OUTPUT ERROR COMPONENTS	^[2] E _{TOT} = E _{SE}	_{NS} + 100 × V _{OE} / (Sens × I _P)									
		$I_P = I_{PR(max)}, T_A = 25^{\circ}C$	-4.5	±1.7	4.5	%					
Total Output Error ^[3]	E _{TOT}	$I_P = I_{PR(max)}, T_A = 125^{\circ}C$	-3	±1.25	3	%					
		$I_{\rm P} = I_{\rm PR(max)}, T_{\rm A} = -40^{\circ}{\rm C}$	-10	±5	10	%					
	E _{SENS}	$I_P = I_{PR(max)}, T_A = 25^{\circ}C$	-1.5	±1	1.5	%					
Sensitivity Error		$I_{\rm P}$ = $I_{\rm PR(max)}$, $T_{\rm A}$ = 125°C	-1.5	±0.8	1.5	%					
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C$	-3	±2	3	%					
		I _P = 0 A, T _A = 25°C	-55	±21	55	mV					
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	-25	±10	25	mV					
		$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C}$	-120	±80	120	mV					
LIFETIME DRIFT CHARACTERISTICS [4											
Tatal Output Error Including Lifetime Drift	-	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-5.5	±2.9	5.5	%					
	⊏TOT(DRIFT)	$I_P = I_{PR(max)}, T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	-10	±6	10	%					
Consitivity Error Including Lifetime Drift	-	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-2.7	±1.2	2.7	%					
	SENS(DRIFT)	$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 25°C	-3	±2.2	3	%					
Offect Veltage Error Including Lifetime Drift	N	$T_A = 25^{\circ}C$ to $125^{\circ}C$	-67	±36	67	mV					
	VOE(DRIFT)	$T_A = -40^{\circ}C$ to 25°C	-120	±115	120	mV					

^[1] Typical values with ± are mean ±3 sigma values, except for lifetime drift which are the average value including drift after AEC-Q100 qualification.

[2] A single part will not have both the maximum sensitivity error and the maximum offset voltage, as that would violate the maximum/minimum total output error

ACS733KLATR-40AB PERFORMANCE CHARACTERISTICS: Valid at T_A = -40°C to 125°C, V_{CC} = 3.3 V, C_{BYPASS} = 0.1 µF,

unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ^[1]	Max.	Unit				
NOMINAL PERFORMANCE										
Current Sensing Range	I _{PR}		-40	-	40	A				
Sensitivity	Sens		_	33	_	mV/A				
Zero Current Output Voltage	V _{IOUT(Q)}		_	$0.5 \times V_{CC}$	-	V				
TOTAL OUTPUT ERROR COMPONENTS	^[2] E _{TOT} = E _{SEI}	_{NS} + 100 × V _{OE} / (Sens × I _P)								
		$I_P = I_{PR(max)}, T_A = 25^{\circ}C$	-3	±1.4	3	%				
Total Output Error ^[3]	E _{TOT}	$I_P = I_{PR(max)}, T_A = 125^{\circ}C$	-2	±1.25	2	%				
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C$	-6.5	±3	6.5	%				
	E _{SENS}	$I_P = I_{PR(max)}, T_A = 25^{\circ}C$	-1.5	±1.3	1.5	%				
Sensitivity Error		$I_P = I_{PR(max)}, T_A = 125^{\circ}C$	-2	±1	2	%				
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C$	-4.5	±2.2	4.5	%				
		I _P = 0 A, T _A = 25°C	-40	±9	40	mV				
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	-40	±7	40	mV				
		$I_{P} = 0 A, T_{A} = -40^{\circ}C$	-75	±35	75	mV				
LIFETIME DRIFT CHARACTERISTICS [4										
Total Output Error Including Lifetime Drift	F	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-5.5	±2.6	5.5	%				
	⊏TOT(DRIFT)	$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 25°C	-6.5	±4	6.5	%				
Consitivity Error Including Lifetime Drift	-	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-2.7	±1.5	2.7	%				
	SENS(DRIFT)	$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 25°C	-4.5	±2.4	4.5	%				
Offect Voltage Error Including Lifetime Drift	V	$T_{A} = 25^{\circ}C \text{ to } 125^{\circ}C$	-67	±24	67	mV				
	VOE(DRIFT)	$T_A = -40^{\circ}C$ to $25^{\circ}C$	-75	±70	75	mV				

^[1] Typical values with ± are mean ±3 sigma values, except for lifetime drift which are the average value including drift after AEC-Q100 qualification.

[2] A single part will not have both the maximum sensitivity error and the maximum offset voltage, as that would violate the maximum/minimum total output error

ACS733KLATR-40AU PERFORMANCE CHARACTERISTICS: Valid at T_A = -40°C to 125°C, V_{CC} = 3.3 V, C_{BYPASS} = 0.1 µF,

unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ^[1]	Max.	Unit				
NOMINAL PERFORMANCE										
Current Sensing Range	I _{PR}		0	-	40	А				
Sensitivity	Sens		-	66	_	mV/A				
Zero Current Output Voltage	V _{IOUT(Q)}		_	0.1 × V _{CC}	_	V				
TOTAL OUTPUT ERROR COMPONENTS	^[2] E _{TOT} = E _{SEI}	_{NS} + 100 × V _{OE} / (Sens × I _P)								
		$I_P = I_{PR(max)}, T_A = 25^{\circ}C$	-2.5	±1	2.5	%				
Total Output Error ^[3]	E _{TOT}	$I_P = I_{PR(max)}, T_A = 125^{\circ}C$	- 2.5	±1	2.5	%				
		$I_{\rm P} = I_{\rm PR(max)}, T_{\rm A} = -40^{\circ}{\rm C}$	-6.5	±3.3	6.5	%				
	E _{SENS}	$I_P = I_{PR(max)}, T_A = 25^{\circ}C$	-1.5	±0.9	1.5	%				
Sensitivity Error		$I_{\rm P}$ = $I_{\rm PR(max)}$, $T_{\rm A}$ = 125°C	-1.5	±0.9	1.5	%				
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C$	-4	±2.7	4	%				
		I _P = 0 A, T _A = 25°C	-30	±17	30	mV				
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	-25	±12	25	mV				
		$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C}$	-110	±70	110	mV				
LIFETIME DRIFT CHARACTERISTICS [4]]									
Total Output Error Including Lifetime Drift	-	$I_P = I_{PR(max)}, T_A = 25^{\circ}C \text{ to } 125^{\circ}C$	-5.5	±2.2	5.5	%				
	⊏TOT(DRIFT)	$I_P = I_{PR(max)}, T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	-6.5	±4.3	6.5	%				
Constituite. Emerginalization di ifatione Drift	_	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-2.7	±1.1	2.7	%				
Sensitivity Error including Lifetime Drift	SENS(DRIFT)	$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 25°C	-4	±2.9	4	%				
Offeet Veltage Error Including Lifetime Drift		$T_A = 25^{\circ}C$ to $125^{\circ}C$	-67	±32	67	mV				
	V _{OE(DRIFT)}	$T_A = -40^{\circ}C$ to 25°C	-110	±105	110	mV				

^[1] Typical values with ± are mean ±3 sigma values, except for lifetime drift which are the average value including drift after AEC-Q100 qualification.

[2] A single part will not have both the maximum sensitivity error and the maximum offset voltage, as that would violate the maximum/minimum total output error

ACS733KLATR-65AB PERFORMANCE CHARACTERISTICS: Valid at T_A = -40°C to 125°C, V_{CC} = 3.3 V, C_{BYPASS} = 0.1 µF,

unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур. [1]	Max.	Unit
NOMINAL PERFORMANCE						
Current Sensing Range	I _{PR}		-65	-	65	A
Sensitivity	Sens		-	20	_	mV/A
Zero Current Output Voltage	V _{IOUT(Q)}		_	$0.5 \times V_{CC}$	-	V
TOTAL OUTPUT ERROR COMPONENTS ^[2] E _{TOT} = E _{SENS} + 100 × V _{OE} / (Sens × I _P)						
Total Output Error ^[3]	E _{TOT}	$I_P = I_{PR(max)}, T_A = 25^{\circ}C$	-3.5	±1.8	3.5	%
		$I_P = I_{PR(max)}, T_A = 125^{\circ}C$	-3	±1.4	3	%
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C$	-6	±4	6	%
Sensitivity Error	E _{SENS}	$I_P = I_{PR(max)}, T_A = 25^{\circ}C$	-2.5	±1.6	2.5	%
		$I_P = I_{PR(max)}, T_A = 125^{\circ}C$	-2.5	±1.6	2.5	%
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C$	-4.5	±3.1	4.5	%
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 25°C	-30	±17	30	mV
		I _P = 0 A, T _A = 125°C	-25	±7	25	mV
		$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C}$	-70	±31	70	mV
LIFETIME DRIFT CHARACTERISTICS [4]						
Total Output Error Including Lifetime Drift	E _{TOT(DRIFT)}	$I_P = I_{PR(max)}, T_A = 25^{\circ}C \text{ to } 125^{\circ}C$	-5.5	±3	5.5	%
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	-6	±5	6	%
Sensitivity Error Including Lifetime Drift	E _{SENS(DRIFT)}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-2.7	±1.8	2.7	%
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	-4.5	±3.3	4.5	%
Offset Voltage Error Including Lifetime Drift	V _{OE(DRIFT)}	$T_A = 25^{\circ}C$ to $125^{\circ}C$	-67	±32	67	mV
		$T_A = -40^{\circ}C$ to 25°C	-70	±66	70	mV

^[1] Typical values with ± are mean ±3 sigma values, except for lifetime drift which are the average value including drift after AEC-Q100 qualification.

[2] A single part will not have both the maximum sensitivity error and the maximum offset voltage, as that would violate the maximum/minimum total output error

CHARACTERISTIC PERFORMANCE ACS732-KLATR-20AB

Sensitivity vs. Temperature

120.00 100.00 80.00 Offset Voltage (mV) 60.00 40.00 20.00 0.00 -20.00 -40.00 -60.00 -80.00 0 -50 50 100 150 Temperature (°C)

Offset Voltage vs. Temperature

Total Error vs. Temperature

CHARACTERISTIC PERFORMANCE ACS732-KLATR-40AB

Offset Voltage vs. Temperature

Sensitivity Error vs. Temperature

50

Temperature (°C)

100

150

0

🛶 Average 🛛 📲 +3 Sigma 🚽 -3 Sigma

Allegro MicroSystems, LLC 955 Perimeter Road Manchester, NH 03103-3353 U.S.A. www.allegromicro.com

Allegro MicroSystems, LLC 955 Perimeter Road Manchester, NH 03103-3353 U.S.A. www.allegromicro.com

CHARACTERISTIC PERFORMANCE ACS733-KLATR-65AB

Sensitivity Error vs. Temperature

50

100

150

Allegro MicroSystems, LLC 955 Perimeter Road Manchester, NH 03103-3353 U.S.A. www.allegromicro.com

CHARACTERISTIC PERFORMANCE

CHARACTERISTIC PERFORMANCE: ACS733 (3.3 V), Rise Time

Test Conditions: $T_A = 25^{\circ}C$, $C_{BYPASS} = 0.1 \,\mu$ F, $C_{LOAD} = 220 \,\mu$ F. Input Step = 40 A with 1 μ s rise time.

 $\label{eq:response time} \ensuremath{\text{Response time}} \ensuremath{\text{Test Conditions: }} T_A = 25^\circ\text{C}, \ensuremath{\text{C}_{\text{BYPASS}}} = 0.1 \ \mu\text{F}, \ensuremath{\text{C}_{\text{LOAD}}} = 220 \ \text{pF. Input Step} = 40 \ \text{A with } 1 \ \mu\text{s rise time.} \ensuremath{\text{C}_{\text{BYPASS}}} = 0.1 \ \mu\text{F}, \ensuremath{\text{C}_{\text{LOAD}}} = 220 \ \text{pF. Input Step} = 40 \ \text{A with } 1 \ \mu\text{s rise time.} \ensuremath{\text{Test Conditions: }} T_A = 25^\circ\text{C}, \ensuremath{\text{C}_{\text{BYPASS}}} = 0.1 \ \mu\text{F}, \ensuremath{\text{C}_{\text{LOAD}}} = 220 \ \text{pF. Input Step} = 40 \ \text{A with } 1 \ \mu\text{s rise time.} \ensuremath{\text{C}_{\text{BYPASS}}} = 0.1 \ \mu\text{F}, \ensuremath{\text{C}_{\text{LOAD}}} = 220 \ \text{pF. Input Step} = 40 \ \text{A with } 1 \ \mu\text{s rise time.} \ensuremath{\text{Test Conditions: }} T_A = 25^\circ\text{C}, \ensuremath{\text{C}_{\text{BYPASS}}} = 0.1 \ \mu\text{F}, \ensuremath{\text{C}_{\text{LOAD}}} = 220 \ \text{pF. Input Step} = 40 \ \text{A with } 1 \ \mu\text{s rise time.} \ensuremath{\text{C}_{\text{BYPASS}}} = 0.1 \ \mu\text{F}, \ensuremath{\text{C}_{\text{LOAD}}} = 220 \ \text{pF. Input Step} = 40 \ \text{A with } 1 \ \mu\text{s rise time.} \ensuremath{\text{Test C}_{\text{BYPASS}}} = 0.1 \ \mu\text{F}, \ensuremath{\text{C}_{\text{COAD}}} = 220 \ \text{pF. Input Step} = 40 \ \text{A with } 1 \ \mu\text{s rise time.} \ensuremath{\text{Step}} = 0.1 \ \mu\text{Step} = 0.1 \ \mu\text{Ste$

CHARACTERISTIC PERFORMANCE: ACS732 (5 V), Rise Time

Test Conditions: $T_A = 25^{\circ}C$, $C_{BYPASS} = 0.1 \,\mu$ F, $C_{LOAD} = 220 \,\mu$ F. Input Step = 40 A with 1 μ s rise time.

 $\label{eq:response time} \ensuremath{\text{Response time}} \ensuremath{\text{Test Conditions: }} T_A = 25^\circ\text{C}, \ensuremath{\text{C}_{\text{BYPASS}}} = 0.1 \ \mu\text{F}, \ensuremath{\text{C}_{\text{LOAD}}} = 220 \ \text{pF. Input Step} = 40 \ \text{A with } 1 \ \mu\text{s rise time.} \ensuremath{\text{C}_{\text{LOAD}}} = 220 \ \text{pF. Input Step} = 40 \ \text{A with } 1 \ \mu\text{s rise time.} \ensuremath{\text{E}_{\text{LOAD}}} = 220 \ \text{pF. Input Step} = 40 \ \text{A with } 1 \ \mu\text{s rise time.} \ensuremath{\text{E}_{\text{LOAD}}} = 220 \ \text{pF. Input Step} = 40 \ \text{A with } 1 \ \mu\text{s rise time.} \ensuremath{\text{E}_{\text{LOAD}}} = 220 \ \text{pF. Input Step} = 40 \ \text{A with } 1 \ \mu\text{s rise time.} \ensuremath{\text{E}_{\text{LOAD}}} = 10 \ \text{C}_{\text{LOAD}} = 10 \ \text{C}_{\text{$

OVERCURRENT FAULT

Overcurrent Fault

The ACS732 and ACS733 have fast and accurate overcurrent fault detection circuitry. The overcurrent fault threshold (I_{FAULT}) is user-configurable via an external resistor divider and supports a range of 50% to 200% of the full-scale primary input ($I_{PR(MAX)}$). Fault response and the overcurrent fault thresholds are described in the following sections.

Fault Response

The high bandwidth of the ACS732 and ACS733 devices allow for extremely fast and accurate overcurrent fault detection. An overcurrent event occurs when the magnitude of the input current (I_p) exceeds the user-set threshold (I_{FAULT}). Fault response time (t_{RESPONSE(F)}) is defined from the time I_p goes above I_{FAULT} to the time the FAULT pin goes below V_{FAULT}. Overcurrent fault response is illustrated in Figure 3. When I_p goes below I_{FAULT} – I_{HYST}, the FAULT pin will be released. The rise time of V_{FAULT} will depend on the value of the resistor R_{F(PULLUP)} and the capacitance on the pin.

Setting the Overcurrent Fault Threshold

The overcurrent fault threshold (I_{FAULT}) is set via a resistor divider from V_{CC} to ground on the VOC pin. The voltage on the VOC pin, V_{VOC}, may range from $0.1 \times V_{CC}$ to $0.4 \times V_{CC}$. I_{FAULT} may be set anywhere from 50% to 200% I_{PR(MAX)}.

Overcurrent fault threshold versus V_{VOC} is shown in Figure 4.

The equation for calculating the trip current is shown below. For bidirectional devices, the fault will trip for both positive and negative currents.

$$I_{FAULT} = I_{PR(MAX)} \left\{ 5 \times \frac{V_{VOC}}{V_{CC}} \right\}$$

This may be rearranged to solve for the appropriate $V_{\rm VOC}$ value based on a desired over current fault threshold, shown by the equation:

$$V_{VOC} = \frac{V_{CC}}{5} \times \frac{I_{FAULT}}{I_{PR(MAX)}}$$

By setting V_{VOC} with a resistor divider from V_{CC} , the ratio of V_{VOC} / V_{CC} will remain constant with changes to V_{CC} . In this regard, the fault trip point will remain constant even as the supply voltage varies.

Figure 3: Overcurrent Fault Response

Figure 4: Fault Threshold vs. V_{VOC}

It is best practice to use resistor values < 10 k Ω for setting V_{VOC}. With larger resistor values, the leakage current on VOC may result in errors in the trip point.

DEFINITIONS OF DYNAMIC RESPONSE CHARACTERISTICS

Power-On Delay Time (t_{POD})

When the supply is ramped to its operating voltage, the device requires a finite amount of time to power its internal components before responding to an input magnetic field. Power-On Delay Time (t_{POD}) is defined as the time interval between a) the power supply has reached its minimum specified operating voltage ($V_{CC(MIN)}$), and b) when the sensor output has settled within $\pm 10\%$ of its steady-state value under an applied magnetic field. Power-On Delay Time is illustrated in Figure 5.

Figure 5: Power-On Delay Time (t_{POD})

Rise Time (t_r)

The time interval between a) when the sensor reaches 10% of its full-scale value, and b) when it reaches 90% of its full-scale value.

Propagation Delay (t_{pd})

The time interval between a) when the sensed input current reaches 20% of its full-scale value, and b) when the sensor output reaches 20% of its full-scale value.

Response Time (t_{RESPONSE})

The time interval between a) when the sensed input current reaches 80% of its final value, and b) when the sensor output reaches 80% of its full-scale value.

Figure 6: Rise Time (t_r) and Propagation Delay (t_{pd})

Allegro MicroSystems, LLC