imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Synchronous Equipment Timing Source for SONET or SDH Network Elements

ADVANCED COMMUNICATIONS

Description

The ACS8509 is a highly integrated, single-chip solution for the Synchronous Equipment Timing Source (SETS) function in a SONET or SDH Network Element. The device generates SONET or SDH Equipment Clocks (SEC) and Frame Synchronization clocks. The ACS8509 is fully compliant with the required international specifications and standards.

EMTECH

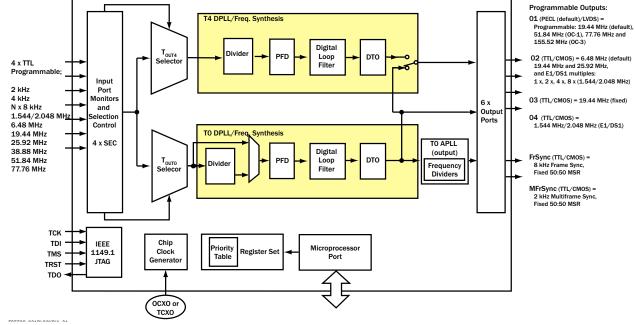
The device supports Free-run, Locked and Holdover modes. It also supports all three types of reference clock source: recovered line clock, PDH network, and node synchronization. The ACS8509 generates independent SEC and BITS/SSU clocks, an 8 kHz Frame Synchronization clock and a 2 kHz Multi-Frame Synchronization clock.

Two ACS8509 devices can be used together in a Master/ Slave configuration mode allowing system protection against a single ACS8509 failure.

A microprocessor port is incorporated, providing access to the configuration and status registers for device setup and monitoring.

The ACS8509 includes a choice of edge alignment for 8 kHz input, as well as a low jitter n x E1/DS1 output mode. The User can choose between OCXO or TCXO to define the Stratum and/or Holdover performance required.

Block Diagram



Features

FINAL

- Suitable for Stratum 3E*, 3, 4E, 4 and SONET Minimum Clock (SMC) or SONET/SDH Equipment Clock (SEC) applications
- Meets AT&T, ITU-T, ETSI and Telcordia specifications
- Accepts four individual input reference clocks
- Generates six output clocks
- Supports Free-run, Locked and Holdover modes of operation
- Robust input clock source quality monitoring on all inputs
- Automatic "hit-less" source switchover on loss of input
- Phase build-out for output clock phase continuity during input switchover and mode transitions
- Microprocessor interface Intel, Motorola, Serial, Multiplexed, EPROM
- Programmable wander and jitter tracking attenuation 0.1 Hz to 20 Hz
- Support for Master/Slave device configuration alignment and hot/standby redundancy
- IEEE 1149.1 JTAG Boundary Scan
- Single +3.3 V operation, +5 V I/O compatible
- Operating temperature (ambient) -40°C to +85°C
- Available in 100 pin LQFP package.
- Lead (Pb)-free version available (ACS8509T), RoHS and WEEE compliant.

Note...* Meets holdover requirements, lowest bandwidth 0.1 Hz.

Revision 2.00/January 2006 © Semtech Corp.

DATASHEET

ADVANCED COMMUNICATIONS Table of Contents

FINAL

DATASHEET

Page

Section

Description	1
Block Diagram	1
Features	1
Table of Contents	2
Pin Diagram	4
Pin Description	5
Functional Description	8
Local Oscillator Clock	
Crystal Frequency Calibration	8
Input Interfaces	
Over-Voltage Protection	
Input Reference Clock Ports	9
DivN Examples	
Input Wander and Jitter Tolerance	
Frame Sync and Multi-Frame Sync Clocks (Part of T _{OUTO})	
Output Clock Ports	
Low-speed Output Clock (T _{OUT4})	
High-speed Output Clock (Part of T _{OUTO})	. 12
Low Jitter Multiple E1/DS1 Outputs	
Output Wander and Jitter	13
Phase Variation	
Phase Build-Out	
Microprocessor Interface	
Motorola Mode	
Intel Mode	
Multiplexed Mode	
Serial Mode	
EPROM Mode	
Register Set	
Configuration Registers	
Status Registers	
Register Access	
Interrupt Enable and Clear	
Register Map	
Register Map Description	
Selection of Input Reference Clock Source	
Forced Control Selection	
Automatic Control Selection	
Ultra Fast Switching	
Clock Quality Monitoring	
Activity Monitoring	
Frequency Monitoring	
Modes of Operation	
Free-run mode	
Pre-Locked mode	
Locked mode	
Lost_Phase mode	
Holdover mode	
Pre-Locked(2) mode	. 41

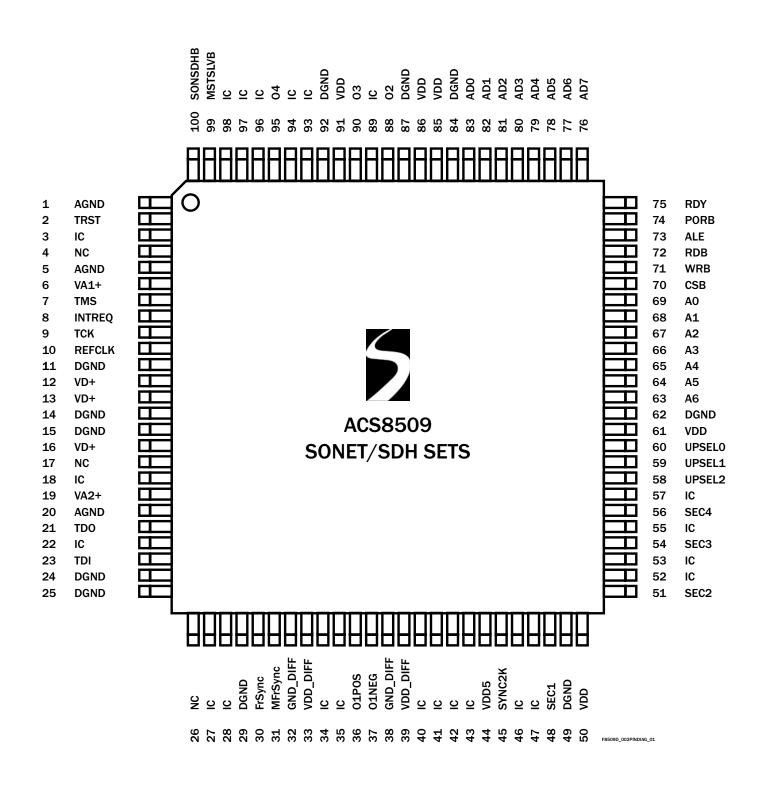
ADVANCED COMMUNICATIONS

ΕΙΝΛΙ

DATASHEET

Advanced communications Final	DATASHEET
Section	Page
Protection Facility	
Protection Facility Alignment of Priority Tables in Master and Slave ACS8509	
Alignment of the Selection of Reference Sources for T _{OUT4} Generation in the Master and Slave AC	S8509 42
Alignment of the Phases of the 8 kHz and 2 kHz Clocks in both Master and Slave ACS8509	42
JTAG	
PORB	
Electrical Specification	
Operating Conditions	
DC Characteristics	
Notes for Tables 24 to 30	
Input/Output Timing	
Motorola Mode	
Intel Mode	
Multiplexed Mode	
Serial Mode	
EPROM Mode	
Package Information	
Thermal Conditions	
Application Information	
References	
Abbreviations	

References	65
Abbreviations	65
Trademark Acknowledgements	66
Revision Status/History	67
Ordering Information	68
Disclaimers	68
Contacts	68



FINAL

DATASHEET

Pin Diagram

Figure 2 ACS8509 Pin Diagram Synchronous Equipment Timing Source for SONET or SDH Network Elements

ADVANCED COMMUNICATIONS

FINAL

ACS8509 SETS

DATASHEET

Pin Description

Table 1	Power Pins
---------	------------

Pin Number	Symbol	I/0	Туре	Description
12, 13, 16	VD+	Р	-	Supply Voltage: Digital supply to gates in analog section, +3.3 Volts $\pm 10\%$.
33, 39	VDD_DIFF	Р	-	Supply Voltage: Digital supply for differential ports, +3.3 Volts ±10%.
44	VDD5	Р	-	Digital Supply for +5 Volts Tolerance to Input Pins. Connect to +5 Volts $(\pm 10\%)$ for clamping to +5 Volts. Connect to VDD for clamping to +3.3 Volts. Leave floating for no clamping, input pins tolerant up to +5.5 Volts.
50, 61, 85, 86 91	VDD	Р	-	Supply Voltage: Digital supply to logic, +3.3 Volts ±10%.
6	VA1+	Р	-	Supply Voltage: Analog supply to clock multiplying PLL, +3.3 Volts $\pm 10\%$.
19	VA2+	Р	-	Supply Voltage: Analog supply to output PLLs, +3.3 Volts ±10%.
11, 14, 15, 24, 25, 29, 49, 62, 84, 87,92	DGND	Р	-	Supply Ground: Digital ground for logic
32, 38	GND_DIFF	Р	-	Supply Ground: Digital ground for differential ports.
1, 5, 20	AGND	Р	-	Supply Ground: Analog grounds.

Note...I = Input, O = Output, P = Power, $TTL^{U} = TTL$ input with pull-up resistor, $TTL_{D} = TTL$ input with pull-down resistor.

Pin Number	Symbol	I/0	Туре	Description
4, 17, 26	NC	NC	-	Not connected: Leave to Float
3, 18, 22, 27, 28, 34, 35, 40, 41, 42, 43, 46, 47, 52, 53, 55, 57, 89, 93, 94, 96, 97, 98	IC	IC	-	Internally Connected: Leave to Float.

Table 3 Other Pins

Pin Number	Symbol	I/0	Туре	Description
2	TRST	I	TTL _D	JTAG Control Reset Input: TRST = 1 to enable JTAG Boundary Scan mode. TRST = 0 for Boundary Scan stand-by mode, still allowing correct device operation. If not used connect to GND or leave floating.
7	TMS	I	ττι ^υ	JTAG Test Mode Select: Boundary Scan enable. Sampled on rising edge of TCK. If not used connect to VDD or leave floating.

ADVANCED COMMUNICATIONS

ACS8509 SETS

DATASHEET

Table 3 Other Pins (cont...)

Pin Number	Symbol	I/0	Туре	Description
8	INTREQ	0	TTL/CMOS	Interrupt Request: Active High software Interrupt output.
9	тск	I	TTL _D	JTAG Clock: Boundary Scan clock input. If not used connect to GND or leave floating. This pin may require a capacitor placed between the pin and the nearest GND, to reduce noise pickup. A value of 10 pF should be adequate, but the value is dependent on PCB layout.
10	REFCLK	I	TTL	Reference Clock: 12.800 MHz (refer to "Local Oscillator Clock" on page 8).
21	TDO	0	TTL/CMOS	JTAG Output: Serial test data output. Updated on falling edge of TCK. If not used leave floating.
23	TDI	Ι	TTL ^U	JTAG Input: Serial test data Input. Sampled on rising edge of TCK. If not used connect to VDD or leave floating.
30	FrSync	0	TTL/CMOS	Output Reference: 8 kHz Frame Sync output (square wave).
31	MFrSync	0	TTL/CMOS	Output Reference: 2 kHz Multi-Frame Sync output (square wave).
36, 37	01POS, 01NEG	0	PECL/LVDS	Output Reference 01: Programmable, default 19.44 MHz. Also 51.84 MHz, 77.76 MHz, 155.52 MHz. MHz, default type PECL.
45	SYNC2K	Ι	TTLD	Synchronize 2 kHz: Connect to 2 kHz Multi-Frame Sync output of partner ACS8509 in redundancy system.
48	SEC1	I	TTL _D	Input Reference SEC1: Programmable, default 19.44 MHz (Default Priority 7).
51	SEC2	I	TTL _D	Input Reference SEC2 : Programmable, default 19.44 MHz (Default Priority 8).
54	SEC3	I	TTLD	Input Reference SEC3: Programmable, default (Master mode) 1.544/2.048 MHz, default (Slave mode) 6.48 MHz. (Default Priority 11).
56	SEC4	I	TTL _D	Input Reference SEC4 (Priority 13): Programmable, default 1.544/2.048 MHz (Default Priority 13).
58 - 60	UPSEL(2:0)	I	TTL _D	Microprocessor Select: Configures the interface for a particular microprocessor type at reset.
63 - 69	A(6:0)	I	TTL _D	Microprocessor Interface Address: Address bus for the microprocessor interface registers. A(0) is SDI in Serial mode - output in EPROM mode only.
70	CSB	I	TTL ^U	Chip Select (Active <i>Low</i>): This pin is asserted <i>Low</i> by the microprocessor to enable the microprocessor interface - output in EPROM mode only.
71	WRB	I	TTL ^U	Write (Active <i>Low</i>): This pin is asserted <i>Low</i> by the microprocessor to initiate a write cycle. In Motorola mode, WRB = 1 for Read.
72	RDB	I	TTL ^U	Read (Active <i>Low</i>): This pin is asserted <i>Low</i> by the microprocessor to initiate a read cycle.
73	ALE	Ι	TTL _D	Address Latch Enable: This pin becomes the address latch enable from the microprocessor. When this pin transitions from <i>High</i> to <i>Low</i> , the address bus inputs are latched into the internal registers. ALE = SCLK in Serial mode.
74	PORB	I	TTL ^U	Power-On Reset: Master reset. If PORB is forced <i>Low</i> , all internal states are reset back to default values.

ADVANCED COMMUNICATIONS

Revision 2.00/January 2006 © Semtech Corp.

Pin Number	Symbol	I/O	Туре	Description
75	RDY	0	TTL/CMOS	Ready/Data Acknowledge: This pin is asserted <i>High</i> to indicate the device has completed a read or write operation.
76 - 83	AD(7:0)	Ю	TTLD	Address/Data: Multiplexed data/address bus depending on the microprocessor mode selection. AD(0) is SD0 in Serial mode.
88	02	0	TTL/CMOS	Output Reference 2: Default 6.48 MHz. Also Dig1 (1.544 MHz/2.048 MHz and 2, 4, 8 x), 19.44 MHz, 25.92 MHz
90	03	0	TTL/CMOS	Output Reference 3: 19.44 MHz - fixed.
95	04	0	TTL/CMOS	Output Reference 4: 1.544/2.048 MHz, (T4 BITS).
99	MSTSLVB	Ι	TTL ^U	Master/Slave Select: Sets the initial power-up state (or state after a PORB) of the Master/Slave selection register, Reg. 34, Bit 1. The register state can be changed after power up by software.
100	SONSDHB	I	ττι _d	SONET or SDH Frequency Select: Sets the initial power-up state (or state after a PORB) of the SONET/SDH frequency selection registers, Reg. 34, Bit 2 and Reg. 38, Bit 5 and Bit 6. When set <i>Low</i> , SDH rates are selected (2.048 MHz etc.) and when set <i>High</i> , SONET rates are selected (1.544 MHz etc.) The register states can be changed after power-up by software.

FINAL

ACS8509 SETS

DATASHEET

EMTECH

Functional Description

The ACS8509 is a highly integrated, single-chip solution for the SETS function in a SONET/SDH Network Element, for the generation of SEC and frame synchronization pulses.

In Free-run mode, the ACS8509 generates a stable, low noise clock signal from an internal oscillator.

In Locked mode, the ACS8509 selects the most appropriate input reference source and generates a stable, low-noise clock signal locked to the selected reference.

In Holdover mode, the ACS8509 generates a stable, lownoise clock signal from the internal oscillator, adjusted to match the last known good frequency of the last selected reference source.

In all modes, the frequency accuracy, jitter and drift performance of the clock meet the requirements of ITU $G.812^{[10]}$, $G.813^{[11]}$, $G.823^{[13]}$, and Telcordia GR-1244-CORE^[19].

The ACS8509 supports all three types of reference clock source: recovered line clock (T_{IN1}), PDH network synchronization timing (T_{IN2}) and node synchronization (T_{IN3}). The ACS8509 generates independent T_{OUT0} and T_{OUT4} clocks, an 8 kHz Frame Synchronization clock and a 2 kHz Multi-Frame Synchronization clock.

The ACS8509 has a high tolerance to input jitter and wander. The jitter/wander transfer is programmable (0.1 Hz up to 20 Hz cut-off points).

The ACS8509 supports protection. Two ACS8509 devices can be configured to provide protection against a single ACS8509 failure.

The protection maintains alignment of the two ACS8509 devices (Master and Slave) and ensures that both ACS8509 devices maintain the same priority table, choose the same reference input and generate the T_{OUTO} clock, the 8 kHz Frame Synchronization clock and the 2 kHz Multi-Frame Synchronization clock with the same phase.

The ACS8509 includes a microprocessor port, providing access to the configuration and status registers for device setup and monitoring.

Local Oscillator Clock

The Master system clock on the ACS8509 should be provided by an external clock oscillator of frequency

12.80 MHz. The clock specification is important for meeting the ITU/ETSI and Telcordia performance requirements for Holdover mode. ITU and ETSI specifications permit a combined drift characteristic, at constant temperature, of all non-temperature related parameters, of up to 10 ppb per day. The same specifications allow a drift of 1 ppm over a temperature range of 0 to +70°C.

Table 4 ITU and ETSI Specification

FINAL

Parameter	Value
Tolerance	±4.6 ppm over 20 year lifetime
Drift (Frequency Drift over supply voltage range of +2.7 V to +3.3 V)	±0.05 ppm/15 seconds @ constant temp.
	±0.01 ppm/day @ constant temp.
	±1 ppm over temp. range 0 to +70°C

Telcordia specifications are somewhat tighter, requiring a non-temperature-related drift of less than 40 ppb per day and a drift of 280 ppb over the temperature range 0 to +50 °C.

Table 5 Telcordia GR-1244 CORE Specification

Parameter	Value
Tolerance	±4.6 ppm over 20 year lifetime
Drift (Frequency Drift over supply voltage range of +2.7 V to +3.3 V)	± 0.05 ppm/15 seconds @ constant temp.
	± 0.04 ppm/15 seconds @ constant temp.
	±0.28 ppm/over temp. range 0 to +50 °C

Please contact Semtech for information on crystal oscillator suppliers.

Crystal Frequency Calibration

The absolute crystal frequency accuracy is less important than the stability since any frequency offset can be compensated by adjustment of register values in the IC. This allows for calibration and compensation of any crystal frequency variation away from its nominal value. \pm 50 ppm adjustment would be sufficient to cope with most crystals, in fact the range is an order of magnitude larger due to the use of two 8-bit register locations. The setting of the *conf_nominal_frequency* register allows for this adjustment. An increase in the register value increases the output frequencies by 0.02 ppm for each LSB step. The default value (in decimal) is 39321.

DATASHEET

DATASHEET

FINAL

The minimum being 0 and the maximum 65535, gives a -700 ppm to +500 ppm adjustment range of the output frequencies.

EMTECH

ADVANCED COMMUNICATIONS

For example, if the crystal was oscillating at 12.8 MHz + 5 ppm, then the calibration value in the register to give a -5 ppm adjustment in output frequencies to compensate for the crystal inaccuracy, would be:

39321 - (5 / 0.02) = 39071 (decimal)

Input Interfaces

The ACS8509 supports up to four input reference clock sources from input types $T_{IN1},\,T_{IN2}$ and T_{IN3} using TTL/CMOS I/O technologies. These interface technologies support +3.3 V and +5 V operation.

Over-Voltage Protection

The ACS8509 may require Over-Voltage Protection on input reference clock ports according to ITU Recommendation K.41. Semtech protection devices are recommended for this purpose (see separate Semtech data book).

Input Reference Clock Ports

Table 6 gives details of the input reference ports, showing the input technologies and the range of frequencies supported on each port; the default spot frequencies and default priorities assigned to each port on power-up or by reset are also shown. Note that SDH and SONET networks use different default frequencies; the network type is pinselectable using the SONSDHB pin). Specific frequencies and priorities are set by configuration.

Although each input port is shown as belonging to one of the types, T_{IN1} , T_{IN2} or T_{IN3} , they are fully interchangeable as long as the selected speed is within the maximum operating speed of the input port technology.

SDH and SONET networks use different default frequencies; the network type is selectable using the *config_mode* register 34 Hex, bit 2.

For SONET, config_mode register 34 Hex, bit 2 = 1, for SDH config_mode register 34 Hex, bit 2 = 0. On power-up or by reset, the default will be set by the state of the SONSDHB pin (pin 100). Specific frequencies and priorities are set by configuration.

TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot

frequency being 77.76 MHz. The actual spot frequencies supported are:

- 2 kHz,
- 4 kHz,
- 8 kHz (and N x 8 kHz),
- 1.544 MHz (SONET)/2.048 MHz (SDH),
- 6.48 MHz,
- 19.44 MHz,
- 25.92 MHz,
- 38.88 MHz,
- 51.84 MHz,
- 77.76 MHz.

The frequency selection is programmed via the *cnfg_ref_source_frequency* register. The internal DPLL will normally lock to the selected input at the frequency of the input, e.g. 19.44 MHz will lock the DPLL phase comparisons at 19.44 MHz. It is, however, possible to utilize an internal pre-divider to the DPLL to divide the input frequency before it is used for phase comparisons in the DPLL. This pre-divider can be used in one of 2 ways:

- Any of the supported spot frequencies can be divided to 8 kHz by setting the *lock8K* bit (bit 6) in the appropriate *cnfg_ref_source_frequency* register location. For good jitter tolerance for all frequencies and for operation at 19.44 MHz and above, use lock8K. It is possible to choose which edge of the 8 kHz input to lock to, by setting the appropriate bit of the *cnfg_control1* register.
- 2. Any multiple of 8 kHz between 1544 kHz to 100 MHz can be supported by using the *DivN* feature (bit 7 of the *cnfg_ref_source_frequency* register). Any reference input can be set to use DivN independently of the frequencies and configurations of the other inputs.

Any reference input with the DivN bit set in the *cnfg_ref_source_frequency* register will employ the internal pre-divider prior to the DPLL locking.

The cnfg_freq_divn register contains the divider ratio N where the reference input will get divided by (N+1) where $0 < N < 2^{14}$ -1. The cnfg_ref_source_frequency register must be set to the closest supported spot frequency to the input frequency, but must be lower than the input frequency. When using the DivN feature the post-divider

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

 Table 6 Input Reference Source Selection and Priority Table

Port Number	Channel Number (Bin)	Port Type	Input Port Technology	Frequencies Supported	Default Priority
SEC1	0111	T _{IN1}	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz	8
SEC2	1000	T _{IN1}	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz	9
SEC3	1011	T _{IN2}	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (Master) (SONET): 1.544 MHz Default (Master) (SDH): 2.048 MHz Default (Slave) 6.48 MHz	12/1 (Note (ii))
SEC4	1101	T _{IN2}	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 1.544 MHz Default (SDH): 2.048 MHz	14

Notes: (i) TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot frequency being 77.76 MHz. The actual spot frequencies are: 2 kHz, 4 kHz, 8 kHz (and N x 8 kHz), 1.544 MHz (SONET)/2.048 MHz (SDH), 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz. SONET or SDH is selected using the SONSDHB pin. When the SONSDHB pin is High SONET is selected, when the SONSDHB pin is Low SDH is selected.

(ii) Input port SEC4 is set at 12 on the Master SETS IC and 1 on the Slave SETS IC, as default on power up (or PORB). The default setup of Master or Slave SEC4 priority is determined by the MSTSLVB pin.

frequency must be 8 kHz, which is indicated by setting the *lock8k* bit high (bit 6 in *cnfg_ref_source_frequency* register). Any input set to DivN must have the frequency monitors disabled (If the frequency monitors are disabled, they are disabled for all inputs regardless of the input configurations, in this case only activity monitoring will take place). Whilst any number of inputs can be set to use the DivN feature, only one N can be programmed, hence all inputs using the DivN feature must require the same division to get to 8 kHz.

DivN Examples

To lock to 2.000 MHz:

- The cnfg_ref_source_frequency register is set to 11XX0001 (binary) to set the DivN, lock8k bits, and the frequency to E1/DS1. (XX = "leaky bucket" ID for this input).
- 2. The *cnfg_mode* register (34Hex) bit 2 needs to be set to 1 to select SONET frequencies (DS1).
- 3. The frequency monitors are disabled in *cnfg_monitors* register (48Hex) by writing 00 to bits 0 and 1.
- 4. The DivN register is set to F9 Hex (249 decimal).

To lock to 10.000 MHz:

- 1. The cnfg_ref_source_frequency register is set to 11XX0010 (binary) to set the DivN, lock8k bits, and the frequency to 6.48 MHz. (XX = "leaky bucket" ID for this input).
- 2. The frequency monitors are disabled in *cnfg_monitors* register (48Hex) by writing 00 to bits 0 and 1.
- 3. The DivN register is set to 4E1 Hex (1249 decimal).

Input Wander and Jitter Tolerance

The ACS8509 is compliant to the requirements of all relevant standards, principally ITU Recommendation $G.825^{[15]}$, ANSI T1.101-1999^[1] and ETSI ETS 300 462-5 (1996)^[4].

All reference clock inputs have a tight frequency tolerance but a generous jitter tolerance. Pullin, hold-in and pull-out ranges are specified for each input port in Table 7. Minimum jitter tolerance masks are specified in Figures 3 and 4, and Tables 8 and 9, respectively. The ACS8509 will tolerate wander and jitter components greater than those shown in Figure 3 and Figure 4, up to a limit determined by a combination of the apparent long-term frequency offset caused by wander and the eye-closure caused by jitter (the input source will be rejected if the offset pushes

DATASHEET

ADVANCED COMMUNICATIONS

FINAL

the frequency outside the hold-in range for long enough to be detected, whilst the signal will also be rejected if the eye closes sufficiently to affect the signal purity). The "8klock" mode should be engaged for high jitter tolerance according to these masks. All reference clock ports are monitored for quality, including frequency offset and general activity. Single short-term interruptions in selected reference clocks may not cause rearrangements, whilst longer interruptions, or multiple, short-term interruptions, will cause rearrangements, as will frequency offsets which are sufficiently large or sufficiently long to cause loss-of-lock in the phase-locked loop. The failed reference source will be removed from the priority table and declared as unserviceable, until its perceived quality has been restored to an acceptable level.

The registers sts_curr_inc_offset (address OC, OD, O7) report the frequency of the DPLL with respect to the external TCXO frequency. This is a 19-bit signed number with one LSB representing 0.0003 ppm (range of \pm 80 ppm). Reading this regularly can show how the currently locked source is varying in value e.g. due to wander on its input.

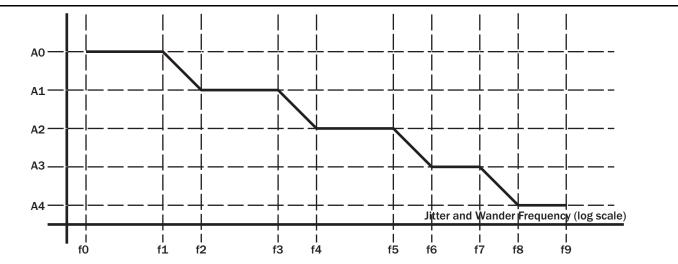
The ACS8509 performs automatic frequency monitoring with an acceptable input frequency offset range of ± 16.6 ppm. The ACS8509 DPLL has a programmable frequency limit of ± 80 ppm. If the range is programmed to be > 16.6 ppm, the frequency monitors should be disabled so the input reference source is not automatically rejected as out of frequency range.

Table 7 Input Reference Source Jitter Tolerance

Jitter Tolerance	Frequency Monitor Acceptance Range	Frequency Acceptance Range (Pull-in)	Frequency Acceptance Range (Hold-in)	Frequency Acceptance Range (Pull-out)
G.703		±4.6 ppm	±4.6 ppm	±4.6 ppm
G.783	±16.6 ppm	(see Note (i))	(see Note (i))	(see Note (i))
G.823	- <u>110.0 ppm</u>	±9.2 ppm	±9.2 ppm	±9.2 ppm
GR-1244-CORE		(see Note (ii))	(see Note (ii))	(see Note (ii))

Notes: (i) The frequency acceptance and generation range will be ± 4.6 ppm around the required frequency when the external crystal frequency accuracy is within a tolerance of ± 4.6 ppm.

(ii) The fundamental acceptance range and generation range is ± 9.2 ppm with an exact external crystal frequency of 12.8 MHz. This is the default DPLL range, the range is also programmable from 0 to 80 ppm in 0.08 ppm steps.


DATASHEET

ADVANCED COMMUNICATIONS

Figure 3 Minimum Input Jitter Tolerance (OC-3/STM-1)

MTECH

FINAL

Note...For inputs supporting G.783^[9] compliant sources.)

-			
Tahla Q	Amplitude and Frequen	nov Values for litter	Tolerance (OC-3/STM-1)
	Amplitude and riequen	icy values for filler	10101010100 (00-3/3110-1)

STM level	Peak to peak amplitude (unit Interval)						Frequency (Hz)								
	AO	A1	A2	A3	A4	FO	F1	F2	F3	F4	F5	F6	F7	F8	F9
STM-1	2800	311	39	1.5	0.15	12 u	178 u	1.6 m	15.6 m	0.125	19.3	500	6.5 k	65 k	1.3m

Frame Sync and Multi-Frame Sync Clocks (Part of T_{OUTO})

Frame Sync (8 kHz) and Multi-Frame Sync (2 kHz) clocks are provided on outputs "FrSync" and "MFrSync". The FrSync and MFrSync clocks have a 50:50 mark space ratio. These are driven from the TOUTO clock. They are synchronized with their counterparts in a second ACS8509 device (if used), using the technique described later.

Output Clock Ports

The device supports a set of main output clocks, T_{OUTO} and T_{OUT4}, and a pair of secondary output clocks, "Frame Sync" and "Multi-Frame Sync". The two main output clocks, T_{OUTO} and T_{OUT4} , are independent of each other and are individually selectable. The two secondary output clocks, Frame Sync and Multi-Frame Sync, are derived from T_{OUTO}. The frequencies of the output clocks are selectable from a range of pre-defined spot frequencies and a variety of output technologies are supported, as defined in Table 10.

Low-speed Output Clock (T_{OUT4})

The T_{OUT4} clock is supplied on output port O4. This port will provide a TTL/CMOS signal at either 1.544 MHz or 2.048 MHz, depending on the setting of the SONSDHB pin.

High-speed Output Clock (Part of Touro)

The T_{OUTO} port has multiple outputs. Output O1 is differential and can support clocks up to 155.52 MHz. Output 02 is a TTL/CMOS output with a choice of 11 different frequencies up to 51.84 MHz. Output 03 is a TTL/CMOS output with fixed frequency of 19.44 MHz. Each output is individually configured to operate at the frequencies shown in Table 10 (configuration must be consistent between ACS8509 devices for protectionswitching to be effective - output clocks will be phasealigned between devices). Using the cnfg_differential_outputs register, output 01 can be made to be LVDS or PECL compatible.

ADVANCED COMMUNICATIONS FINAL

Figure 4 Minimum Input Jitter Tolerance (DS1/E1)

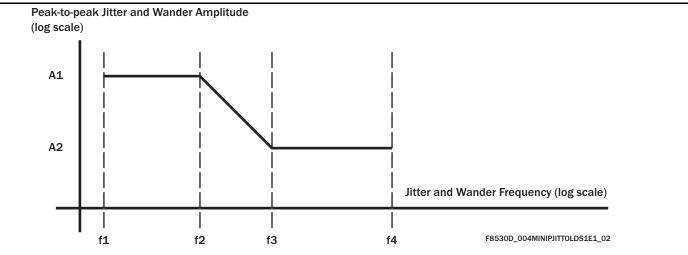


Table 9 Amplitude and Frequency Values for Jitter Tolerance (DS1/E1)

Туре	Spec.	Amplitu	de (UI _{p-p})	Frequency (Hz)				
		A1	A2	F1	F2	F3	F4	
DS1	GR-1244-CORE ^[19]	5	0.1	10	500	8 k	40 k	
E1	ITU G.823 ^[13]	1.5	0.2	20	2.4 k	18 k	100k	

Low Jitter Multiple E1/DS1 Outputs

This feature is activated using the *cnfg_control1* register. This sends a frequency of twice the Dig2 rate (see reg addr 39h, bits 7:6) to the APLL instead of the normal 77.76 MHz. For this feature to be used, the Dig2 rate must only be set to 12352 kHz/16384 kHz using the *cnfg_T0_output_frequencies* register. The normal OC-3 rate outputs are then replaced with E1/DS1 multiple rates. The E1(SONET)/DS1(SDH) selection is made in the same way as for Dig2 using the *cnfg_T0_output_enable* register.

Table 11 shows the relationship between primary output frequencies and the corresponding output in E1/DS1 mode, and from which output they are available.

Output Wander and Jitter

Wander and jitter present on the output clocks are dependent on:

1. The magnitude of wander and jitter on the selected input reference clock (in Locked mode).

- 2. The internal wander and jitter transfer characteristic (in Locked mode).
- 3. The jitter on the local oscillator clock.
- 4. The wander on the local oscillator clock (in Holdover mode).

Wander and jitter are treated in different ways to reflect their differing impacts on network design. Jitter is always strongly attenuated, whilst wander attenuation can be varied to suit the application and operating state. Wander and jitter attenuation is performed using a digital phase locked loop (DPLL) with a programmable bandwidth. This gives a transfer characteristic of a low pass filter, with a programmable pole. It is sometimes necessary to change the filter dynamics to suit particular circumstances - one example being when locking to a new source, the filter can be opened up to reduce locking time and can then be gradually tightened again to remove wander. Since wander represents a relatively long-term deviation from the nominal operating frequency, it affects the rate of supply of data to the network element. Strong wander attenuation limits the rate of consumption of data to within a smaller range, so a larger buffer store is required to prevent data loss. But, since any buffer store potentially

SEMTECH

FINAL

DATASHEET

Table 10 Output Reference Source Selection Table

Port Name	Output Port Technology	Frequencies Supported
01	PECL/LVDS (PECL default)	19.44 MHz (default), 51.84 MHz, 77.76 MHz, 155.52 MHz
02	TTL/CMOS	1.544 MHz/2.048 MHz, 3.088 MHz/4.096 MHz, 6.176 MHz/8.192 MHz, 6.48 MHz (default), 12.352 MHz/16.384 MHz, 19.44 MHz, 25.92 MHz
03	TTL/CMOS	19.44 MHz - fixed
04	TTL/CMOS	1.544 MHz/2.048 MHz
FrSync	TTL/CMOS	FrSync, 8 kHz - with a 50:50 MSR
MFrSync	TTL/CMOS	MFrSync, 2 kHz - with a 50:50 MSR

Note...1.544 MHz/2.048 MHz are shown for SONET/SDH respectively. Pin SONSDHB controls default, when High SONET is default.

Mode	Freq to APLL	APLL Multiplier	APLL Freq	cik_ filt	cik_ filt/2	clk_ filt/4	cik_ filt/6	clk_ filt/8	clk_ filt/12	cik_ filt/16	clk_ filt/48	DPLL Freq
Default	77.76	4	311.04	311.04	155.52	77.76	51.84	38.88	25.92	19.44	6.48	77.76
n value						16		8	4			
n x E1	32.768	4	131.072	131.072	65.536	32.768	21.84533	16.384	10.92267	8.192	2.730667	77.76
n x T1	24.704	4	98.816	98.816	49.408	24.704	16.46933	12.352	8.234667	6.176	2.058667	77.76
				ľ						02		
Frequencies Available by Output										03		
					01					01		

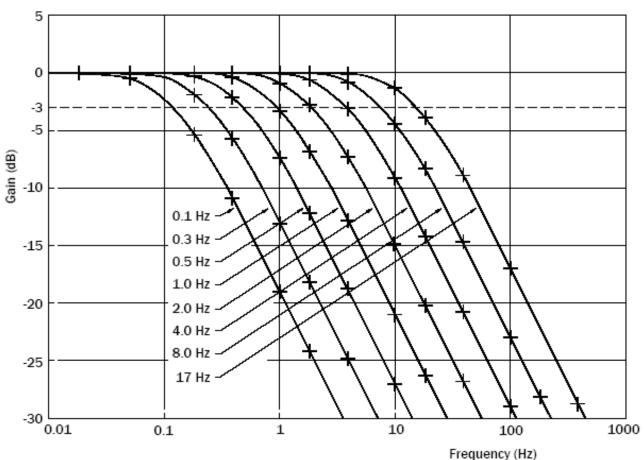
 Table 11 Multiple E1/DS1 Outputs in Relation to Standard Outputs

increases latency, wander may often only need to be removed at specific points within a network where buffer stores are acceptable, such as at digital cross connects. Otherwise, wander is sometimes not required to be attenuated and can be passed through transparently. The ACS8509 has programmable wander transfer characteristics in a range from 0.1 Hz to 20 Hz. The wander and jitter transfer characteristic is shown in Figure 5.

Wander on the local oscillator clock will not have significant effect on the output clock whilst in Locked mode, so long as the DPLL bandwidth is set high enough so that the DPLL can compensate quickly enough for any frequency changes in the crystal. In Free-run or Holdover mode wander on the crystal is more significant. Variation in crystal temperature or supply voltage both cause drifts in operating frequency, as does ageing. These effects must be limited by careful selection of a suitable component for the local oscillator, as specified in the Section "Local Oscillator Clock" on page 8.

Phase Variation

There will be a phase shift across the ACS8509 between the selected input reference source and the output clock. This phase shift may vary over time but will be constrained to lie within specified limits. The phase shift is characterized using two parameters, MTIE (Maximum Time Interval Error), and TDEV (Time Deviation), which, although being specified in all relevant specifications, differ in acceptable limits in each one. Typical measurements for the ACS8509 are shown in Figures 6 and 7, for Locked mode operation. Figure 8 shows a typical measurement of Phase Error accumulation in Holdover mode operation.



MTECH

FINAL

DATASHEET

The required performance for phase variation during Holdover is specified in several ways depending upon the particular circumstances pertaining:

- 1. ETSI 300 462-5, Section 9.1, requires that the short term phase error during switchover (i.e., Locked to Holdover to Locked) be limited to an accumulation rate no greater than 0.05 ppm during a 15 second interval.
- 2. ETSI 300 462-5, Section 9.2, requires that the long term phase error in the Holdover mode should not exceed:

 $\{(a1+a2)S+0.5bS^2+c\}$ where:

- a1 = 50 ns/s (allowance for initial frequency offset)
- a2 = 2000 ns/s (allowance for temperature variation)
- $b = 1.16 \times 10^{-4} \text{ ns/s}^2$ (allowance for ageing)
- c = 120 ns (allowance for entry into Holdover mode).
- 3. ANSI Tin1.101-1994, Section 8.2.2, requires that the phase variation be limited so that no more than 255

slips (of 125 µs each) occur during the first day of Holdover. This requires a frequency accuracy better than:

 $((24x60x60)+(255x125\mu s))/(24x60x60) = 0.37 \text{ ppm}$

Temperature variation is not restricted, except to within the normal bounds of 0 to 50 °C.

- 4. Telcordia GR.1244.CORE, Section 5.2., Table 4, shows that an initial frequency offset of 50 ppb is permitted on entering Holdover, whilst a drift over temperature of 280 ppb is allowed; an allowance of 40 ppb is permitted for all other effects.
- ITU G.822, Section 2.6, requires that the slip rate during category (b) operation (interpreted as being applicable to Holdover mode operation) be limited to less than 30 slips (of 125 μs each) per hour:

((((60 x 60)/30)+125µs)/(60x60)) = 1.042 ppm

ADVANCED COMMUNICATIONS

FINAL

DATASHEET

Figure 6 Maximum Time Interval Error of T_{out0} Output Port

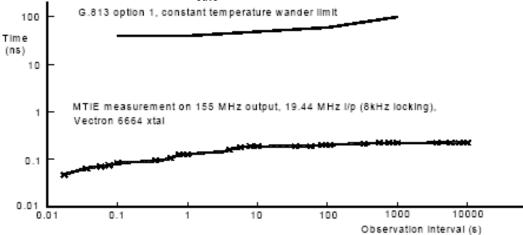


Figure 7 Time Deviation of T_{out0} Output Port

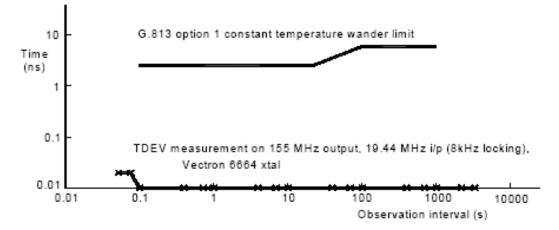
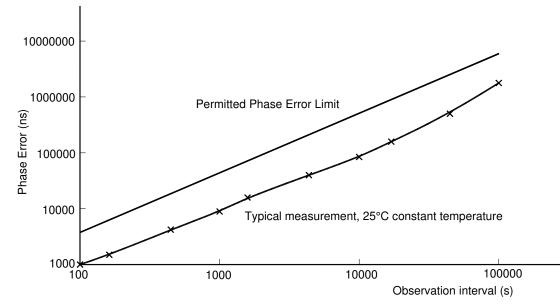



Figure 8 Phase Error Accumulation of TO PLL Output Port in Holdover Mode

DATASHEET

ADVANCED COMMUNICATIONS

SEMTECH

Phase Build-Out

Phase Build-Out (PBO) is the function to minimize phase transients on the output SEC clock during input reference switching. If the currently selected input reference clock source is lost (due to a short interruption, out of frequency detection, or complete loss of reference), the second, next highest priority reference source will be selected. During this transition, the *Lost_Phase* mode is entered.

The typical phase disturbance on clock reference source switching will be less than 12 ns on the ACS8509. For clock reference switching caused by the main input failing or being disconnected, then the phase disturbance on the output will still be less than the 120 ns allowed for in the G.813 spec. The actual value is dependent on the frequency being locked to.

ITU-T G.813 states that the max allowable short term phase transient response, resulting from a switch from one clock source to another, with Holdover mode entered in between, should be a maximum of 1 μ s over a 15 second interval. The maximum phase transient or jump should be less than 120 ns at a rate of change of less than 7.5 ppm and the Holdover performance should be better than 0.05 ppm.

On the ACS8509, PBO can be enabled, disabled or frozen using the μ P interface. By default, it is enabled. When PBO is enabled, it can also be frozen, which will disable the PBO operation on the next input reference switch, but will

remain with the current offset. If PBO is disabled while the device is in the Locked mode, there will be a phase jump on the output SEC clocks as the DPLL locks back to 0 degree phase error.

Microprocessor Interface

FINAL

The ACS8509 incorporates a microprocessor interface, which can be configured for the following modes via the bus interface mode control pins UPSEL(2:0) as defined in Table 12.

UPSEL(2:0)	Mode	Description
111 (7)	OFF	Interface disabled
110 (6)	OFF	Interface disabled
101 (5)	SERIAL	Serial uP bus interface
100 (4)	MOTOROLA	Motorola interface
011 (3)	INTEL	Intel compatible bus interface
010 (2)	MULTIPLEXED	Multiplexed bus interface
001 (1)	EPROM	EPROM read mode
000 (0)	OFF	Interface disabled

Motorola Mode

Parallel data + address: this mode is suitable for use with Motorola's 68x0 type bus.

Intel Mode

Parallel data + address: this mode is suitable for use with Intel's 80x86 type bus.

Multiplexed Mode

Data/address: this mode is suitable for use with microprocessors which share bus signals between address and data (e.g., Intel's 80x86 family).

Serial Mode

This mode is suitable for use with microprocessor which use a serial interface.

EPROM Mode

This mode is suitable for simple standalone applications where it is required to change the default loading of the register values to suit different applications.

This can be done by loading values from an external ROM. The data is read from the ROM automatically after powerup when the UPSEL(2:0) pins are set to "001". Each register value is stored sequentially, with ROM address 0 corresponding to register address 0 and so on.

DATASHEET

ADVANCED COMMUNICATIONS

The value in the *chip_id* location (address 00 & 01) is checked to see if it matches the ID number of the ACS8509 (value 213E). Upon a successful number match, the remaining data from the ROM is used to set the internal register values. Only 64 locations in the ROM are required.

Register Set

All registers are 8-bits wide, organized with the mostsignificant bit positioned in the left-most bit, with bit significance decreasing towards the right most bit. Some registers carry several individual data fields of various sizes, from single-bit values (e.g. flags) upwards. Several data fields are spread across multiple registers; their organization is shown in the register map, Table 13.

Configuration Registers

Each configuration register reverts to a default value on power-up or following a reset. Most default values are fixed, but some will be pinsettable. All configuration registers can be read out over the microprocessor port.

Status Registers

The Status Registers contain readable registers. They may all be read from outside the chip but are not writeable from outside the chip (except for a clearing operation). All status registers are read via shadow registers to avoid data hits due to dynamic operation. Each individual status register has a unique location.

Register Access

Most registers are of one of two types, configuration registers or status registers, the exceptions being the *chip_ID* and *chip_revision* registers. Configuration registers may be written to or read from at any time (the complete 8-bit register must be written, even if only one bit is being modified). All status registers may be read at any time and, in some status registers (such as the *sts_interrupts* register), any individual data field may be cleared by writing a "1" into each bit of the field (writing a "0" value into a bit will not affect the value of the bit). A description of each register is given in the Register Map, and Register Map Description.

Interrupt Enable and Clear

Interrupt requests are flagged on pin INTREQ (active High). Bits in the interrupt status register

are set (high) by the following conditions:

FINAL

1. Any reference source becoming valid or going invalid.

2. A change in the operating state (e.g. Locked, Holdover etc.)

3. A brief loss of the currently selected reference source.

All interrupt sources are maskable via the mask register, each one being enabled by writing a "1" to the appropriate bit. Any unmasked bit set in the interrupt status register will cause the interrupt request pin to be asserted (high). All interrupts are cleared by writing a "1" to the bit(s) to be cleared in the status register. When all pending unmasked interrupts are cleared the interrupt pin will go inactive (low).

The loss of the currently selected reference source will eventually cause the input to be considered invalid, triggering an interrupt. The time taken to raise this interrupt is dependant on the leaky bucket configuration of the activity monitors. The fastest leaky bucket setting will still take up to 128 ms to trigger the interrupt. The interrupt caused by the brief loss of the currently selected reference source is provided to facilitate very fast source failure detection if desired. It is triggered after missing just a couple of cycles of the reference source. Some applications require the facility to switch downstream devices based on the status of the reference sources. In order to provide extra flexibility, it is possible to flag the "main reference failed" interrupt (addr 06, bit 6) on the pin TDO. This is simply a copy of the status bit in the interrupt register and is independent of the mask register settings. The bit is reset by writing to the interrupt status register in the normal way. This feature can be enabled and disabled by writing to bit 6 of register 48Hex.

Register Map

Shaded areas in the map are "don't care" and writing either 0 or 1 will not affect any function of the device. Bits labelled Set to 0 or Set to 1 must be set as stated during initialization of the device, either following power-up, or after a power-on reset (POR). Failure to correctly set these bits may result in the device operating in an unexpected way.

Some registers do not appear in this list. These are either not used, or have test functionality. Do not write to any undefined registers as this may cause the device to operate in a test mode. If an undefined register has been inadvertently addressed, the device should be reset to ensure the undefined registers are at default values.

ADVANCED COMMUNICATIONS

FINAL

ACS8509 SETS

DATASHEET

Table 13 Register Map

Addr	Register Name				Dat	ta Bit							
(Hex)		7 (msb)	6	5	4	3	2	1	0 (Isb)				
00	chip_id				Device part	number (7:0)						
01	(read only)				Device part i	number (15:8	8)						
02	chip_revision (read only)				Chip revisior	n number (7:0	D)						
03	cnfg_control1 (read/write)			Multiple E1/T1 O/P	Analog div sync	Set to 0	8k Edge Polarity	Set to 0	Set to 0				
04	cnfg_control2 (read/write)			Ph	ase loss flag	limit	Set to 0	Set to 1	Set to 0				
05	sts_interrupts (read/write)	<sec2> valid change</sec2>	<sec1> valid change</sec1>										
06		Operating mode	Main ref. failed		<sec4> valid change</sec4>		<sec3> valid change</sec3>						
08	sts_T4_inputs (read/write)				T4 ref failed								
09	sts_operating_mode (read only)						0	perating mod	e (2:0)				
OA	sts_priority_table		Highest prior	ity valid sourc	e	Cu	irrently select	ed reference	source				
0B	(read only)	3	ord highest prio	ority valid sou	rce	2	2nd highest p	riority valid so	ource				
00	sts_curr_inc_offset	Current increment offset (7:0)											
0D	(read only)	Current increment offset (15:8)											
07							Current	increment of	fset (18:16)				
0E	sts_sources_valid	<sec2></sec2>	<sec1></sec1>										
OF	(read only)				<sec4></sec4>		<sec3></sec3>						
13	sts_reference_sources		status	<sec2></sec2>			statu	s <sec1></sec1>					
15	(read/write)					status <sec3></sec3>							
16							statu	s <sec4></sec4>					
1B	cnfg_ref_selection_		programmed_	priority <sec2< td=""><td>2></td><td></td><td>programmed</td><td>I_priority <se< td=""><td>C1></td></se<></td></sec2<>	2>		programmed	I_priority <se< td=""><td>C1></td></se<>	C1>				
1D	priority (read/write)						programmed	I_priority <se< td=""><td>03></td></se<>	03>				
1E							programmed	I_priority <se< td=""><td>C4></td></se<>	C4>				
26	cnfg_ref_source_	divn	lock8k	bucket_id	<sec1>(1:0)</sec1>	refere	ence_source_	frequency <s< td=""><td>EC1>(3:0)</td></s<>	EC1>(3:0)				
27	frequency (read/write)	divn	lock8k	bucket_id	<sec2>(1:0)</sec2>	refere	ence_source_	frequency <s< td=""><td>EC2>(3:0)</td></s<>	EC2>(3:0)				
2A		divn	lock8k	bucket_id	<sec3>(1:0)</sec3>	refere	ence_source_	frequency <s< td=""><td>EC3>(3:0)</td></s<>	EC3>(3:0)				
2C		divn	lock8k	bucket_id	<sec4>(1:0)</sec4>	refere	ence_source_	frequency <s< td=""><td>EC4>(3:0)</td></s<>	EC4>(3:0)				

DATASHEET

ADVANCED COMMUNICATIONS Table 13 Register Map (cont...)

Addr	Register Name				Da	ta Bit				
(Hex)		7 (msb)	6	5	4	3	2	1	0 (lsb)	
30	cnfg_sts_remote_	SEC2	SEC1			Set	to O			
31	sources_ valid (read/write)		1		SEC4		SEC3	S	et to O	
32	cnfg_operating_mode (read/write)						Ford	Forced operating mode		
33	cnfg_ref_selection (read/write)					fo	orce_select_re	eference_so	urce	
34	cnfg_mode (read/write)	Auto external 2K enable	Phase alarm timeout enable	Clock edge	Holdover Offset enable	External 2K Sync enable	SONET/ SDH I/P	Master/ Slave	Reversion mode	
35	cnfg_T4 (read/write)			orce T1 input / valid for inpu						
37	cnfg_uPsel_pins (read only)			Microprocesso						
38	cnfg_T0_output_enable (read/write)		1=SONET 0=SDH for Dig2	1=SONET 0=SDH for Dig1	02	Set to 0	03 19.44 MHz	Set to 0	Set to 0	
39	cnfg_T0_output_ frequencies (read/write)	Dig	ital2	Digital1			1		02	
ЗА	cnfg_differential_ outputs (read/write)	01 Frequer	ncy selection			01 LVDS enable	01 PECL enable			
3B	cnfg_bandwidth (read/write)	Auto b/w switch Acq/lock	Acq	uisition band	width	Set to 0	Norm	al/locked ba	andwidth	
3C	cnfg_nominal_frequency				Nominal fr	equency (7:0)				
3D	(read/write)				Nominal fre	equency (15:8)				
3E	cnfg_holdover_offset				Holdover	offset (7:0)				
ЗF	(read/write)				Holdover	offset (15:8)				
40		Auto Holdover Averaging		Hold	Holdover offset (18:16)					
41	cnfg_freq_limit			D	PLL Frequenc	y offset limit (7:0)			
42	(read/write)								quency offset nit (9:8)	

DATASHEET

ADVANCED COMMUNICATIONS Table 13 Register Map (cont...)

Addr **Register Name** Data Bit (Hex) 7 (msb) 6 5 4 3 2 1 0 (lsb) 43 <SEC2> <SEC1> cnfg_interrupt_mask Set to 0 (read/write) valid valid change change 44 Operating Main ref. Set to 0 <SEC4> Set to 0 <SEC3> Set to 0 Set to 0 mode failed valid valid change change T4 ref 45 Set to 0 Set to 0 Set to 0 Set to 0 46 Divide-input-by-n ratio (7:0) cnfg_freq_divn (read/write) 47 Divide-input-by-n ratio (13:8) Flag ref lost Phase 48 cnfg monitors Ultra-fast Freeze Frequency monitors (read/write) on TDO switching phase buildout configuration (1:0) buildout enable 50 cnfg_activ_upper_ Configuration 0: Activity alarm set threshold (7:0) threshold0 (read/write) 51 Configuration 0: Activity alarm reset threshold (7:0) cnfg_activ_lower_ threshold0 (read/write) 52 cnfg_bucket_size0 Configuration 0: Activity alarm bucket size (7:0) (read/write) 53 cnfg_decay_rate0 Cfg 0:decay_rate (1:0) (read/write) 54 cnfg_activ_upper_ Configuration 1: Activity alarm set threshold (7:0) threshold1 (read/write) 55 cnfg_activ_lower_ Configuration 1: Activity alarm reset threshold (7:0) threshold1 (read/write) 56 cnfg_bucket_size1 Configuration 1: Activity alarm bucket size (7:0) (read/write) 57 cnfg_decay_rate1 Cfg 1:decay_rate (1:0) (read/write) 58 cnfg_activ_upper_ Configuration 2: Activity alarm set threshold (7:0) threshold2 (read/write) 59 cnfg_activ_lower_ Configuration 2: Activity alarm reset threshold (7:0) threshold2 (read/write) 5A cnfg_bucket_size2 Configuration 2: Activity alarm bucket size (7:0) (read/write)

DATASHEET

ADVANCED COMMUNICATIONS Table 13 Register Map (cont...)

Addr	Register Name				Dat	a Bit						
(Hex)		7 (msb)	6	5	4	3	2	1	0 (Isb)			
5B	cnfg_decay_rate2 (read/write)				• 			Cfg 2:dec	ay_rate (1:0)			
5C	cnfg_activ_upper_ threshold3 (read/write)		Configuration 3: Activity alarm set threshold (7:0)									
5D	cnfg_activ_lower_ threshold3 (read/write)		Configuration 3: Activity alarm reset threshold (7:0)									
5E	cnfg_bucket_size3 (read/write)			Configura	tion 3: Activity	/ alarm bucke	et size (7:0)					
5F	cnfg_decay_rate3 (read/write)							Cfg 3:dec	ay_rate (1:0)			
7F	cnfg_uPsel (read/write)						Microproces	sor type				

Register Map Description

Table 14Register Description

Addr. (Hex)	Register Name	Description	Default Value (Bin)
	chip_id	This register contains the chip ID.	
00		Bits (7:0) Chip ID bits (7:0).	00111110
01		Bits (7:0) Chip ID bits (15:8).	00100001
02	chip_revision	This read only register contains the chip revision number. This revision = 1 Last revision (engineering samples) = 0.	00000001
03	cnfg_control1	 Bits (7:6) Unused. Bit 5 a) 32/24 MHz to APLL: Feeds 2x Dig2 frequency to the APLL instead of the normal 77.76 MHz. Thus the normal OC-3/STM1 outputs are replaced with multiple E1/T1 rates. Note: Dig2 set bits (Reg. 39h Bits (7:6)) must be set to 11 for this mode. a) 77.76 MHz to APLL. Bit 4 a) Synchronizes the dividers in the output APLL section to the dividers in the DPLL section such that their phases align. This is necessary in order to have phase alignment between inputs and output clocks at OC-3 derived rates (6.48 MHz to 77.76 MHz). Keeping this bit high may be necessary to avoid the dividers getting out of synchronization when quick changes in frequency occur such as a force into Free-run. b) The dividers may get out of phase following step changes in frequency, but in this mode the correct number of high frequency lock (default). b) The device will always remain in synchronization 2 seconds from a reset, before the default setting applies. Bit 3 Test control - leave unchanged, or set to 0. Bit 2 a) When in 8k locking mode the system will lock to the rising input clock edge. b) When in 8k locking mode the system will lock to the falling input clock edge. 	XX000000
04	cnfg_control2	 Bits (7:6) Unused. Bits (5:3) define the phase loss flag limit. By default set to 4 (100) which corresponds to approximately 140°. A lower value sets a corresponding lower phase limit. The flag limit determines the value at which the DPLL indicates phase lost as a result of input jitter, a phase jump, or a frequency jump on the input. Bits (2:0) Test controls - leave unchanged, or set to 010. 	XX100010

FINAL

DATASHEET

Table 14 Register Description (cont...)

Addr. (Hex)	Register Name	Description	Default Value (Bin)
05	sts_interrupts	Bit 7SEC2 valid change.Bit 6SEC1 valid change.Bits (5:0)Unused.	0000000
06		Bit 7Operating mode.Bit 6Main ref failed.Bit 5Unused.Bit 4SEC4 valid change.Bit 3Unused.Bit 2SEC3 valid change.Bits (1:0)Unused.	00000000
08	sts_T4_inputs	This register holds the status flags of the T _{OUT4} reference. The alarm once set will hold its state until reset. The bit may be cleared by writing a "1" to it, thus resetting the interrupt. Writing "O"s will have no effect. This bit can also generate an nterrupt. Bits (7:5) Unused. Bit 4 =1 T4 reference failed - no valid T _{IN1} input (SEC2 or SEC1), T4 DPLL cannot lock to source (default). =0 T4 reference good - valid T _{IN1} input available. Bits (3:0) Unused.	XXX10000
09	sts_operating_mode	This read-only register holds the current operating state of the main state machine.Figure 10 shows how the values of the "operating state" variable match with theindividual states.Bits (7:3) Unused.Bits (2:0) State:001 Free-Run (default),010 Holdover,100 Locked,110 Pre-locked,101 Pre-locked2,111 Phase lost.	XXXXX001

FINAL

DATASHEET

DATASHEET

ADVANCED COMMUNICATIONS

Table 14 Register Description (cont...)

Addr. (Hex)	Register Name	Description	Default Value (Bin)
	sts_priority_table	This is a 16-bit read-only register.	
		Bits (15:12) Third highest priority valid source: this is the channel number of the input reference source which is valid and has the next-highest priority to the second-highest-priority valid source.	
		Bits (11:8) Second highest priority valid source: this is the channel number of the input reference source which is valid and has the next-highest priority to the highest-priority valid source.	
		Bits (7:4) Highest priority valid source: this is the channel number of the input reference source which is valid and has the highest priority - it may not be the same as the currently selected reference source (due to failure history or changes in programmed priority).	
		Bits (3:0) Currently selected reference source: this is the channel number of the input reference source which is currently input to DPLL.	
		Note that these registers are updated by the state machine in response to the contents of the <i>cnfg_ref_selection_priority</i> register and the ongoing status of individual channels; channel number "0000", appearing in any of these registers, indicates that no channel is available for that priority.	
OA		Bits (7:4)Highest priority valid source (sts_priority_table bits (7:4))Bits (3:0)Currently selected reference source (sts_priority_table bits (3:0))	0000000
OB		Bits (7:4)3rd-highest priority valid source (sts_priority_table bits (15:12))Bits (3:0)2nd-highest priority valid source (sts_priority_table bits (11:8))	0000000
	sts_curr_inc_offset	This read-only register contains a signed-integer value representing the 19 significant bits of the current increment offset of the digital PLL. The register may be read periodically to build up a historical database for later use during holdover periods (this would only be necessary if an external oscillator which did not meet the stability criteria described in Local Oscillator Clock section is used). The register will read 00000000 immediately after reset.	
0C		Bits (7:0) sts_curr_inc_offset bits (7:0)	00000000
0D		Bits (7:0) sts_curr_inc_offset bits (15:8)	00000000
07		Bits (7:3) Unused Bits (2:0) sts_curr_inc_offset bits (18:16)	XXXXX000
	sts_sources_valid	This register contains a bit to show validity for every reference source. =1 Valid source =0 Invalid source (default)	
OE		Bit 7SEC2Bit 6SEC1Bits (5:0)Unused	0000000
OF		Bits (7:5)UnusedBit 4SEC4Bit 3UnusedBit 2SEC3Bits (1:0)Unused	XX000000