mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

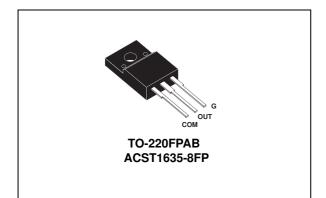
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ACST1635-8FP

Overvoltage protected AC switch

The ACST1635-8FP belongs to the AC power switch range built with A.S.D.[®] technology. This high performance device is designed for home appliances or industrial systems and drives loads

This ACST1635-8FP switch embeds a Triac


structure with a high voltage crowbar device to

absorb the inductive turn-off energy and withstand line surges such as those described in the IEC 61000-4-5 (surge immunity test).

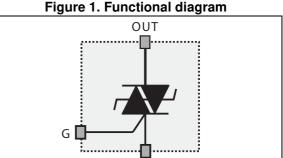
Description

up to 16 A.

Datasheet - production data

Features

- Enables equipment to meet IEC 61000-4-5 • surge with overvoltage crowbar technology
- High noise immunity against static dV/dt and • IEC 61000-4-4 burst
- High junction temperature: T_i = 150 °C
- Needs no external over-voltage protection
- V_{CL} gives headroom before clamping then • crowbar action
- Reduces component count •
- ECOPACK[®]2 compliant component •
- Complies with UL standards (File ref: E81734)
- Provides UL certified insulation rated at 2000 V rms


Applications

- · AC static switching in appliances and industrial control systems
 - Drive of medium power AC loads such as:
 - Coffee making appliances
 - Universal drum motor of washing machine
 - Compressor of fridge or air conditioner
 - Heating and cooking appliances
 - Vacuum cleaners
 - Solid state relays

March 2015

DocID023630 Rev 2

This is information on a product in full production.

COM

A.S.D. is a registered trademark of STMicroelectronics

1 Characteristics

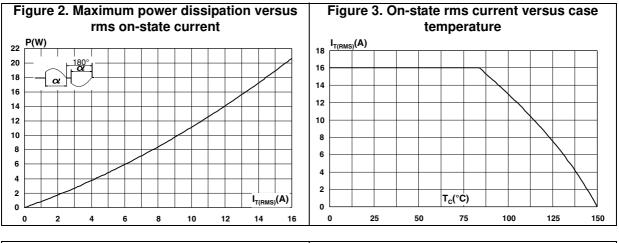
Symbol	Parameter	Value	Unit		
I _{T(RMS)}	On-state rms current (full sine wave)	16	А		
1	Non repetitive surge peak on-state current	F = 50 Hz, t _p = 20 ms	140	A	
I _{TSM}	T _j initial = 25 °C, (full cycle sine wave)	F = 60 Hz, t _p = 16.7 ms	147		
l ² t	I ² t for fuse selection	t _p = 10 ms	130	A ² s	
V _{DRM} /V _{RRM} Repetitive peak off-stage voltage, gate open		T _j = 150 °C	800	V	
dl/dt	Critical rate of rise on-state current I_G = 2 x $I_{GT,}t_r \leq 100~\text{ns}$	F = 120 Hz	100	A/μs	
$V_{PP}^{(1)}$	Non repetitive line peak pulse voltage	T _j = 25 °C	2	kV	
P _{G(AV)}	Average gate power dissipation		0.1	W	
P _{GM}	Peak gate power dissipation ($t_p = 20 \ \mu s$)	T _j = 150 °C	10	W	
I _{GM}	I_{GM} Peak gate current (t _p = 20 µs) $T_j = 150 \text{ °C}$		1	А	
T _{stg}	Storage temperature range			°C	
Тj	Operating junction temperature range			°C	
ΤL	Lead temperature for soldering during 10 s			°C	
V _{ins}	Insulation rms voltage (60 seconds)	2000	V		

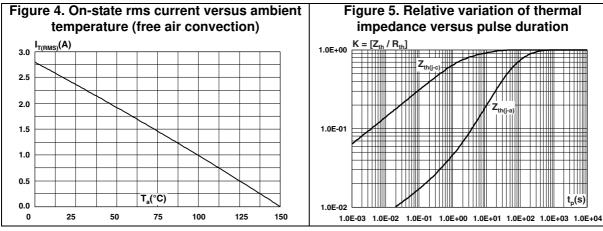
1. according to test described by standard IEC 61000-4-5

Table 2. Electrical characteristics

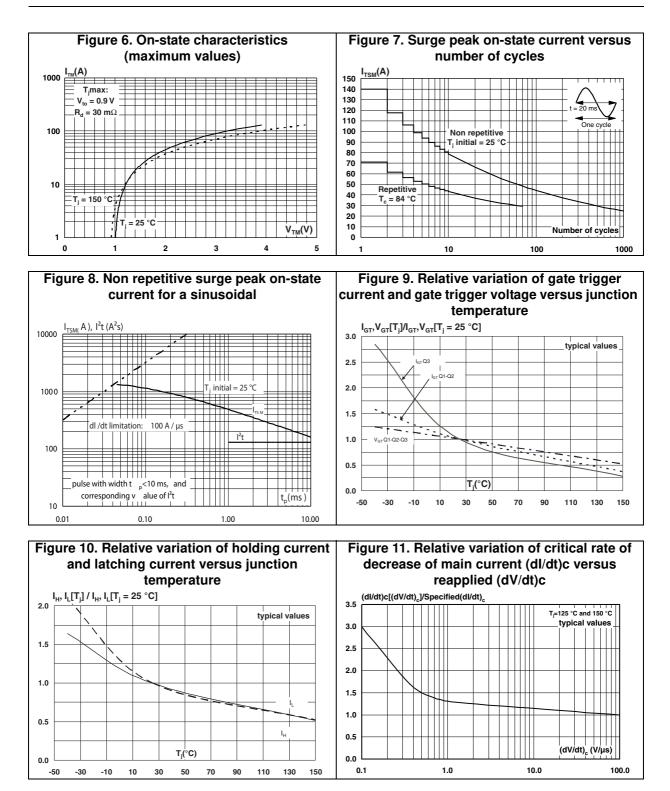
Symbol	Test conditions	Quadrant	Тj	Value		Unit
I _{GT}	V_{OUT} = 12 V, R _L = 33 Ω	- -	25 °C	Max.	35	mA
I _{GT}	V_{OUT} = 12 V, R _L = 33 Ω	- -	25 °C	Min.	1.75	mA
V _{GT}	V_{OUT} = 12 V, R _L = 33 Ω	- -	25 °C	Max.	1.0	V
V _{GD}	$V_{OUT} = V_{DRM}, R_L = 3.3 \text{ k}\Omega$	- -	150 °C	Min.	0.2	V
I _H ⁽¹⁾	I _{OUT} = 500 mA		25 °C	Max.	30	mA
١L	$I_{G} = 1.2 \times I_{GT}$	- -	25 °C	Max.	40	mA
dV/dt ⁽¹⁾	V _{OUT} = 67% V _{DRM} , gate open		125 °C	Min.	1000	V/µs
dV/dt ⁽¹⁾	V _{OUT} = 67% V _{DRM} , gate open		150°C	Min.	300	V/µs
(dl/dt)c ⁽¹⁾	$(dV/dt)c = 0.1 V/\mu s$		125 °C	Min.	36	A/ms
			150 °C	Min.	12	A/ms
(dl/dt)c ⁽¹⁾	Without snubber		125 °C	Min.	12	A/ms
			150 °C	Min.	4	A/ms
V _{CL}	$I_{CL} = 0.1 \text{ mA}, t_p = 1 \text{ ms}$		25 °C	Min.	850	V

1. For both polarities of OUT pin referenced to COM pin

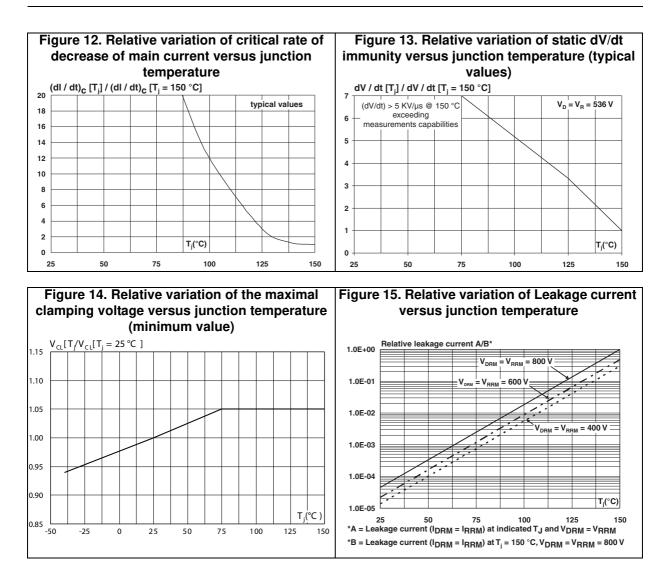

Symbol	Test conditions				Unit
V _{TM} ⁽¹⁾	I _{OUT} = 22.6 A, t _p = 500 μs	T _j = 25 °C	Max.	1.5	V
V _{T0} ⁽¹⁾	Threshold voltage	T _j = 150 °C	Max.	0.9	V
R _d ⁽¹⁾	Dynamic resistance	T _j = 150 °C	Max.	30	mΩ
		T _j = 25 °C		1	μA
I _{DRM} I _{RRM}	$V_{OUT} = V_{DRM} / V_{RRM}$	T _j = 125 °C	Max.	500	μA
		T _j = 150 °C		2	mA

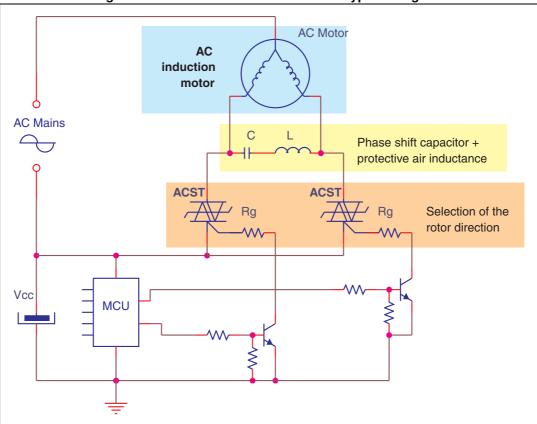

Table 3. Static characteristics

1. For both polarities of OUT pin referenced to COM pin


Table 4.	Thermal	characteristics
----------	---------	-----------------

Symbol	Parameter	Value	Unit
R _{th(j-c)}	j-c) Junction to case (AC)		°C/W
R _{th(j-a)}	Junction to ambient	60	°C/W





2 Application information

2.1 Typical application descriptions

The ACST1635-8FP device can be used to control medium power load, such as AC motors in home appliances. Thanks to its thermal and turn off commutation performances, the ACST1635-8FP switch is able to drive an inductive load up to 16 A with no turn off additional snubber. It also provides high thermal performances in static and transient modes such as the compressor inrush current or high torque operating conditions of an AC motor.

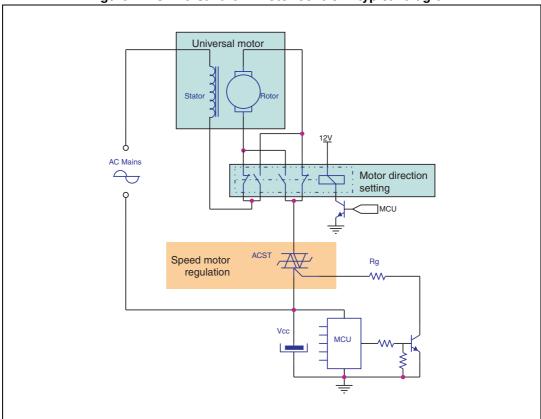
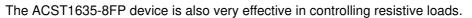



Figure 17. Universal drum motor control – typical diagram

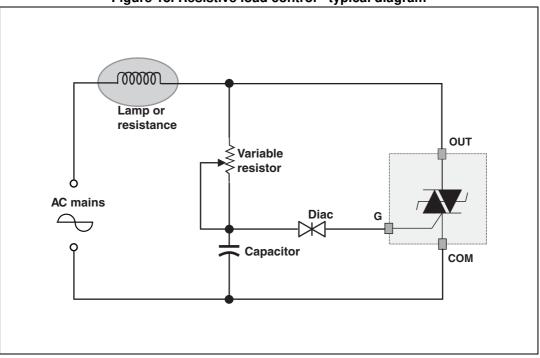
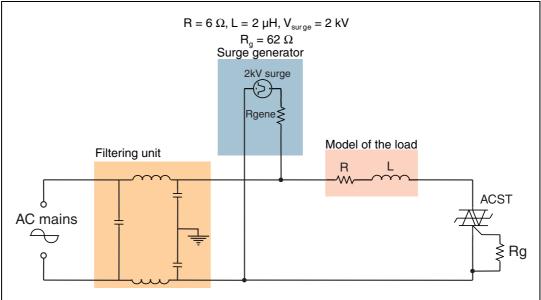


Figure 18. Resistive load control - typical diagram



2.2 AC line transient voltage ruggedness

In comparison with standard Triacs, which needs additional protection components against surge voltage, the ACST1635-8FP is self-protected against overvoltage, specified by the new parameter V_{CL} . The ACST1635-8FP switch can safely withstand AC line transient voltages either by clamping the low energy spikes, such as the inductive spikes at switch off, or by switching to the on state (for less than 10 ms) to dissipate higher energy shocks through the load. This safety feature works even with high turn-on current ramp-up.

The test circuit of *Figure 19* represents the ACST1635-8FP application, and is used to stress the ACST switch according to the IEC 61000-4-5 standard conditions. With the additional effect of the load which is limiting the current, the ACST switch withstands the voltage spikes up to 2 kV on top of the peak line voltage. The protection is based on an overvoltage crowbar technology. The ACST1635-8FP folds back safely to the on state as shown in *Figure 20*. The ACST1635-8FP recovers its blocking voltage capability after the surge and the next zero crossing current. Such a non repetitive test can be done at least 10 times on each AC line voltage polarity.

Figure 19. Overvoltage ruggedness test circuit for resistive and inductive loads for IEC 61000-4-5 standards

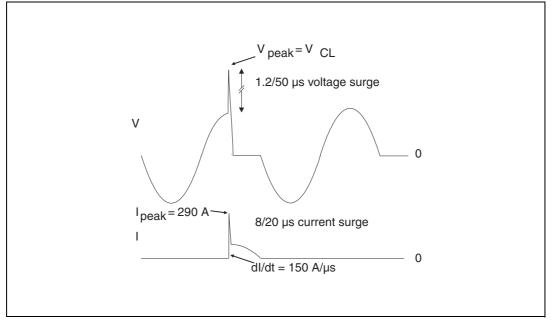


Figure 20. Typical voltage and current waveforms across the ACST1635-8FP during IEC 61000-4-5 standard test

3 Package information

- Epoxy meets UL94, V0
- Recommended torque: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

3.1 TO-220FPAB package information

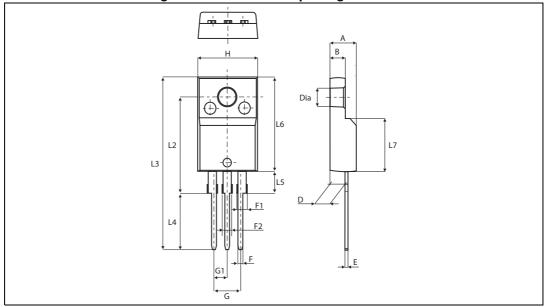


Figure 21. TO-220FPAB package outline

	Dimensions						
Ref.	Millimeters			Inches ⁽¹⁾			
	Тур.	Min.	Max.	Тур.	Min.	Max.	
А		4.4	4.6		0.173	0.181	
В		2.5	2.7		0.098	0.106	
D		2.5	2.75		0.098	0.108	
E		0.45	0.70		0.018	0.027	
F		0.75	1		0.030	0.039	
F1		1.15	1.70		0.045	0.067	
F2		1.15	1.70		0.045	0.067	
G		4.95	5.20		0.195	0.205	
G1		2.4	2.7		0.094	0.106	
Н		10	10.4		0.393	0.409	
L2	16			0.63			
L3		28.6	30.6		1.126	1.205	
L4		9.8	10.6		0.386	0.417	
L5		2.9	3.6		0.114	0.142	
L6		15.9	16.4		0.626	0.646	
L7		9.00	9.30		0.354	0.366	
Dia.		3.00	3.20		0.118	0.126	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

4 Ordering information

AC SWITCH Triac topologyOn-state rms current16 = 16 ATriggering gate current35 = 35 mAVoltage8 = 800 VPackageFP = TO-220FPAB

Figure 22. Ordering information scheme

Table 6. Ordering information

Order code Marking		Package	Weight	Base qty.	Packing mode
ACST1635-8FP	ACST1635-8FP	TO-220FPAB	2.0 g	50	Tube

5 Revision history

Table 7. Document revision history

Date	Revision	Changes
12-Sep-2012	1	First issue.
26-Mar-2015 2		Update of cover page and <i>Table 1</i> . Format updated to current standard.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

