

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ACST4 Series

ASD™ AC Switch Family

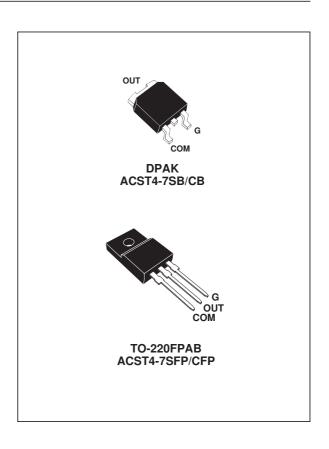
AC POWER SWITCH

MAIN APPLICATIONS

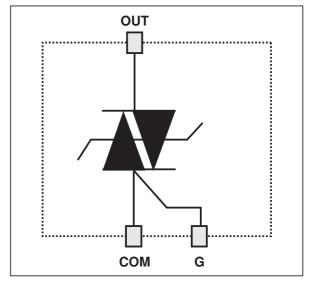
- AC static switching in appliance control systems
- Drive of low power high inductive or resistive loads like
 - spray pump in dishwashers
 - fan in air-conditioners

FEATURES

- Blocking voltage : V_{DRM} / V_{RRM} = +/-700V
- Avalanche controlled : V_{CL} typ = 1100 V
- Nominal conducting current : I_{T(RMS)} = 4A
- High surge current capability: 30A for 20ms full wave
- Gate triggering current : I_{GT} < 10 mA or 25mA</p>
- Switch integrated driver
- High noise immunity: static dV/dt >500V/µs


BENEFITS

- Enables equipment to meet IEC 61000-4-5
- High off-state reliability with planar technology
- No external overvoltage protection needed
- Reduces the power component factor
- Interfaces directly with the microcontroller
- Direct interface with the microcontroller for the ACST4-7S (I_{GT} < 10mA)


DESCRIPTION

The ACST4 belongs to the AC power switch family built around the ASD $^{\text{TM}}$ technology. This high performance device is adapted to home appliances or inductrial systems and drives loads up to 4 A.

The ACS™ switch embeds a Triac structure with a high voltage clamping device to absorb the inductive turn-off energy and withstand line transients such as those described in the IEC61000-4-5 standards.

FUNCTIONAL DIAGRAM

January 2003 - Ed: 3A 1/9

ABSOLUTE RATINGS (limiting values)

For either positive or negative polarity of pin OUT voltage in respect to pin COM voltage

Symbol	Paramete	Value	Unit		
V _{DRM} / V _{RRM}	Repetitive peak off-state voltage	Tj = -10 °C	700	٧	
I _{T(RMS)}			Tc = 110 °C	4	Α
	wave 50 to 60 Hz	TO-220FPAB	Tc = 100 °C		
I _{TSM}				30	Α
	Tj initial = 25°C, full cycle sine wave	F =60 Hz	33	Α	
l ² t	Fusing capability	tp = 10ms	6.4	A²s	
dl/dt	Repetitive on-state current critical rate of rise I _G = 10mA (tr < 100ns)	F = 120 Hz	50	A/μs	
V _{PP}	Non repetitive line peak pulse voltage	2	kV		
Tstg	Storage temperature range			- 40 to + 150	°C
Tj	Operating junction temperature range			- 30 to + 125	°C
TI	Maximum lead soldering temperature d	260	°C		

Note 1: according to test described by IEC61000-4-5 standard & Figure B.

GATE CHARACTERISTICS (maximum values)

Symbol	Parameter	Value	Unit
P _{G (AV)}	Average gate power dissipation	0.1	W
P _{GM}	Peak gate power dissipation (tp = 20μs)	10	Α
I _{GM}	Peak gate current (tp = 20μs)	1	V

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit		
Rth (j-a)	Junction to ambient	$S = 0.5 cm^2$	DPAK	70	°C/W
		TO-220)FPAB	60	°C/W
Rth (j-l)	, I		DPAK		°C/W
conduction		TO-220FPAB		4.6	°C/W

S = Copper surface under Tab

PARAMETER DESCRIPTION

Parameter Symbol	Parameter description			
I _{GT}	Triggering gate current			
V _{GT}	Triggering gate voltage			
V _{GD}	Non-triggering gate voltage			
I _H	Holding current			
IL	Latching current			
V _{TM}	Peak on-state voltage drop			
V _{TO}	On state threshold voltage			
Rd	On state dynamic resistance			
I _{DRM} / I _{RRM}	Maximum forward or reverse leakage current			
dV/dt	Critical rate of rise of off-state voltage			
(dV/dt)c	Critical rate of rise of commutating off-state voltage			
(dl/dt)c	Critical rate of decrease of commutating on-state current			
V _{CL}	Clamping voltage			
I _{CL}	Clamping current			

ELECTRICAL CHARACTERISTICSFor either positive or negative polarity of pin OUT voltage in respect to pin COM voltage.

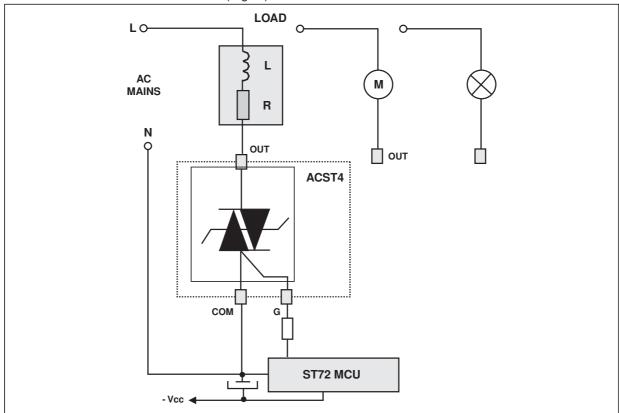
Symbol	Test Conditions				ACST4-7S	ACST4-7C	Unit
I _{GT}	V _{OUT} =12V (DC) R _L =33Ω	QI - QII - QIII	Tj=25°C	MAX	10	25	mA
V _{GT}	$V_{OUT}=12V (DC)$ $R_L=33\Omega$	QI - QII - QIII	Tj=25°C	MAX	1	1.1	V
V_{GD}	V _{OUT} =V _{DRM} R _L =3.3kΩ		Tj=125°C	MIN	0.2		V
lμ	I _{OUT} = 100mA gate open		Tj=25°C	MAX	20	35	mA
IL	I _G = 2 x I _{Gt} max		Tj=25°C	MAX	40	60	mA
V_{TM}	I _{OUT} = 5.6A tp=380μs		Tj=25°C	MAX	1.5		V
V _{TO}			Tj=125°C	MAX	0.90		V
Rd			Tj=125°C	MAX	100		$m\Omega$
I _{DRM} /	V _{OUT} = 700V		Tj=25°C	MAX	10		μΑ
I _{RRM}			Tj=125°C	MAX	500		
dV/dt	V _{OUT} =460V gate open		Tj=110°C	MIN	200	500	V/µs
(dl/dt)c	$(dV/dt)c = 15V/\mu s$		Tj=125°C	MIN	2.0	2.5	A/ms
V _{CL}	I _{CL} = 1mA tp=1ms		Tj=25°C	TYP	1100		V

577

AC LINE SWITCH BASIC APPLICATION

The ACST4 device has been designed to switch on & off low power, but highly inductive or resistive loads such as dishwashers spray pumps, and air-conditioners fan.

Pin COM: Common drive reference to connect to the power line neutral


Pin G: Switch Gate input to connect to the digital controller

Pin OUT: Switch Output to connect to the load

ACST4-7S triggering current has to be sunk from the gate pin G. The switch can then be driven directly by logic level circuits through a resistor as shown on the typical application diagram (Fig A).

Thanks to its thermal and turn off commutation performances, the ACST4 switch is able to drive with no turn off additional snubber an inductive load up to 4 A.

TYPICAL APPLICATION DIAGRAM (Fig. A)

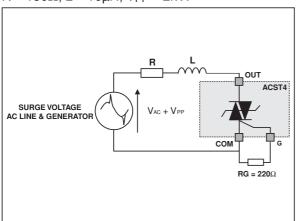
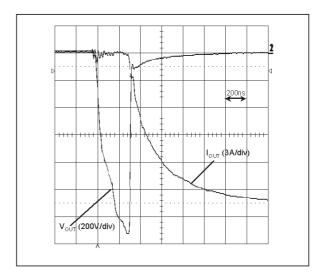
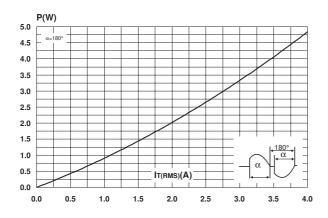
AC LINE TRANSIENT VOLTAGE RUGGEDNESS

The ACST4 switch is able to sustain safely the AC line transient voltages either by clamping the low energy spikes or by breaking over under high energy shocks, even with high turn-on current rises.

The test circuit of the figure 2 is representative of the final ACST application and is also used to stress the ACST switch according to the IEC 61000-4-5 standard conditions. Thanks to the load, the ACST switch sustains the voltage spikes up to 2 kV above the peak line voltage. It will break over safely even on resistive load where the turn on current rate of rise, is as high as shown on figure 3. Such non-repetitive test can be done 10 times on each AC line voltage polarity.

Fig. B: Overvoltage ruggedness test circuit for resistive and inductive loads according to IEC61000-4-5 standards.

 $R=150\Omega,\,L=10\mu H,\,V_{PP}=2kV.$

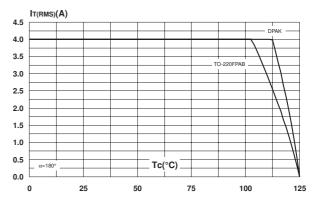

Fig. C: Current and Voltage of the ACST4 during IEC61000-4-5 standard test with R, L & V_{PP} .

Fig. 1: Maximum power dissipation versus RMS on-state current.

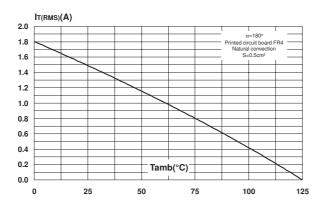
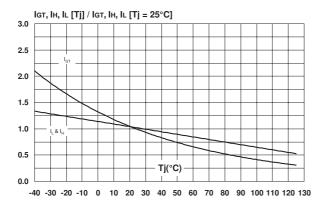


Fig. 2-1: RMS on-state current versus case temperature.



57

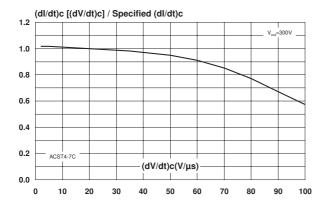

Fig. 2-2: RMS on-state current versus ambient temperature.

Fig. 4: Relative variation of gate trigger current, holding current and latching versus junction temperature (typical values).

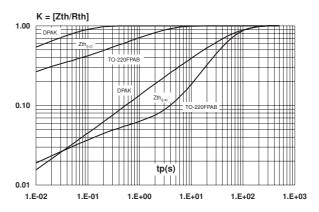
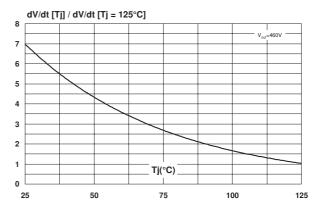


Fig. 6-1: Relative variation of critical rate of decrease of main current versus reapplied dV/dt (typical values).



6/9

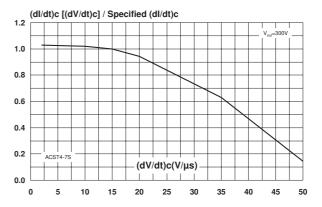

Fig. 3: Relative variation of thermal impedance versus pulse duration.

Fig. 5: Relative variation of static dV/dt versus junction temperature.

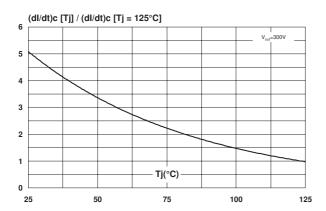


Fig. 6-2: Relative variation of critical rate of decrease of main current versus reapplied dV/dt (typical values).

5

Fig. 7: Relative variation of critical rate of decrease of main current versus junction temperature.

Fig. 9: Non repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10ms, and corresponding value of I^2t .

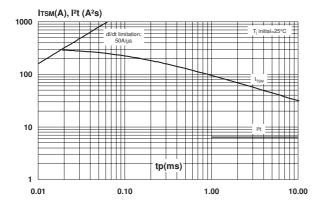
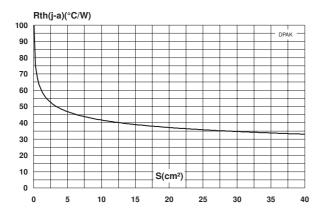
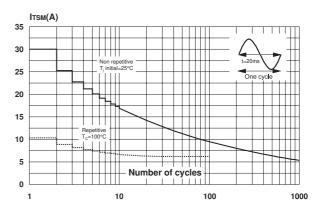
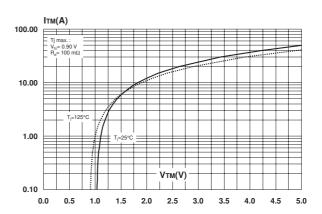


Fig. 11: Thermal resistance junction to ambient versus copper surface under tab (printed circuit board FR4, copper thickness: $35\mu m$)

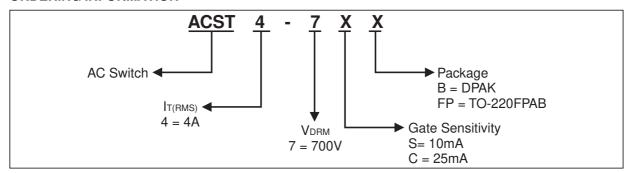
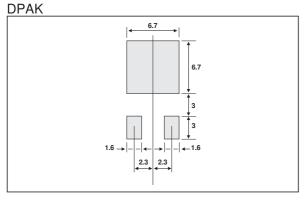
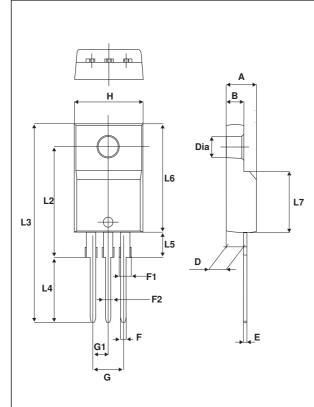

Fig. 8: Surge peak on-state current versus number of cycles.


Fig. 10: On-state characteristics (maximum values).

ORDERING INFORMATION



PACKAGE OUTLINE MECHANICAL DATA


	DIMENSIONS					
REF.	Millim	neters	Inches			
	Min.	Max	Min.	Max.		
Α	2.20	2.40	0.086	0.094		
A1	0.90	1.10	0.035	0.043		
A2	0.03	0.23	0.001	0.009		
В	0.64	0.90	0.025	0.035		
B2	5.20	5.40	0.204	0.212		
С	0.45	0.60	0.017	0.023		
C2	0.48 0.60		0.018	0.023		
D	6.00	6.20	0.236	0.244		
E	6.40	6.60	0.251	0.259		
G	4.40	4.60	0.173	0.181		
Н	9.35	10.10	0.368	0.397		
L2	0.80 typ.		0.03	1 typ.		
L4	0.60	1.00	0.023	0.039		
V2	0°	8°	0°	8°		

FOOT PRINT

PACKAGE OUTLINE MECHANICAL DATA

TO-220FPAB

	DIMENSIONS					
REF.	Millin	neters	Inches			
	Min.	Max.	Min.	Max.		
Α	4.4	4.6	0.173	0.181		
В	2.5	2.7	0.098	0.106		
D	2.5	2.75	0.098	0.108		
Е	0.45	0.70	0.018	0.027		
F	0.75 1		0.030	0.039		
F1	1.15	1.70	0.045	0.067		
F2	1.15	1.70	0.045	0.067		
G	4.95	5.20	0.195	0.205		
G1	2.4	2.7	0.094	0.106		
Н	10	10.4	0.393	0.409		
L2	16	Гур.	0.63 Typ.			
L3	28.6	30.6	1.126	1.205		
L4	9.8	10.6	0.386	0.417		
L5	2.9	3.6	0.114	0.142		
L6	15.9	16.4	0.626	0.646		
L7	9.00 9.30		0.354	0.366		

OTHER INFORMATION

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
ACST4-7SB	ACST47S	DPAK	0.3 g	75	Tube
ACST4-7SB-TR	ACST47S	DPAK	0.3 g	2500	Tape & reel
ACST4-7SFP	ACST47S	TO-220FPAB	2.4 g	50	Tube
ACST4-7CB	ACST47C	DPAK	0.3 g	75	Tube
ACST4-7CB-TR	ACST47C	DPAK	0.3 g	2500	Tape & reel
ACST4-7CFP	ACST47C	TO-220FPAB	2.4 g	50	Tube

■ Epoxy meets UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-

proval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore

Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com