: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

SMALL \& SLIM AUTOMOTIVE RELAY

FEATURES

- Terminal layout for simplifying PC board pattern design
- Capable of 25A high-capacity load switching with compact size
- Plastic sealed type

TYPICAL APPLICATIONS

- Power windows
- Auto door lock
- Power sunroof
- Electrically powered mirrors
- Powered seats
- Lift gates
- Slide door closers, etc. (for DC motor forward/reverse control circuits)

ORDERING INFORMATION

Contact arrangement
1: 1 Form C
2: 1 Form $\mathrm{C} \times 2$ (8 terminal)
5: 1 Form $\mathrm{C} \times 2$ (10 terminal)
Coil voltage, DC
12: 12 V

TYPES

Contact arrangement	Coil voltage	Part No.
1 Form C	12 V DC	ACT112
1 Form C $\times 2$ (8 terminals type)		ACT212
1 Form C $\times 2$ (10 terminals type)		ACT512

Standard packing; 1 Form C: Carton (tube) 30pcs. Case 1,500pcs.
1 Form C $\times 2$: Carton (tube) 30pcs. Case 900pcs.

RATING

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance $[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }$	Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Usable voltage range
12V DC	$\underset{\text { (Initial) }}{\substack{\text { Max. } 7.2 \mathrm{~V} \\ \hline}}$	Min. 1.0 V DC (Initial)	66.7 mA	180Ω	800 mW	10 to 16V DC

[^0]
2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form C $\times 2$, 1 Form C
	Contact resistance (Initial)		N.O.: Typ 7m , N.C.: Typ 10m (By voltage drop 6V DC 1A)
	Contact material		Ag alloy (Cadmium free)
Rating	Nominal switching capacity (resistive load)		N.O.: 20 A 14V DC, N.C.: 10 A 14V DC
	Max. carrying current (14V DC)*3		N.O.: 25 A for 1 hour, 35 A for 2 minutes at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ 20 A for 1 hour, 30 A for 2 minutes at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
	Nominal operating power		800 mW
	Min. switching capacity (resistive load)*1		1 A 14V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC, Measurement at same location as "Breakdown voltage" section.)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)
	Operate time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
	Release time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$ (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$, Time of vibration for each direction; X, Y direction: 2 hours, Z direction: 4 hours
	Mechanical		Min. 10^{7} (at 120 cpm)
Expected life	Electrical		<Resistive load> Min. 10^{5} (at nominal switching capacity, operating frequency: 1s ON, 9s OFF) <Motor load> N.O. side: Min. 2×10^{5} (at Inrush 25A, Steady 5A 14 V DC), Min. 10^{5} (at 25A 14 V DC motor lock condition) N.C. side: Min. 2×10^{5} (at brake current 20A 14 VDC) (operating frequency: $0.5 \mathrm{~s} \mathrm{ON}, 9.5 \mathrm{~s}$ OFF)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$, Humidity: 5% R.H. to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		6 cpm (at nominal switching capacity)
Mass			Twin type: approx. $8 \mathrm{~g} .28 \mathrm{oz}, 1$ Form C type: approx. $4 \mathrm{~g} \mathrm{}$.

*1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.
Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right)$.
*3. Depends on connection conditions. Also, this does not guarantee repeated switching. We recommend that you confirm operation under actual conditions.

* If the relay is used continuously for long periods of time with coils on both sides in an energized condition, breakdown might occur due to abnormal heating depending on the carrying condition. Therefore, please inquire when using with a circuit that causes an energized condition on both sides simultaneously.

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature)
Sample: ACT212, 3pcs.
Contact carrying current: 0A, 10A, 20A
Ambient temperature: Room temperature

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
Sample: ACT212, 3pcs.
Contact carrying current: 0A, 10A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

2. Max. switching capability (Resistive load, initial)

3. Ambient temperature and operating voltage range

4. Distribution of pick-up and drop-out voltage Sample: ACT212, 40pcs.

5. Distribution of operate and release time Sample: ACT212, 40pcs.

6-(1). Electrical life test (Motor free)
Sample: ACT212, 3pcs.
Load: Inrush 25A, steady 5A
Brake current: 13A 14V DC,
Power window motor actual load (free condition)
Operating frequency: ON 0.5 s , OFF 9.5 s
Ambient temperature: Room temperature Circuit:

Load current waveform
Inrush current: 25A, Steady current: 6A
Brake current: 13A

Change of pick-up and drop-out voltage

Change of contact resistance

CT (ACT)

6-(2). Electrical life test (Motor lock)
Sample: ACT212, 3pcs.
Load: 25A 14V DC
Power window motor actual load (lock condition)
Switching frequency: ON 0.5s, OFF 9.5s
Ambient temperature: Room temperature
Circuit:

Load current waveform

6-(3). Electrical life test (Motor lock)
Sample: ACT212, 3pcs.
oad: 20A 14V DC
door lock motor actual load (Lock condition)
Switching frequency: ON 0.3s, OFF 19.7 s
Ambient temperature: Room temperature Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

Load current waveform

DIMENSIONS (mm inch)

1. Twin type (8 terminals)

CAD Data

Dimension:
Max. 1 mm .039 inch: .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\pm 0.3 \pm .012$

Download CAD Data from our Web site.
PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

* Dimensions (thickness and width) of terminal is measured before pre-soldering. Intervals between terminals is measured at A surface level.

2. Twin type (10 terminals)

CAD Data

External dimensions

Dimension:
Max. 1mm . 039 inch:
1 to 3 mm .039 to .118 inch: $+0.2 \pm .008$
Min. 3mm . 118 inch: $\quad \pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

* Dimensions (thickness and width) of terminal is measured before pre-soldering. Intervals between terminals is measured at A surface level.

CT (ACT)

3. Slim 1c type

CAD Data

External dimensions

Pre-soldering

Dimension:
Max. 1mm . 039 inch: $\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

Dimensions (thickness and width) of terminal is measured before pre-soldering Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor for power windows

For Cautions for Use, see Relay Technical Information.

[^0]: Note: Other pick-up voltage types are also available. Please contact us for details.

