mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

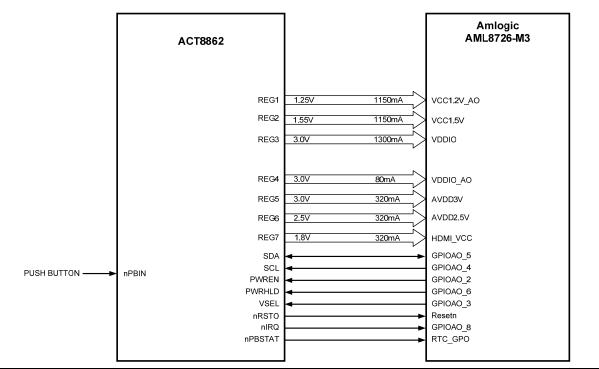
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Advanced PMU for Amlogic AML8726-M3

FEATURES

- Optimized for Amlogic AML8726-M3 Processor
- Three Step-Down DC/DC Converters
- Four Low-Dropout Linear Regulators
- I²C[™] Serial Interface
- Advanced Enable/Disable Sequencing Controller
- Minimal External Components
- Tiny 4×4mm TQFN44-32 Package
 - 0.75mm Package Height
 - Pb-Free and RoHS Compliant

GENERAL DESCRIPTION


The ACT8862 is a complete, cost effective, highlyefficient *ActivePMU*TM power management solution, optimized for the unique power, voltagesequencing, and control requirements of the Amlogic AML8726-M3 processor.

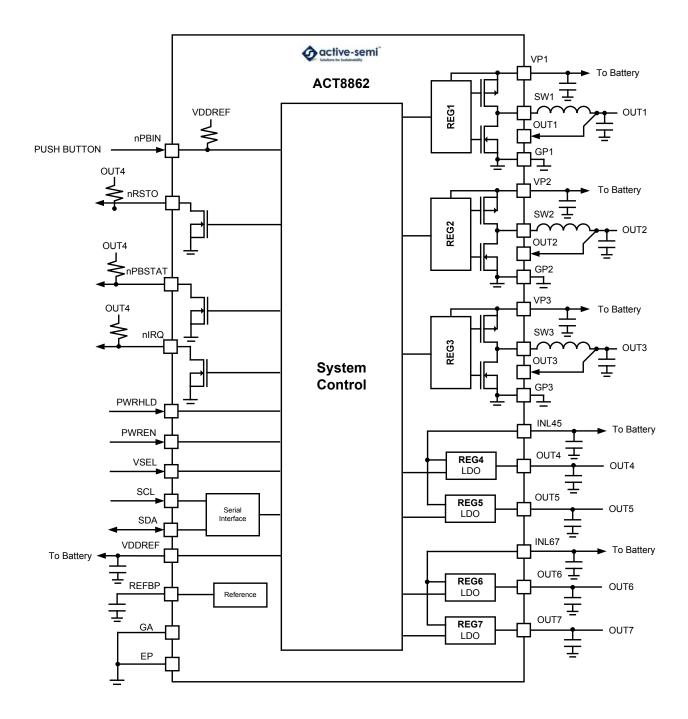
This device features three step-down DC/DC converters and four low-noise, low-dropout linear regulators.

The three DC/DC converters utilize a highefficiency, fixed-frequency (2MHz), current-mode PWM control architecture that requires a minimum number of external components. Two DC/DCs are capable of supplying up to 1150mA of output current, while the third supports up to 1300mA. All four low-dropout linear regulators are highperformance, low-noise, regulators that supply up to 80mA, 320mA, 320mA and 320mA, respectively.

The ACT8862 is available in a compact, Pb-Free and RoHS-compliant TQFN44-32 package.

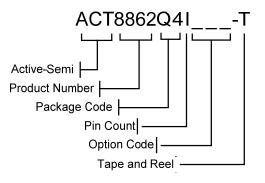
TYPICAL APPLICATION DIAGRAM

Innovative Power[™] - 1 -Active-Semi Proprietary—For Authorized Recipients and Customers *ActivePMU*[™] is a trademark of Active-Semi. I²C[™] is a trademark of NXP.


TABLE OF CONTENTS

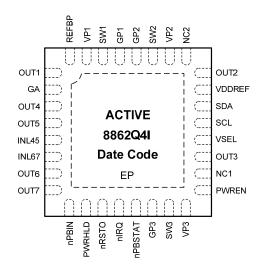
General Information	. 01
Functional Block Diagramp	. 03
Ordering Information	. 04
Pin Configuration	. 04
Pin Descriptions	. 05
Absolute Maximum Ratings	. 07
I ² C Interface Electrical Characteristics	. 08
Global Register Mapp	. 09
Register and Bit Descriptionsp.	. 10
System Control Electrical Characteristicsp.	. 13
Step-Down DC/DC Electrical Characteristics	
Low-Noise LDO Electrical Characteristicsp.	. 15
Typical Performance Characteristics	. 16
System control information	. 20
Interfacing with the Amlogic AML8726-M3	. 20
Control Signalsp.	
Push-Button Controlp.	
Control Sequencesp	. 22
Functional Description	. 25
I ² C Interfacep.	
Voltage Monitor and Interruptp	
Thermal Shutdownp.	. 25
Step-Down DC/DC Regulators	. 26
General Descriptionp	. 26
100% Duty Cycle Operationp.	
Synchronous Rectificationp.	
Soft-Start	
Compensation	
Configuration Options	
OK[] and Output Fault Interruptp. PCB Layout Considerations	·. 21
Low-Noise, Low-Dropout Linear Regulators	
General Description	
Output Current Limit	
Compensation	
OK[] and Output Fault Interrupt	1 28
PCB Layout Considerations	. 28
TQFN44-32 Package Outline and Dimensionsp.	. 30

FUNCTIONAL BLOCK DIAGRAM


ORDERING INFORMATION^{0,2}

PART NUMBER	V _{OUT1} /V _{STBY1} ®	V _{OUT2} /V _{STBY2}	V _{OUT3} /V _{STBY3}	V _{OUT4}	V _{out5}	V _{OUT6}	V _{OUT7}	PACKAGE	PINS	TEMPERATURE RANGE
ACT8862Q4I134-T	1.25V/1.25V	1.55V/1.55V	3.0V/3.0V	3.0V	3.0V	2.5V	1.8V	TQFN44-32	32	-40°C to +85°C

①: All Active-Semi components are RoHS Compliant and with Pb-free plating unless specified differently. The term Pb-free means semiconductor products that are in compliance with current RoHS (Restriction of Hazardous Substances) standards.


2: Standard product options are identified in this table. Contact factory for custom options, minimum order quantity is 12,000 units.

③: To select V_{STBYx} as a output regulation voltage of REGx, drive VSEL to a logic high. The V_{STBYx} can be set by software via I^2C interface, refer to appropriate sections of this datasheet for V_{STBYx} setting.

PIN CONFIGURATION

TOP VIEW

Thin - QFN (TQFN44-32)

PIN DESCRIPTIONS

PIN	NAME	DESCRIPTION
1	OUT1	Output Feedback Sense for REG1. Connect this pin directly to the output node to connect the internal feedback network to the output voltage.
2	GA	Analog Ground. Connect GA directly to a quiet ground node. Connect GA, GP1,GP2 and GP3 together at a single point as close to the IC as possible.
3	OUT4	Output Voltage for REG4. Capable of delivering up to 80mA of output current. Connect a 1μ F ceramic capacitor from OUT4 to GA. The output is discharged to GA with $1.5k\Omega$ resistor when disabled.
4	OUT5	Output Voltage for REG5. Capable of delivering up to 320mA of output current. Connect a 3.3μ F ceramic capacitor from OUT5 to GA. The output is discharged to GA with $1.5k\Omega$ resistor when disabled.
5	INL45	Power Input for REG4 and REG5. Bypass to GA with a high quality ceramic capacitor placed as close to the IC as possible.
6	INL67	Power Input for REG6 and REG7. Bypass to GA with a high quality ceramic capacitor placed as close to the IC as possible.
7	OUT6	Output Voltage for REG6. Capable of delivering up to 320mA of output current. Connect a 3.3μ F ceramic capacitor from OUT6 to GA. The output is discharged to GA with $1.5k\Omega$ resistor when disabled.
8	OUT7	Output Voltage for REG7. Capable of delivering up to 320mA of output current. Connect a 3.3μ F ceramic capacitor from OUT7 to GA. The output is discharged to GA with $1.5k\Omega$ resistor when disabled.
9	nPBIN	Master Enable Input. Drive nPBIN to GA through a $50k\Omega$ resistor to enable the IC, drive nPBIN directly to GA to assert a Hard-Reset condition. Refer to the <i>nPBIN Multi-Function Input</i> section for more information. nPBIN is internally pulled up to V _{VDDREF} through a $35k\Omega$ resistor.
10	PWRHLD	Power Hold Input. Refer to the Control Sequences section for more information.
11	nRSTO	Active Low Reset Output. See the <i>nRSTO Output</i> section for more information.
12	nIRQ	Open-Drain Interrupt Output. nIRQ asserts any time an unmasked fault condition exists or an interrupt occurs. See the <i>nIRQ Output</i> section for more information.
13	nPBSTAT	Active-Low Open-Drain Push-Button Status Output. nPBSTAT is asserted low whenever the nPBIN is pushed, and is high-Z otherwise. See the <i>nPBSTAT Output</i> section for more information.
14	GP3	Power Ground for REG3. Connect GA, GP1, GP2, and GP3 together at a single point as close to the IC as possible.
15	SW3	Switching Node Output for REG3. Connect this pin to the switching end of the inductor.
16	VP3	Power Input for REG3. Bypass to GP3 with a high quality ceramic capacitor placed as close to the IC as possible.
17	PWREN	Power Enable Input. Refer to the Control Sequences section for more information.
18	NC1	Not Connected. Not internally connected.
19	OUT3	Output Feedback Sense for REG3. Connect this pin directly to the output node to connect the internal feedback network to the output voltage.
20	VSEL	Step-Down DC/DCs Output Voltage Selection. Drive to logic low to select default output voltage. Drive to logic high to select secondary output voltage. See the <i>Output Voltage Programming</i> section for more information.
21	SCL	Clock Input for I ² C Serial Interface.
22	SDA	Data Input for I ² C Serial Interface. Data is read on the rising edge of SCL.

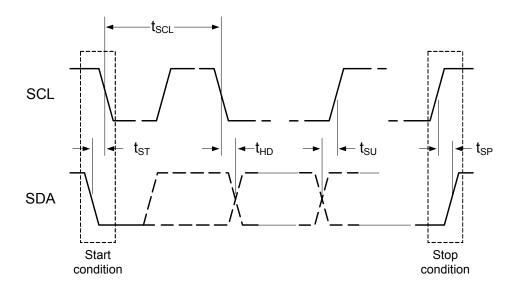
PIN DESCRIPTIONS CONT'D

PIN	NAME	DESCRIPTION
23	VDDREF	Power supply for the internal reference. Connect this pin directly to the system power supply. Bypass VDDREF to GA with a 1µF capacitor placed as close to the IC as possible. Star connection with VP1, VP2 and VP3 preferred.
24	OUT2	Output Feedback Sense for REG2. Connect this pin directly to the output node to connect the internal feedback network to the output voltage.
25	NC2	Not Connected. Not internally connected.
26	VP2	Power Input for REG2 and System Control. Bypass to GP2 with a high quality ceramic capacitor placed as close to the IC as possible.
27	SW2	Switching Node Output for REG2. Connect this pin to the switching end of the inductor.
28	GP2	Power Ground for REG2. Connect GA, GP1,GP2 and GP3 together at a single point as close to the IC as possible.
29	GP1	Power Ground for REG1. Connect GA, GP1,GP2 and GP3 together at a single point as close to the IC as possible.
30	SW1	Switching Node Output for REG1. Connect this pin to the switching end of the inductor.
31	VP1	Power Input for REG1. Bypass to GP1 with a high quality ceramic capacitor placed as close to the IC as possible.
32	REFBP	Reference Bypass. Connect a 0.047 μ F ceramic capacitor from REFBP to GA. This pin is discharged to GA in shutdown.
EP	EP	Exposed Pad. Must be soldered to ground on PCB.

ABSOLUTE MAXIMUM RATINGS[®]

PARAMETER	VALUE	UNIT
VP1 to GP1, VP2 to GP2, VP3 to GP3	-0.3 to + 6	V
INL45, INL67, VDDREF to GA	-0.3 to + 6	V
nPBIN, SCL, SDA, REFBP, PWRHLD, PWREN, VSEL to GA	-0.3 to (V _{VDDREF} + 0.3)	V
nRSTO, nIRQ, nPBSTAT to GA	-0.3 to + 6	V
SW1, OUT1 to GP1	-0.3 to (V _{VP1} + 0.3)	V
SW2, OUT2 to GP2	-0.3 to (V _{VP2} + 0.3)	V
SW3, OUT3 to GP3	-0.3 to (V _{VP3} + 0.3)	V
OUT4, OUT5, OUT6, OUT7 to GA	-0.3 to (V _{INL} + 0.3)	V
GP1, GP2, GP3 to GA	-0.3 to + 0.3	V
Junction to Ambient Thermal Resistance (θ_{JA})	30	°C/W
Operating Ambient Temperature	-40 to 85	°C
Maximum Junction Temperature	125	°C
Storage Temperature	-55 to 150	°C
Lead Temperature (Soldering, 10 sec)	300	°C

 \oplus : Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.


I²C INTERFACE ELECTRICAL CHARACTERISTICS

($V_{VP1} = V_{VP2} = V_{VP3} = 3.6V$, $T_A = 25^{\circ}C$, unless otherwise specified.)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SCL, SDA Input Low	V_{VDDREF} = 3.1V to 5.5V, T_A = -40°C to 85°C			0.35	V
SCL, SDA Input High	V_{VDDREF} = 3.1V to 5.5V, T_A = -40°C to 85°C	1.55			V
SDA Leakage Current				1	μA
SCL Leakage Current			1	2	μA
SDA Output Low	I _{OL} = 5mA			0.35	V
SCL Clock Period, t _{SCL}		1.5			μs
SDA Data Setup Time, t_{SU}		100			ns
SDA Data Hold Time, t_{HD}		300			ns
Start Setup Time, t _{ST}	For Start Condition	100			ns
Stop Setup Time, t _{SP}	For Stop Condition	100			ns

Figure 1:

I²C Compatible Serial Bus Timing

GLOBAL REGISTER MAP

						BITS	5			
OUIPUI	ADDRESS		D7	D6	D5	D4	D3	D2	D1	D0
SYS	0x00	NAME	TRST	nSYSMODE	nSYSLEVMSK	nSYSSTAT	SYSLEV[3]	SYSLEV[2]	SYSLEV[1]	SYSLEV[0]
515	000	DEFAULT®	0	1	0	R	0	1	1	1
eve	0,01	NAME	Reserved	Reserved	Reserved	Reserved	SCRATCH	SCRATCH	SCRATCH	SCRATCH
SYS	0x01	DEFAULT®	0	0	0	0	0	0	0	0
REG1	0x20	NAME	Reserved	Reserved	VSET1[5]	VSET1[4]	VSET1[3]	VSET1[2]	VSET1[1]	VSET1[0]
REGI	0,20	DEFAULT®	0	0	0	1	1	0	0	1
REG1	0x21	NAME	Reserved	Reserved	VSET2[5]	VSET2[4]	VSET2[3]	VSET2[2]	VSET2[1]	VSET2[0]
REGI	0721	DEFAULT [®]	0	0	0	1	1	0	0	1
REG1	0x22	NAME	ON	PHASE	MODE	DELAY[2] [©]	DELAY[1] ²	DELAY[0] [©]	nFLTMSK	OK
REGI	0.22	DEFAULT®	0	0	0	0	0	1	0	R
REG2	0x30	NAME	Reserved	Reserved	VSET1[5]	VSET1[4]	VSET1[3]	VSET1[2]	VSET1[1]	VSET1[0]
REGZ	0x30	DEFAULT [®]	0	0	0	1	1	1	1	1
REG2	0x31	NAME	Reserved	Reserved	VSET2[5]	VSET2[4]	VSET2[3]	VSET2[2]	VSET2[1]	VSET2[0]
REGZ	0831	DEFAULT®	0	0	0	1	1	1	1	1
REG2	0x32	NAME	ON	PHASE	MODE	DELAY[2] [©]	DELAY[1] [©]	DELAY[0] [©]	nFLTMSK	OK
REGZ	0x32	DEFAULT®	0	0	0	0	0	1	0	R
	0.40	NAME	Reserved	Reserved	VSET1[5]	VSET1[4]	VSET1[3]	VSET1[2]	VSET1[1]	VSET1[0]
REG3	0x40	DEFAULT®	0	0	1	1	0	1	1	0
	0x41	NAME	Reserved	Reserved	VSET2[5]	VSET2[4]	VSET2[3]	VSET2[2]	VSET2[1]	VSET2[0]
REG3	UX4 I	DEFAULT®	0	0	1	1	0	1	1	0
	0x42	NAME	ON	PWRSTAT	MODE	DELAY[2] ²	DELAY[1] [©]	DELAY[0] [©]	nFLTMSK	OK
REG3	0X4Z	DEFAULT®	0	0	0	0	1	0	0	R
REG4	0x50	NAME	Reserved	Reserved	VSET[5]	VSET[4]	VSET[3]	VSET[2]	VSET[1]	VSET[0]
REG4	UCSU	DEFAULT®	0	0	1	1	0	1	1	0
REG4	0x51	NAME	ON	DIS	LOWIQ	DELAY[2] ²	DELAY[1] [©]	DELAY[0] [©]	nFLTMSK	OK
REG4	UXDI	DEFAULT®	0	1	0	0	0	1	0	R
REG5	0x54	NAME	Reserved	Reserved	VSET[5]	VSET[4]	VSET[3]	VSET[2]	VSET[1]	VSET[0]
REGO	0x34	DEFAULT®	0	0	1	1	0	1	1	0
REG5	0x55	NAME	ON	DIS	LOWIQ	DELAY[2] [©]	DELAY[1] [©]	DELAY[0] [©]	nFLTMSK	OK
REGO	UXOO	DEFAULT®	0	1	0	0	1	0	0	R
REG6	0x60	NAME	Reserved	Reserved	VSET[5]	VSET[4]	VSET[3]	VSET[2]	VSET[1]	VSET[0]
REGO	0000	DEFAULT®	0	0	1	1	0	0	0	1
DECO	0,01	NAME	ON	DIS	LOWIQ	DELAY[2] ²	DELAY[1] ²	DELAY[0] [©]	nFLTMSK	OK
REG6	0x61	DEFAULT [®]	0	1	0	0	1	0	0	R
	0.4	NAME	Reserved	Reserved	VSET[5]	VSET[4]	VSET[3]	VSET[2]	VSET[1]	VSET[0]
REG7	0x64	DEFAULT [®]	0	1	1	0	0	1	0	0
	0.05	NAME	ON	DIS	LOWIQ	DELAY[2] ²	DELAY[1] ²	DELAY[0] ²	nFLTMSK	OK
REG7	0x65	DEFAULT [®]	0	1	0	0	0	0	0	R

1 Default values of ACT8862Q4I134-T.

2: Regulator turn-on delay bits. Automatically cleared to default values when the input power is removed or falls below the system UVLO.

REGISTER AND BIT DESCRIPTIONS

Table 1:

Global Register Map

OUTPUT	ADDRESS	BIT	NAME	ACCESS	DESCRIPTION
SYS	0x00	[7]	TRST	R/W	Reset Timer Setting. Defines the reset time-out threshold. Reset time-out is 65ms when value is 1, reset time-out is 260ms when value is 0. See <i>nRSTO Output</i> section for more information.
SYS	0x00	[6]	nSYSMODE	R/W	SYSLEV Mode Select. Defines the response to the SYSLEV voltage detector, 1: Generate an interrupt when V_{VDDREF} falls below the programmed SYSLEV threshold, 0: automatic shutdown when V_{VDDREF} falls below the programmed SYSLEV threshold.
SYS	0x00	[5]	nSYSLEVMSK	R/W	System Voltage Level Interrupt Mask. Disabled interrupt by default, set to 1 to enable this interrupt. See the <i>Programmable System Voltage Monitor</i> section for more information
SYS	0x00	[4]	nSYSSTAT	R	System Voltage Status. Value is 1 when V_{VDDREF} is lower than the SYSLEV voltage threshold, value is 0 when V_{VDDREF} is higher than the system voltage detection threshold.
SYS	0x00	[3:0]	SYSLEV	R/W	System Voltage Detect Threshold. Defines the SYSLEV voltage threshold. See the <i>Programmable System Voltage Monitor</i> section for more information.
SYS	0x01	[7:4]	-	R	Reserved.
SYS	0x01	[3:0]	SCRATCH	R/W	Scratchpad Bits. Non-functional bits, maybe be used by user to store system status information. Volatile bits, which are cleared upon system shutdown.
REG1	0x20	[7:6]	-	R	Reserved.
REG1	0x20	[5:0]	VSET1	R/W	Primary Output Voltage Selection. Valid when VSEL is driven low. See the <i>Output Voltage Programming</i> section for more information.
REG1	0x21	[7:6]	-	R	Reserved.
REG1	0x21	[5:0]	VSET2	R/W	Secondary Output Voltage Selection. Valid when VSEL is driven high. See the <i>Output Voltage Programming</i> section for more information.
REG1	0x22	[7]	ON	R/W	Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator.
REG1	0x22	[6]	PHASE	R/W	Regulator Phase Control. Set bit to 1 for regulator to operate 180° out of phase with the oscillator, clear bit to 0 for regulator to operate in phase with the oscillator.
REG1	0x22	[5]	MODE	R/W	Regulator Mode Select. Set bit to 1 for fixed-frequency PWM under all load conditions, clear bit to 0 to transit to power-savings mode under light-load conditions.
REG1	0x22	[4:2]	DELAY	R/W	Regulator Turn-On Delay Control. See the <i>REG1, REG2, REG3</i> <i>Turn-on Delay</i> section for more information.
REG1	0x22	[1]	nFLTMSK	R/W	Regulator Fault Mask Control. Set bit to 1 enable to fault- interrupts, clear bit to 0 to disable fault-interrupts.
REG1	0x22	[0]	ОК	R/W	Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise.
REG2	0x30	[7:6]	-	R	Reserved.
REG2	0x30	[5:0]	VSET1	R/W	Primary Output Voltage Selection. Valid when VSEL is driven low. See the <i>Output Voltage Programming</i> section for more information.
REG2	0x31	[7:6]	-	R	Reserved.

REGISTER AND BIT DESCRIPTIONS CONT'D

			-	
ADDRESS	BIT	NAME	ACCESS	DESCRIPTION
0x31	[5:0]	VSET2	R/W	Secondary Output Voltage Selection. Valid when VSEL is driven high. See the <i>Output Voltage Programming</i> section for more information.
0x32	[7]	ON	R/W	Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator.
0x32	[6]	PHASE	R/W	Regulator Phase Control. Set bit to 1 for regulator to operate 180° out of phase with the oscillator, clear bit to 0 for regulator to operate in phase with the oscillator.
0x32	[5]	MODE	R/W	Regulator Mode Select. Set bit to 1 for fixed-frequency PWM under all load conditions, clear bit to 0 to transit to power-savings mode under light-load conditions.
0x32	[4:2]	DELAY	R/W	Regulator Turn-On Delay Control. See the <i>REG1, REG2, REG3 Turn-on Delay</i> section for more information.
0x32	[1]	nFLTMSK	R/W	Regulator Fault Mask Control. Set bit to 1 enable to fault- interrupts, clear bit to 0 to disable fault-interrupts.
0x32	[0]	ОК	R/W	Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise.
0x40	[7:6]	-	R	Reserved.
0x40	[5:0]	VSET1	R/W	Primary Output Voltage Selection. Valid when VSEL is driven low. See the <i>Output Voltage Programming</i> section for more information.
0x41	[7:6]	-	R	Reserved.
0x41	[5:0]	VSET2	R/W	Secondary Output Voltage Selection. Valid when VSEL is driven high. See the <i>Output Voltage Programming</i> section for more information.
0x42	[7]	ON	R/W	Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator.
0x42	[6]	PWRSTAT	R/W	Configures regulator behavior with respect to the nPBIN input. Set bit to 0 to enable regulator when nPBIN is asserted.
0x42	[5]	MODE	R/W	Regulator Mode Select. Set bit to 1 for fixed-frequency PWM under all load conditions, clear bit to 0 to transition to power-savings mode under light-load conditions.
0x42	[4:2]	DELAY	R/W	Regulator Turn-On Delay Control. See the <i>REG1, REG2, REG3 Turn-on Delay</i> section for more information.
0x42	[1]	nFLTMSK	R/W	Regulator Fault Mask Control. Set bit to 1 enable to fault- interrupts, clear bit to 0 to disable fault-interrupts.
0x42	[0]	ОК	R/W	Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise.
0x50	[7:6]	-	R	Reserved.
0x50	[5:0]	VSET	R/W	Output Voltage Selection. See the <i>Output Voltage</i> <i>Programming</i> section for more information.
0x51	[7]	ON	R/W	Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator.
0x51	[6]	DIS	R/W	Output Discharge Control. When activated, discharges LDO output to GA through $1.5k\Omega$ when in shutdown. Set bit to 1 to enable output voltage discharge in shutdown, clear bit to 0 to disable this function.
0x51	[5]	LOWIQ	R/W	LDO Low-IQ Mode Control. Set bit to 1 for low-power operating mode, clear bit to 0 for normal mode.
0x51	[4:2]	DELAY	R/W	Regulator Turn-On Delay Control. See the REG4, REG5, REG6, REG7 Turn-on Delay section for more information.
0x51	[1]	nFLTMSK	R/W	Regulator Fault Mask Control. Set bit to 1 enable to fault- interrupts, clear bit to 0 to disable fault-interrupts.
	0x31 0x32 0x40 0x41 0x42 0x50 0x51 0x51 0x51	0x31 [5:0] 0x32 [7] 0x32 [6] 0x32 [5] 0x32 [4:2] 0x32 [1] 0x32 [0] 0x32 [0] 0x32 [0] 0x32 [0] 0x32 [0] 0x32 [1] 0x32 [5] 0x40 [5:0] 0x41 [5:0] 0x42 [7] 0x42 [6] 0x42 [6] 0x42 [1] 0x50 [5:0] 0x51 [5] 0x51 [5] 0x51 [5] 0x51 [5]	Ox31[5:0]VSET20x32[7]ON0x32[6]PHASE0x32[5]MODE0x32[4:2]DELAY0x32[1]nFLTMSK0x32[0]OK0x32[1]NELTMSK0x32[0]OK0x40[7:6]-0x41[5:0]VSET10x41[5:0]VSET20x41[5:0]VSET20x42[7]ON0x42[6]PWRSTAT0x42[6]MODE0x42[1]nFLTMSK0x42[1]nFLTMSK0x42[1]OK0x42[1]NC0x42[1]OK0x42[1]OK0x42[1]DELAY0x42[1]DELAY0x42[1]DELAY0x51[7]ON0x51[5]JUS0x51[5]LOWIQ0x51[4:2]DELAY	0x31[5:0]VSET2R/W0x32[7]ONR/W0x32[6]PHASER/W0x32[5]MODER/W0x32[4:2]DELAYR/W0x32[1]nFLTMSKR/W0x32[0]OKR/W0x32[1]nFLTMSKR/W0x40[7:6]-R0x41[5:0]VSET1R/W0x42[7]ONR/W0x42[6]PWRSTATR/W0x42[6]PWRSTATR/W0x42[5]MODER/W0x42[6]PURSTATR/W0x42[6]DELAYR/W0x42[1]nFLTMSKR/W0x42[1]NODER/W0x42[1]NCLTMSKR/W0x42[1]NCLTMSKR/W0x50[7:6]-R0x51[7]ONR/W0x51[5]LOWIQR/W0x51[5]LOWIQR/W0x51[5]LOWIQR/W0x51[5]LOWIQR/W0x51[5]LOWIQR/W0x51[5]LOWIQR/W0x51[5]LOWIQR/W

 Innovative Power™
 - 11

 Active-Semi Proprietary—For Authorized Recipients and Customers

 ActivePMU™ is a trademark of Active-Semi.

 I²C™ is a trademark of NXP.

REGISTER AND BIT DESCRIPTIONS CONT'D OUTPUT ADDRESS BIT NAME ACCESS DESCRIPTION Regulator Power-OK Status. Value is 1 when output voltage REG4 0x51 [0] OK R/W exceeds the power-OK threshold, value is 0 otherwise. REG5 0x54 [7:6] R Reserved. Output Voltage Selection. See the Output Voltage REG5 0x54 [5:0] VSET R/W Programming section for more information. Regulator Enable Bit. Set bit to 1 to enable the regulator, REG5 ON R/W 0x55 [7] clear bit to 0 to disable the regulator. Output Discharge Control, When activated, discharges LDO output to GA through $1.5k\Omega$ when in shutdown. Set bit to 1 to R/W REG5 DIS 0x55 [6] enable output voltage discharge in shutdown, clear bit to 0 to disable this function. LDO Low-IQ Mode Control. Set bit to 1 for low-power REG5 0x55 [5] LOWIQ R/W operating mode, clear bit to 0 for normal mode. Regulator Turn-On Delay Control. See the REG4, REG5, REG5 DELAY R/W 0x55 [4:2] REG6, REG7 Turn-on Delay section for more information. Regulator Fault Mask Control. Set bit to 1 enable to fault-REG5 0x55 [1] nFLTMSK R/W interrupts, clear bit to 0 to disable fault-interrupts. Regulator Power-OK Status. Value is 1 when output voltage REG5 0x55 [0] OK R/W exceeds the power-OK threshold, value is 0 otherwise. REG6 Reserved. 0x60 [7:6] R -Output Voltage Selection. See the Output Voltage VSET R/W REG6 0x60 [5:0] Programming section for more information. Regulator Enable Bit. Set bit to 1 to enable the regulator, REG6 0x61 ON R/W [7] clear bit to 0 to disable the regulator. Output Discharge Control. When activated, discharges LDO output to GA through $1.5k\Omega$ when in shutdown. Set bit to 1 to REG6 0x61 DIS R/W [6] enable output voltage discharge in shutdown, clear bit to 0 to disable this function. LDO Low-IQ Mode Control. Set bit to 1 for low-power REG6 0x61 [5] LOWIQ R/W operating mode, clear bit to 0 for normal mode. Regulator Turn-On Delay Control. See the REG4, REG5, REG6 0x61 [4:2] DELAY R/W REG6, REG7 Turn-on Delay section for more information. Regulator Fault Mask Control. Set bit to 1 enable to fault-RFG6 0x61 nFI TMSK R/W [1] interrupts, clear bit to 0 to disable fault-interrupts. Regulator Power-OK Status. Value is 1 when output voltage REG6 0x61 [0] OK R/W exceeds the power-OK threshold, value is 0 otherwise. REG7 [7:6] R Reserved. 0x64 _ Output Voltage Selection. See the Output Voltage REG7 0x64 VSET R/W [5:0] Programming section for more information. Regulator Enable Bit. Set bit to 1 to enable the regulator, RFG7 0x65 [7] ON R/W clear bit to 0 to disable the regulator. Output Discharge Control. When activated, discharges LDO output to GA through $1.5k\Omega$ when in shutdown. Set bit to 1 to REG7 R/W 0x65 [6] DIS enable output voltage discharge in shutdown, clear bit to 0 to disable this function. LDO Low-IQ Mode Control. Set bit to 1 for low-power REG7 0x65 LOWIQ R/W [5] operating mode, clear bit to 0 for normal mode. Regulator Turn-On Delay Control. See the REG4, REG5, REG7 0x65 [4:2] DELAY R/W REG6, REG7 Turn-on Delay section for more information. Regulator Fault Mask Control. Set bit to 1 enable to fault-REG7 0x65 nFLTMSK R/W [1] interrupts, clear bit to 0 to disable fault-interrupts. Regulator Power-OK Status. Value is 1 when output voltage REG7 0x65 OK R/W [0]

Innovative Power[™] - 12 -Active-Semi Proprietary—For Authorized Recipients and Customers *ActivePMU*[™] is a trademark of Active-Semi. I²C[™] is a trademark of NXP.

exceeds the power-OK threshold, value is 0 otherwise.

SYSTEM CONTROL ELECTRICAL CHARACTERISTICS

(V_{VP1} = V_{VP2} = V_{VP3} = 3.6V, T_A = 25°C, unless otherwise specified.)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage Range		2.7		5.5	V
UVLO Threshold Voltage	V _{VDDREF} Rising	2.2	2.45	2.65	V
UVLO Hysteresis	V _{VDDREF} Falling		200		mV
Supply Current	REG1, REG2, REG4 enabled. REG3, REG5, REG6 and REG7 disabled.		250		
Supply Current	REG1, REG2, REG3, REG4, REG5, REG6 and REG7 Enabled		5.5 2.45 2.65 200	μA	
Shutdown Supply Current	All Regulators Disabled		1.5	3.0	μA
Oscillator Frequency		1.8	2	2.2	MHz
Logic High Input Voltage [®]		1.4			V
Logic Low Input Voltage				0.4	V
Leakage Current	$V_{nIRQ} = V_{nRSTO} = 4.2V$			1	μA
Low Level Output Voltage [©]	I _{SINK} = 5mA			0.35	V
nRSTO Delay			260 ³		ms
Thermal Shutdown Temperature	Temperature rising		160		°C
Thermal Shutdown Hysteresis			20		°C

①: PWRHLD, PWREN, VSEL are logic inputs.

②: nPBSTAT, nIRQ, nRSTO are open drain outputs.

③: Typical value shown. Actual value may vary from 227.9ms to 291.2ms.

STEP-DOWN DC/DC ELECTRICAL CHARACTERISTICS

(V_{VP1} = V_{VP2} = V_{VP3} = 3.6V, T_A = 25°C, unless otherwise specified.)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
Operating Voltage Range		2.7		5.5	V
UVLO Threshold	Input Voltage Rising	2.5	2.6	2.7	V
UVLO Hysteresis	Input Voltage Falling		100		mV
Quiescent Supply Current	Regulator Enabled		65	90	μA
Shutdown Current	V_{VP} = 5.5V, Regulator Disabled		0	1	μA
	V _{OUT} ≥ 1.2V, I _{OUT} = 10mA	-1%	$V_{NOM}{}^{\mathbb{O}}$	1%	
Output Voltage Accuracy	V _{OUT} < 1.2V, I _{OUT} = 10mA	-2%	$V_{NOM}^{\mathbb{O}}$	2%	V
Line Regulation	V_{VP} = Max (V_{NOM}^{\odot} +1, 3.2V) to 5.5V		0.15		%/V
Load Regulation	I _{OUT} = 10mA to IMAX [∞]		0.0017		%/mA
Power Good Threshold	V _{OUT} Rising		93		$%V_{NOM}$
Power Good Hysteresis	V _{OUT} Falling		2		$%V_{NOM}$
Ossillator Fraguenau	$V_{OUT} \ge 20\%$ of V_{NOM}	1.8	2	2.2	MHz
Oscillator Frequency	V _{OUT} = 0V		500		kHz
Soft-Start Period			400		μs
Minimum On-Time			75		ns
REG1	·	•			-
Maximum Output Current		1.15			Α
Current Limit		1.55	1.80	2.05	Α
PMOS On-Resistance	I _{SW1} = -100mA		0.16		Ω
NMOS On-Resistance	I _{SW1} = 100mA		0.16		Ω
SW1 Leakage Current	V _{VP1} = 5.5V, V _{SW1} = 0 or 5.5V		0	1	μA
REG2					
Maximum Output Current		1.15			Α
Current Limit		1.55	1.80	2.05	Α
PMOS On-Resistance	I _{SW2} = -100mA		0.16		Ω
NMOS On-Resistance	I _{SW2} = 100mA		0.16		Ω
SW2 Leakage Current	$V_{VP2} = 5.5V, V_{SW2} = 0 \text{ or } 5.5V$		0	1	μA
REG3					
Maximum Output Current		1.3			Α
Current Limit		1.7	2.1	2.5	А
PMOS On-Resistance	I _{SW3} = -100mA		0.16		Ω
NMOS On-Resistance	I _{SW3} = 100mA		0.16		Ω
SW3 Leakage Current	V _{VP3} = 5.5V, V _{SW3} = 0 or 5.5V		0	1	μA

 $\oplus: V_{\text{NOM}}$ refers to the nominal output voltage level for V_{OUT} as defined by the Ordering Information section.

2: IMAX Maximum Output Current.

LOW-NOISE LDO ELECTRICAL CHARACTERISTICS

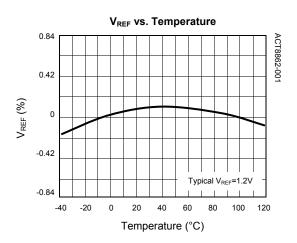
 $(V_{INL} = 3.6V, C_{OUT4} = 1\mu F, C_{OUT5} = C_{OUT6} = C_{OUT7} = 3.3\mu F, LOWIQ[] = [0], T_A = 25^{\circ}C, unless otherwise specified.)$

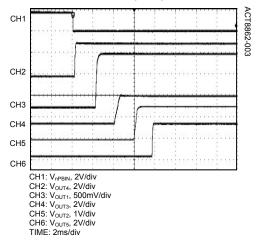
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage Range		2.5		5.5	V
Output Voltage Accuracy	$V_{OUT} \ge 1.2V$, $T_A = 25^{\circ}C$, $I_{OUT} = 10mA$	-1%	V_{NOM}	2%	V
Output voltage Accuracy	V_{OUT} < 1.2V, T_A = 25°C, I_{OUT} = 10mA	-2%	$V_{\text{NOM}}^{ ilde{U}}$	4%	v
Line Degulation	V _{INL} = Max (V _{OUT} + 0.5V, 3.6V) to 5.5V LOWIQ[] = [0]		0.05		m)////
Line Regulation	V _{INL} = Max (V _{OUT} + 0.5V, 3.6V) to 5.5V LOWIQ[] = [1]		0.5		mV/V
Load Regulation	I _{OUT} = 1mA to IMAX [©]		0.08		V/A
Device Oversky Deisetien Detie	f = 1kHz, I _{OUT} = 20mA, V _{OUT} =1.2V		75		-10
Power Supply Rejection Ratio	f = 10kHz, I _{OUT} = 20mA, V _{OUT} =1.2V		65		dB
	Regulator Enabled, LOWIQ[] = [0]		37	60	
Supply Current per Output	Regulator Enabled, LOWIQ[] = [1]		31	52	μA
	Regulator Disabled		0	5.5 2% 4% 60	
Soft-Start Period	V _{OUT} = 2.9V		140		μs
Power Good Threshold	V _{OUT} Rising		89		%
Power Good Hysteresis	V _{OUT} Falling		3		%
Output Noise	I _{OUT} = 20mA, f = 10Hz to 100kHz, V _{OUT} = 1.2V		50		μV_{RMS}
Discharge Resistance	LDO Disabled, DIS[] = 1		1.5		kΩ
REG4					•
Dropout Voltage [®]	I _{OUT} = 50mA, V _{OUT} > 3.1V		90	180	mV
Maximum Output Current		80			mA
Current Limit [®]	V _{OUT} = 95% of regulation voltage	100			mA
Stable C _{OUT4} Range		1		20	μF
REG5					
Dropout Voltage	I _{OUT} = 160mA, V _{OUT} > 3.1V		140	280	mV
Maximum Output Current		320			mA
Current Limit	V_{OUT} = 95% of regulation voltage	400			mA
Stable C _{OUT5} Range		3.3		20	μF
REG6					
Dropout Voltage	I _{OUT} = 160mA, V _{OUT} > 3.1V		90	180	mV
Maximum Output Current		320			mA
Current Limit	V_{OUT} = 95% of regulation voltage	400			mA
Stable C _{OUT6} Range		3.3		20	μF
REG7	•	•			• ·
Dropout Voltage	I _{OUT} = 160mA, V _{OUT} > 3.1V		140	280	mV
Maximum Output Current		320			mA
Current Limit	V_{OUT} = 95% of regulation voltage	400			mA
Stable C _{OUT7} Range	` `	3.3		20	μF

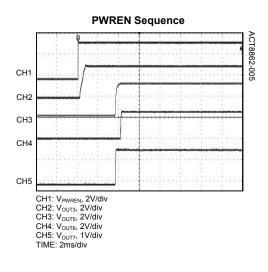
①: V_{NOM} refers to the nominal output voltage level for V_{OUT} as defined by the Ordering Information section.

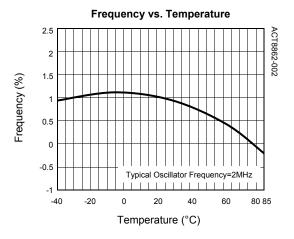
2: IMAX Maximum Output Current.

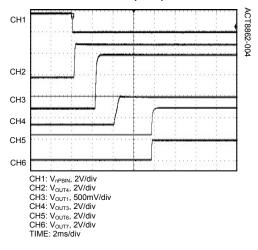
③: Dropout Voltage is defined as the differential voltage between input and output when the output voltage drops 100mV below the regulation voltage (for 3.1V output voltage or higher)

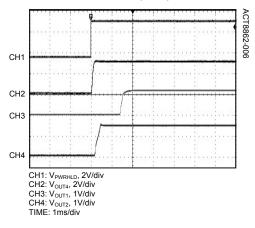

④: LDO current limit is defined as the output current at which the output voltage drops to 95% of the respective regulation voltage. Under heavy overload conditions the output current limit folds back by 30% (typ)




TYPICAL PERFORMANCE CHARACTERISTICS

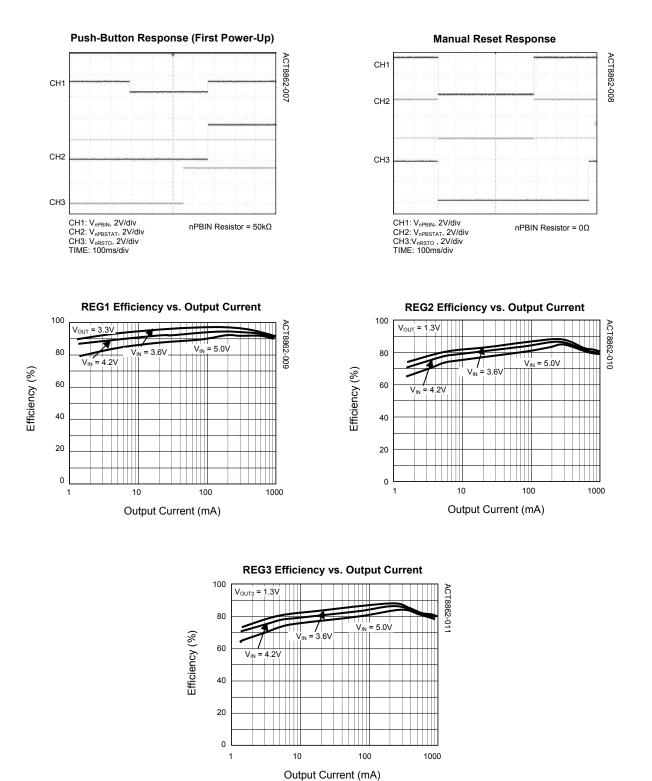

($V_{VP1} = V_{VP2} = V_{VP3} = 3.6V$, $T_A = 25^{\circ}C$, unless otherwise specified.)


nPBIN Startup Sequence



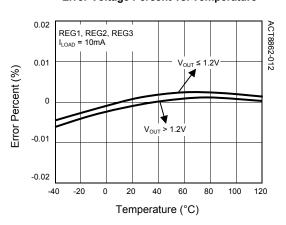
nPBIN Startup Sequence

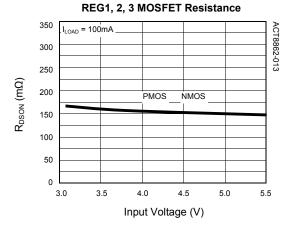
PWRHLD Startup Sequence


Innovative Power[™] - 16 -Active-Semi Proprietary—For Authorized Recipients and Customers *ActivePMU*[™] is a trademark of Active-Semi. I²C[™] is a trademark of NXP.

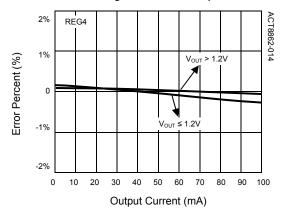
TYPICAL PERFORMANCE CHARACTERISTICS CONT'D

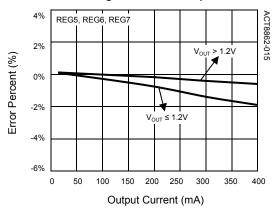
($T_A = 25^{\circ}C$, unless otherwise specified.)





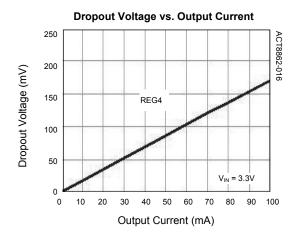
TYPICAL PERFORMANCE CHARACTERISTICS CONT'D

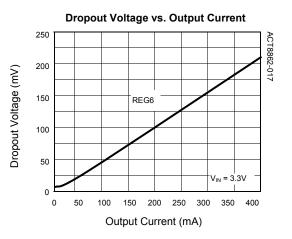

 $(T_A = 25^{\circ}C, unless otherwise specified.)$

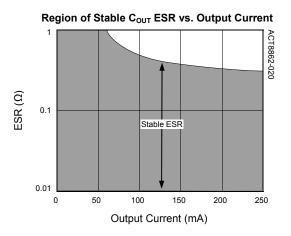

Error Voltage Percent vs. Temperature

Error Voltage Percent vs. Output Current

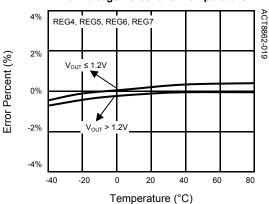
Error Voltage Percent vs. Output Current

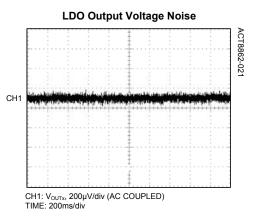





TYPICAL PERFORMANCE CHARACTERISTICS CONT'D

($T_A = 25^{\circ}C$, unless otherwise specified.)





Dropout Voltage vs. Output Current 350 ACT8862-018 300 Dropout Voltage (mV) 250 REG5, REG7 200 150 100 50 = 3.3V Vin ⁰ 0 200 250 300 50 100 150 350 400 Output Current (mA)

Error Voltage Percent vs. Temperature

SYSTEM CONTROL INFORMATION

Interfacing with the Amlogic AML8726-M3

The ACT8862 is optimized for use in applications using the AML8726-M3 processor, supporting both the power domains as well as the signal interface for the processor.

While the ACT8862 supports many possible configurations for powering these processors, one of the most common configurations is detailed in this datasheet. In general, this document refers to the ACT8862 pin names and functions. However, in cases where the description of interconnections between these devices benefits by doing so, both the ACT8862 pin names and the Amlogic processor pin names are provided. When this is done, the AML8726-M3 pin names are located after the ACT8862 pin names, and are italicized and located parentheses. inside For example, PWREN (GPIOAO 2) refers to the logic signal applied to the ACT8862's PWREN input, identifying that it is driven from the AML8726-M3's GPIOAO_2 output. (VCC1.2V AO) refers Likewise, OUT1 to ACT8862's OUT1 pin, identifying that it is connected to the AML8726-M3's VCC1.2V_AO power domain.

Table 2:

ACT8862 and Amlogic AML8726-M3 Power Domains

POWER DOMAIN	ACT8862 CHANNEL	TYPE	DEFAULT VOLTAGE	CURRENT CAPABILITY
VCC1.2V_AO	REG1	DC/DC	1.25V/1.25V	1150mA
VCC1.5V	REG2	DC/DC	1.55V/1.55V	1150mA
VDDIO	REG3	DC/DC	3.0V/3.0V	1300mA
VDDIO_AO	REG4	LDO	3.0V	80mA
AVDD3V	REG5	LDO	3.0V	320mA
AVDD2.5V	REG6	LDO	2.5V	320mA
HDMI_VCC	REG7	LDO	1.8V	320mA

Table 3:

ACT8862 and Amlogic AML8726-M3 Power Modes

POWER MODE	CONTROL STATE	POWER DOMAIN STATE	QUIESCENT CURRENT
NORMAL	PWRHLD is asserted, PWREN is asserted.	REG1, REG2, REG3, REG4, REG5, REG6 and REG7 are on.	420µA
SLEEP	PWRHLD is asserted, PWREN is de-asserted.	REG1, REG2 and REG4 are on, REG3, REG5, REG6 and REG7 are off.	250µA
SYSTEM OFF	PWRHLD is de-asserted, PWREN is de- asserted.	REG1, REG2, REG3, REG4, REG5, REG6 and REG7 are off.	<3µA

Table 4:

ACT8862 and Amlogic AML8726-M3 Signal Interface

ACT8862	DIRECTION	AMLOGIC AML8726-M3
PWREN		GPIOAO_2
SCL		GPIOAO_4
SDA	\longleftrightarrow	GPIOAO_5
VSEL		GPIOAO_3
nRSTO	\longrightarrow	Resetn
nIRQ	\longrightarrow	GPIOAO_8
nPBSTAT	\longrightarrow	RTC_GPO
PWRHLD		GPIOAO_6

Table 5:

Control Pins

PIN NAME	OUTPUT	
nPBIN	REG1, REG2, REG3, REG4, REG5, REG6, REG7	
PWRHLD	REG1, REG2, REG4	
PWREN	REG3, REG5, REG6, REG7	

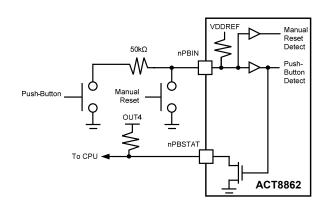
Control Signals

Enable Inputs

The ACT8862 features a variety of control inputs, which are used to enable and disable outputs depending upon the desired mode of operation. PWREN, PWRHLD are logic inputs, while nPBIN is a unique, multi-function input. Refer to Table 5 for a description of which channels are controlled by each input.

nPBIN Multi-Function Input

ACT8862 features the nPBIN multi-function pin, which combines system enable/disable control with a hardware reset function. Select either of the two pin functions by asserting this pin, either through a direct connection to GA, or through a $50k\Omega$ resistor to GA, as shown in Figure 2.


Manual Reset Function

The second major function of the nPBIN input is to provide a manual-reset input for the processor. To manually-reset the processor, drive nPBIN directly to GA through a low impedance (less than $2.5k\Omega$). When this occurs, nRSTO immediately asserts low, then remains asserted low until the nPBIN input is de-asserted and the reset timeout period expires.

nPBSTAT Output

nPBSTAT is an open-drain output that reflects the state of the nPBIN input; nPBSTAT is asserted low whenever nPBIN is asserted, and is high-Z otherwise. This output is typically used as an interrupt signal to the processor, to initiate a software-programmable routine such as operating mode selection or to open a menu. Connect nPBSTAT to an appropriate supply voltage (typically OUT4) through a $10k\Omega$ or greater resistor.

Figure 2: nPBIN Input

nRSTO Output

nRSTO is an open-drain output which asserts low upon startup or when manual reset is asserted via the nPBIN input. When asserted on startup, nRSTO remains low until reset timeout period expires after OUT4 reaches its power-OK threshold. When asserted due to manual-reset, nRSTO immediately asserts low, then remains asserted low until the nPBIN input is de-asserted and the reset timeout period expires.

Connect a $10k\Omega$ or greater pull-up resistor from nRSTO to an appropriate voltage supply (typically OUT4).

nIRQ Output

nIRQ is an open-drain output that asserts low any time an interrupt is generated. Connect a $10k\Omega$ or greater pull-up resistor from nIRQ to an appropriate voltage supply. nIRQ is typically used to drive the interrupt input of the system processor.

Many of the ACT8862's functions support interruptgeneration as a result of various conditions. These are typically masked by default, but may be unmasked via the I²C interface. For more information about the available fault conditions, refer to the appropriate sections of this datasheet.

Note that under some conditions a false interrupt may be generated upon initial startup. For this reason, it is recommended that the interrupt service routine check and validate nSYSLEVMSK[] and nFLTMSK[] bits before processing an interrupt generated by these bits. These interrupts may be validated by nSYSSTAT[], OK[] bits.

Push-Button Control

The ACT8862 is designed to initiate a system enable sequence when the nPBIN multi-function input is asserted. Once this occurs, a power-on sequence commences, as described below. The power-on sequence must complete and the microprocessor must take control (by asserting PWREN or PWRHLD) before nPBIN is de-asserted. If the microprocessor is unable to complete its power-up routine successfully before the user lets the push-button go off, the ACT8862 automatically shuts the system down. This provides protection against accidental or momentary assertions of the push-button. If desired, longer "push-and-hold" times can be easily implemented by simply adding an additional time delay before asserting PWREN or PWRHLD.

Control Sequences

The ACT8862 features a variety of control

sequences that are optimized for supporting system enable and disable, as well as SLEEP mode of the Amlogic AML8726-M3 processor.

Enabling/Disabling Sequence

A typical enable sequence initiates as a result of asserting nPBIN, and begins by enabling REG4. When REG4 reaches its power-OK threshold, nRSTO is asserted low, resettina the microprocessor. REG1 is enabled after REG4 reaches its power-OK threshold for 2ms². REG3 is enabled after REG4 reaches its power-OK threshold for 4ms^o, REG2 is enabled after REG3 reaches its power-OK threshold for 2ms^o, REG5, REG6 and REG7 are enabled after REG3 reaches its power-OK threshold for 4ms². If REG4 is above its power-OK threshold when the reset timer expires, nRSTO is de-asserted, allowing the microprocessor to begin its boot sequence.

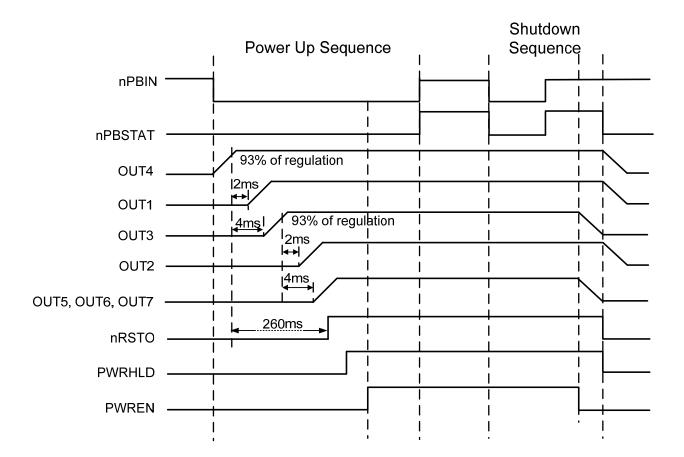
During the boot sequence, the microprocessor must assert PWRHLD (GPIOAO_6), holding REG1, REG2 and REG4, and assert PWREN (GPIOAO_2), holding REG3, REG5, REG6 and REG7 to ensure that the system remains powered after nPBIN is released.

Once the power-up routine is completed, the system remains enabled after the push-button is released as long as both PWRHLD and PWREN are asserted high. If the processor does not assert PWRHLD or PWREN before the user releases the push-button, the boot-up sequence is terminated and all regulators are disabled. This provides protection against "false-enable", when the push-button is accidentally depressed, and also ensures that the system remains enabled only if the processor successfully completes the boot-up sequence.

SLEEP Mode Sequence

The ACT8862 supports Amlogic AML8726-M3 Processor's SLEEP mode operation. Once a successful power-up routine has been completed, SLEEP mode may be initiated through a variety of software-controlled mechanisms.

SLEEP mode is typically initiated when the user presses the push-button during normal operation. Pressing the push-button asserts the nPBIN input, which asserts the nPBSTAT output, which interrupts the processor. In response to this interrupt the processor should de-assert PWREN, disabling REG3, REG5, REG6 and REG7. PWRHLD should remain asserted during SLEEP mode so that REG1, REG2 and REG4 remain enabled. Standby voltage could be preset to lower voltages for SLEEP mode, the processor could


assert VSEL pin when entering SLEEP mode so that REG1 and REG2 outputs switch to lower voltages to reduce power consumption in SLEEP mode.

Waking up from SLEEP mode is typically initiated when the user presses the push-button again, which asserts nPBSTAT. Processors should respond by asserting PWREN, which turns on REG3, REG5, REG6 and REG7, and de-assert VSEL so that REG1 and REG2 go back to normal voltages, then normal operation may resume. Disable Sequence

As with the enable sequence, a typical disable sequence is initiated when the user presses the push-button, which interrupts the processor via the nPBSTAT output. The actual disable sequence is completely software-controlled, but typically involved initiating various "clean-up" processes before finally de-assert PWREN and PWRHLD, disabling all regulators and shutting the system down.

Figure 3:

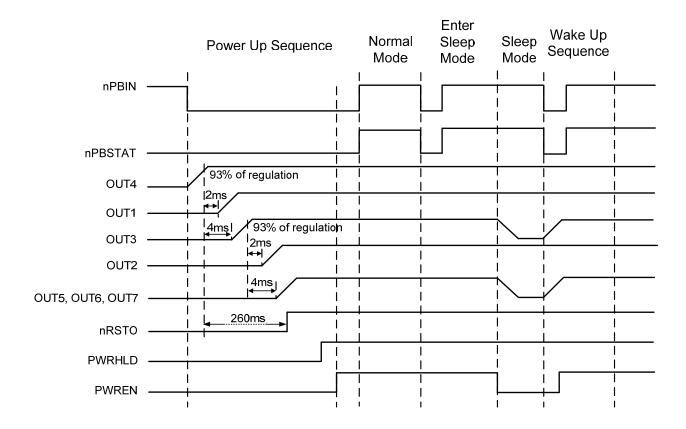

Enable/Disable Sequence

Figure 4: SLEEP Mode Sequence

FUNCTIONAL DESCRIPTION

I²C Interface

The ACT8862 features an I²C interface that allows advanced programming capability to enhance overall system performance. To ensure compatibility with a wide range of system processors, the I²C interface supports clock speeds of up to 400kHz ("Fast-Mode" operation) and uses standard I²C commands. I²C write-byte commands are used to program the ACT8862, and I²C read-byte commands are used to read the ACT8862's internal registers. The ACT8862 always operates as a slave device, and is addressed using a 7-bit slave address followed by an eighth bit, which indicates whether the transaction is a readoperation or a write-operation, [1011011x].

SDA is a bi-directional data line and SCL is a clock input. The master device initiates a transaction by issuing a START condition, defined by SDA transitioning from high to low while SCL is high. Data is transferred in 8-bit packets, beginning with the MSB, and is clocked-in on the rising edge of SCL. Each packet of data is followed by an "Acknowledge" (ACK) bit, used to confirm that the data was transmitted successfully.

For more information regarding the I²C 2-wire serial interface, go to the NXP website: http://www.nxp.com.

Voltage Monitor and Interrupt

Programmable System Voltage Monitor

The ACT8862 features a programmable systemvoltage monitor, which monitors the voltage at VDDREF and compares it to a programmable threshold voltage. The programmable voltage threshold is programmed by SYSLEV[3:0], as shown in Table 6.

SYSLEV[] is set to 3.0V by default. There is a 200mV rising hysteresis on SYSLEV[] threshold such that V_{VDDREF} needs to be 3.2V(typ) or higher in order to power up the IC.

The nSYSSTAT[] bit reflects the output of an internal voltage comparator that monitors V_{VDDREF} relative to the SYSLEV[] voltage threshold, the value of nSYSTAT[] = 1 when V_{VDDREF} is lower than the SYSLEV[] voltage threshold, and nSYSTAT[] = 0 when V_{VDDREF} is higher than the SYSLEV[] voltage threshold. Note that the SYSLEV[] voltage threshold is defined for falling voltages, and that the comparator produces about 200mV of hysteresis at VDDREF. As a result, once V_{VDDREF} falls below the SYSLEV threshold, its voltage must increase by more than about 200mV to clear that condition.

After the IC is powered up, the ACT8862 responds in one of two ways when the voltage at VDDREF falls

1) If nSYSMODE[] = 1 (default case), when system voltage level interrupt is unmasked (nSYSLEVMSK[]=1) and V_{VDDREF} falls below the programmable threshold, the ACT8862 asserts nIRQ, providing a software "under-voltage alarm". The response to this interrupt is controlled by the CPU, but will typically initiate a controlled shutdown sequence either or alert the user that the battery is low. In this case the interrupt is cleared when V_{VDDREF} rises up again above the SYSLEV rising threshold and nSYSSTAT[] is read via l²C.

2) If nSYSMODE[] = 0, when V_{VDDREF} falls below the programmable threshold the ACT8862 shuts down, immediately disabling all regulators. This option is useful for implementing a programmable "under-voltage lockout" function that forces the system off when the battery voltage falls below the SYSLEV threshold voltage. Since this option does not support a controlled shutdown sequence, it is generally used as a "fail-safe" to shut the system down when the battery voltage is too low.

Table 6:

SYSLEV Falling Threshold

SYSLEV[3:0]	SYSLEV Falling Threshold (Hysteresis = 200mV)
0000	2.3
0001	2.4
0010	2.5
0011	2.6
0100	2.7
0101	2.8
0110	2.9
0111	3.0
1000	3.1
1001	3.2
1010	3.3
1011	3.4
1100	3.5
1101	3.6
1110	3.7
1111	3.8

Thermal Shutdown

The ACT8862 integrates thermal shutdown protection circuitry to prevent damage resulting from excessive thermal stress, as may be encountered under fault conditions. This circuitry disables all regulators if the ACT8862 die temperature exceeds 160°C, and prevents the regulators from being enabled until the IC temperature drops by 20°C (typ).