imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ACT8897

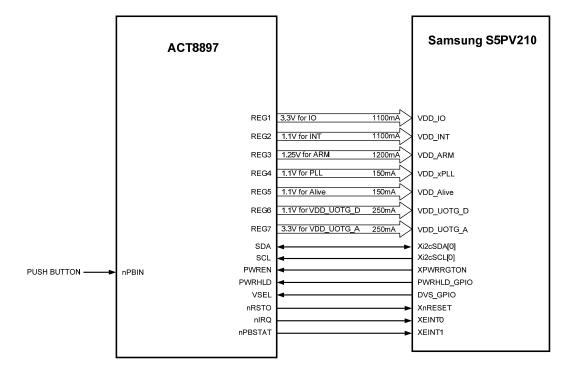
Rev 2, 05-Sep-13

Advanced PMU for Samsung S5PC100, S5PC110 and S5PV210 Processors

FEATURES

- Optimized for Samsung S5PC100, S5PC110 and S5PV210 Processors
- Three Step-Down DC/DC Converters
- Four Low-Dropout Linear Regulators
- I²C[™] Serial Interface
- Advanced Enable/Disable Sequencing Controller
- Minimal External Components
- Tiny 4×4mm TQFN44-32 Package
 - 0.75mm Package Height
 - Pb-Free and RoHS Compliant

GENERAL DESCRIPTION

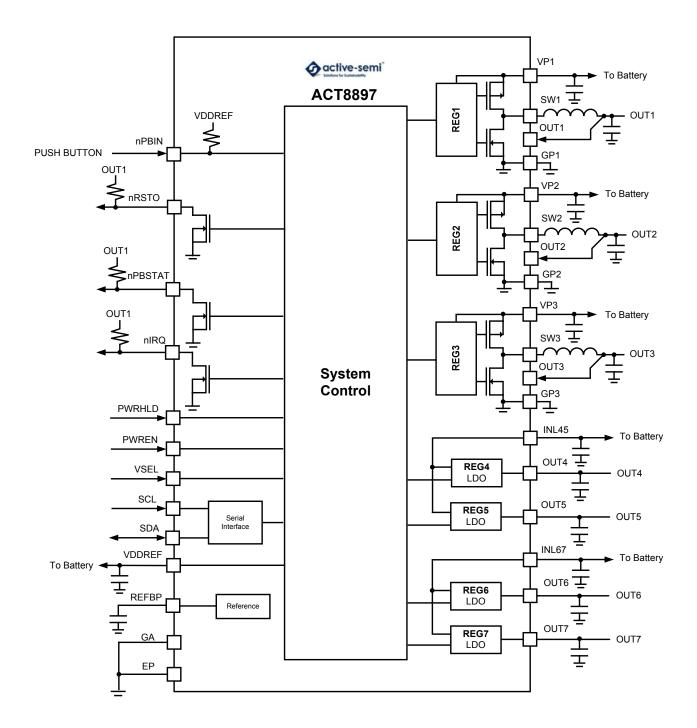

The ACT8897 is a complete, cost effective, highlyefficient *ActivePMU*TM power management solution, optimized for the unique power, voltagesequencing, and control requirements of the Samsung S5PC100, S5PC110 and S5PV210 processors.

This device features three step-down DC/DC converters and four low-noise, low-dropout linear regulators.

The three DC/DC converters utilize a highefficiency, fixed-frequency (2MHz), current-mode PWM control architecture that requires a minimum number of external components. Two DC/DCs are capable of supplying up to 1100mA of output current, while the third supports up to 1200mA. All four low-dropout linear regulators are highperformance, low-noise, regulators that supply up to 150mA, 150mA, 250mA, and 250mA, respectively.

The ACT8897 is available in a compact, Pb-Free and RoHS-compliant TQFN44-32 package.

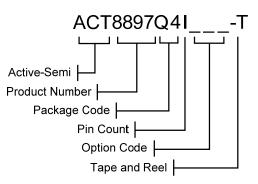
TYPICAL APPLICATION DIAGRAM


TABLE OF CONTENTS

General Information	…р. (J1
Functional Block Diagram	р. ()3
Ordering Information	р. (04
Pin Configuration	р. (04
Pin Descriptions	р. ()5
Absolute Maximum Ratings		
I ² C Interface Electrical Characteristics	р. (30
Global Register Map	р. ()9
Register and Bit Descriptions	p. 1	10
System Control Electrical Characteristics	p. 1	13
Step-Down DC/DC Electrical Characteristics		
Low-Noise LDO Electrical Characteristics		
Typical Performance Characteristics	p. ´	16
System control information	p. 2	21
Interfacing with the Samsung S5PV210	p. 2	21
Control Signals	р. 2	22
Push-Button Control		
Control Sequences	p. 2	23
Functional Description	р. 2	26
I ² C Interface		
Voltage Monitor and Interrupt	р. 2	26
Thermal Shutdown	p. 2	26
Step-Down DC/DC Regulators	р. 2	27
General Description		
100% Duty Cycle Operation		
Synchronous Rectification		
Soft-Start		
Compensation		
Configuration Options.		
OK[] and Output Fault Interrupt PCB Layout Considerations	p. ∠	20
-	•	
Low-Noise, Low-Dropout Linear Regulators		
General Description		
Output Current Limit		
Compensation Configuration Options		
OK[] and Output Fault Interrupt		
PCB Layout Considerations	p. 2	29
TQFN44-32 Package Outline and Dimensions	р. С	31

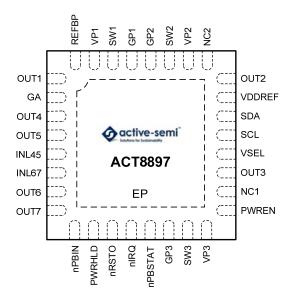
FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION⁰²


	V _{OUT1}	V _{OUT2} /V _{STBY2} [®]	V _{OUT3} /V _{STBY3}	V _{OUT4}	V _{OUT5}	V _{OUT6}	V _{OUT7}	PACKAGE	PINS	TEMPERATURE RANGE
ACT8897Q4I1PQ-T	3.3V	1.3V/1.2V	1.35V/1.2V	1.2V	1.2V	1.2V	3.3V	TQFN44-32	32	-40°C to +85°C
ACT8897Q4I11C-T	3.3V	1.1V/1.1V	1.25V/1.25V	1.1V	1.1V	1.1V	3.3V	TQFN44-32	32	-40°C to +85°C
ACT8897Q4I106-T	1.8V	1.1V/1.1V	1.25V/1.25V	1.1V	1.1V	1.1V	3.3V	TQFN44-32	32	-40°C to +85°C

①: All Active-Semi components are RoHS Compliant and with Pb-free plating unless specified differently. The term Pb-free means semiconductor products that are in compliance with current RoHS (Restriction of Hazardous Substances) standards.

2: Standard product options are identified in this table. Contact factory for custom options, minimum order quantity is 12,000 units.


③: To select V_{STBYx} as a output regulation voltage of REGx, drive VSEL to a logic high. The V_{STBYx} can be set by software via I^2C interface, refer to appropriate sections of this datasheet for V_{STBYx} setting.

④: ACT8897Q4I1PQ-T is optimized for S5PC100, ACT8897Q4I11C-T and ACT8897Q4I106-T are optimized for S5PC110 and S5PV210.

PIN CONFIGURATION

TOP VIEW

Thin - QFN (TQFN44-32)

PIN DESCRIPTIONS

PIN	NAME	DESCRIPTION
1	OUT1	Output Feedback Sense for REG1. Connect this pin directly to the output node to connect the internal feedback network to the output voltage.
2	GA	Analog Ground. Connect GA directly to a quiet ground node. Connect GA, GP1,GP2 and GP3 together at a single point as close to the IC as possible.
3	OUT4	Output Voltage for REG4. Capable of delivering up to 150mA of output current. Connect a 1.5μ F ceramic capacitor from OUT4 to GA. The output is discharged to GA with $1.5k\Omega$ resistor when disabled.
4	OUT5	Output Voltage for REG5. Capable of delivering up to 150mA of output current. Connect a 1.5μ F ceramic capacitor from OUT5 to GA. The output is discharged to GA with $1.5k\Omega$ resistor when disabled.
5	INL45	Power Input for REG4 and REG5. Bypass to GA with a high quality ceramic capacitor placed as close to the IC as possible.
6	INL67	Power Input for REG6 and REG7. Bypass to GA with a high quality ceramic capacitor placed as close to the IC as possible.
7	OUT6	Output Voltage for REG6. Capable of delivering up to 250mA of output current. Connect a 2.2μ F ceramic capacitor from OUT6 to GA. The output is discharged to GA with $1.5k\Omega$ resistor when disabled.
8	OUT7	Output Voltage for REG7. Capable of delivering up to 250mA of output current. Connect a 2.2μ F ceramic capacitor from OUT7 to GA. The output is discharged to GA with $1.5k\Omega$ resistor when disabled.
9	nPBIN	Master Enable Input. Drive nPBIN to GA through a $50k\Omega$ resistor to enable the IC, drive nPBIN directly to GA to assert a manual reset condition. Refer to the <i>nPBIN Multi-Function Input</i> section for more information. nPBIN is internally pulled up to V_{VDDREF} through a $35k\Omega$ resistor.
10	PWRHLD	Power Hold Input. Refer to the Control Sequences section for more information.
11	nRSTO	Active Low Reset Output. See the <i>nRSTO Output</i> section for more information.
12	nIRQ	Open-Drain Interrupt Output. nIRQ asserts any time an unmasked fault condition exists or an interrupt occurs. See the <i>nIRQ Output</i> section for more information.
13	nPBSTAT	Active-Low Open-Drain Push-Button Status Output. nPBSTAT is asserted low whenever the nPBIN is pushed, and is high-Z otherwise. See the <i>nPBSTAT Output</i> section for more information.
14	GP3	Power Ground for REG3. Connect GA, GP1, GP2, and GP3 together at a single point as close to the IC as possible.
15	SW3	Switching Node Output for REG3. Connect this pin to the switching end of the inductor.
16	VP3	Power Input for REG3. Bypass to GP3 with a high quality ceramic capacitor placed as close to the IC as possible.
17	PWREN	Power Enable Input. Refer to the Control Sequences section for more information.
18	NC1	Connect NC1 to GA.
19	OUT3	Output Feedback Sense for REG3. Connect this pin directly to the output node to connect the internal feedback network to the output voltage.
20	VSEL	Step-Down DC/DCs Output Voltage Selection. Drive to logic low to select default output voltage. Drive to logic high to select secondary output voltage. See the <i>Output Voltage Programming</i> section for more information.
21	SCL	Clock Input for I ² C Serial Interface.
22	SDA	Data Input for I ² C Serial Interface. Data is read on the rising edge of SCL.

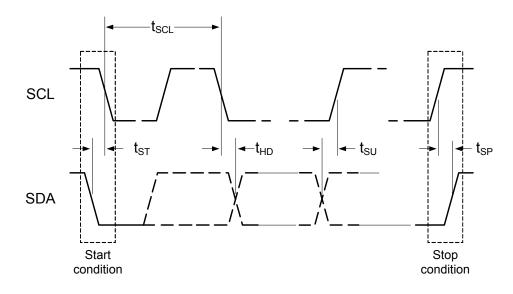
PIN DESCRIPTIONS CONT'D

PIN	NAME	DESCRIPTION
23	VDDREF	Power supply for the internal reference. Connect this pin directly to the system power supply. Bypass VDDREF to GA with a 1μ F capacitor placed as close to the IC as possible. Star connection with VP1, VP2 and VP3 preferred.
24	OUT2	Output Feedback Sense for REG2. Connect this pin directly to the output node to connect the internal feedback network to the output voltage.
25	NC2	Not Connected. Not internally connected.
26	VP2	Power Input for REG2 and System Control. Bypass to GP2 with a high quality ceramic capacitor placed as close to the IC as possible.
27	SW2	Switching Node Output for REG2. Connect this pin to the switching end of the inductor.
28	GP2	Power Ground for REG2. Connect GA, GP1,GP2 and GP3 together at a single point as close to the IC as possible.
29	GP1	Power Ground for REG1. Connect GA, GP1,GP2 and GP3 together at a single point as close to the IC as possible.
30	SW1	Switching Node Output for REG1. Connect this pin to the switching end of the inductor.
31	VP1	Power Input for REG1. Bypass to GP1 with a high quality ceramic capacitor placed as close to the IC as possible.
32	REFBP	Reference Bypass. Connect a 0.047 μ F ceramic capacitor from REFBP to GA. This pin is discharged to GA in shutdown.
EP	EP	Exposed Pad. Must be soldered to ground on PCB.

ABSOLUTE MAXIMUM RATINGS[®]

PARAMETER	VALUE	UNIT
VP1 to GP1, VP2 to GP2, VP3 to GP3	-0.3 to + 6	V
INL, VDDREF to GA	-0.3 to + 6	V
nPBIN, SCL, SDA, REFBP, PWRHLD, PWREN, VSEL to GA	-0.3 to (V _{VDDREF} + 0.3)	V
nRSTO, nIRQ, nPBSTAT to GA	-0.3 to + 6	V
SW1, OUT1 to GP1	-0.3 to (V _{VP1} + 0.3)	V
SW2, OUT2 to GP2	-0.3 to (V _{VP2} + 0.3)	V
SW3, OUT3 to GP3	-0.3 to (V _{VP3} + 0.3)	V
OUT4, OUT5, OUT6, OUT7 to GA	-0.3 to (V _{INL} + 0.3)	V
GP1, GP2, GP3 to GA	-0.3 to + 0.3	V
Junction to Ambient Thermal Resistance (θ_{JA})	27.5	°C/W
Operating Ambient Temperature	-40 to 85	°C
Maximum Junction Temperature	125	°C
Storage Temperature	-65 to 150	°C
Lead Temperature (Soldering, 10 sec)	300	°C

 \oplus : Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.


I²C INTERFACE ELECTRICAL CHARACTERISTICS

($V_{VP1} = V_{VP2} = V_{VP3} = 3.6V$, $T_A = 25^{\circ}C$, unless otherwise specified.)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SCL, SDA Input Low	V_{VDDREF} = 3.1V to 5.5V, T_A = -40°C to 85°C			0.35	V
SCL, SDA Input High	V_{VDDREF} = 3.1V to 5.5V, T_A = -40°C to 85°C	1.55			V
SDA Leakage Current				1	μA
SCL Leakage Current			1	2	μA
SDA Output Low	I _{OL} = 5mA			0.35	V
SCL Clock Period, t _{SCL}		1.5			μs
SDA Data Setup Time, t_{SU}		100			ns
SDA Data Hold Time, t_{HD}		300			ns
Start Setup Time, t _{ST}	For Start Condition	100			ns
Stop Setup Time, t _{SP}	For Stop Condition	100			ns

Figure 1:

I²C Compatible Serial Bus Timing

GLOBAL REGISTER MAP

						BITS	3			
OUTPUT	ADDRESS		D7	D6	D5	D4	D3	D2	D1	D0
SYS	0,00	NAME	TRST	nSYSMODE	nSYSLEVMSK	nSYSSTAT	SYSLEV[3]	SYSLEV[2]	SYSLEV[1]	SYSLEV[0]
SYS 0x00	DEFAULT®	0	1	0	R	0	1	1	1	
eve	0,01	NAME	Reserved	Reserved	Reserved	Reserved	SCRATCH	SCRATCH	SCRATCH	SCRATCH
SYS	0x01	DEFAULT [®]	0	0	0	0	0	0	0	0
REG1	0x20	NAME	Reserved	Reserved	VSET1[5]	VSET1[4]	VSET1[3]	VSET1[2]	VSET1[1]	VSET1[0]
REGI	0,20	$DEFAULT^{\oplus}$	0	0	1	0	0	1	0	0
REG1	0x21	NAME	Reserved	Reserved	VSET2[5]	VSET2[4]	VSET2[3]	VSET2[2]	VSET2[1]	VSET2[0]
REGI	0721	$DEFAULT^{\oplus}$	0	0	1	1	1	0	0	1
REG1	0x22	NAME	ON	PHASE	MODE	DELAY[2] ²	DELAY[1] ²	DELAY[0] [©]	nFLTMSK	OK
REGI	UXZZ	DEFAULT [®]	0	0	0	0	0	0	0	R
	0.20	NAME	Reserved	Reserved	VSET1[5]	VSET1[4]	VSET1[3]	VSET1[2]	VSET1[1]	VSET1[0]
REG2	0x30	DEFAULT [®]	0	0	0	1	1	0	0	0
REG2	0x31	NAME	Reserved	Reserved	VSET2[5]	VSET2[4]	VSET2[3]	VSET2[2]	VSET2[1]	VSET2[0]
REGZ	0x31	DEFAULT [®]	0	0	0	1	1	0	0	0
	0	NAME	ON	PHASE	MODE	DELAY[2] ²	DELAY[1] ²	DELAY[0] ²	nFLTMSK	OK
REG2	0x32	DEFAULT [®]	0	0	0	0	1	1	0	R
	040	NAME	Reserved	Reserved	VSET1[5]	VSET1[4]	VSET1[3]	VSET1[2]	VSET1[1]	VSET1[0]
REG3	0x40	DEFAULT [®]	0	0	0	1	1	0	0	0
DECO	0.41	NAME	Reserved	Reserved	VSET2[5]	VSET2[4]	VSET2[3]	VSET2[2]	VSET2[1]	VSET2[0]
REGS	UX4 I	DEFAULT®	0	0	0	1	1	0	0	0
	REG3 0x41 • REG3 0x42 •	NAME	ON	PWRSTAT	MODE	DELAY[2] ²	DELAY[1] [©]	DELAY[0] [©]	nFLTMSK	OK
REGS	0X4Z	DEFAULT [®]	0	0	0	0	1	1	0	R
	0,450	NAME	Reserved	Reserved	VSET[5]	VSET[4]	VSET[3]	VSET[2]	VSET[1]	VSET[0]
REG4	UCXU	DEFAULT®	0	0	0	1	1	0	0	0
REG4	0x51	NAME	ON	DIS	LOWIQ	DELAY[2] ²	DELAY[1] ²	DELAY[0] [©]	nFLTMSK	OK
REG4	0,001	DEFAULT®	0	1	0	0	1	1	0	R
REG5	0x54	NAME	Reserved	Reserved	VSET[5]	VSET[4]	VSET[3]	VSET[2]	VSET[1]	VSET[0]
REGO	0x34	DEFAULT [®]	0	0	0	1	1	0	0	0
REG5	0x55	NAME	ON	DIS	LOWIQ	DELAY[2] ²	DELAY[1] [©]	DELAY[0] [©]	nFLTMSK	OK
REGO	UXSS	DEFAULT®	0	1	0	0	0	0	0	R
DECC	0,460	NAME	Reserved	Reserved	VSET[5]	VSET[4]	VSET[3]	VSET[2]	VSET[1]	VSET[0]
REG6	0x60	DEFAULT®	0	0	1	1	1	0	0	1
DECO	0,01	NAME	ON	DIS	LOWIQ	DELAY[2] ²	DELAY[1] ²	DELAY[0] [©]	nFLTMSK	OK
REG6	0x61	DEFAULT®	0	1	0	0	0	0	0	R
	0.404	NAME	Reserved	Reserved	VSET[5]	VSET[4]	VSET[3]	VSET[2]	VSET[1]	VSET[0]
REG7	0x64	DEFAULT®	0	0	1	1	1	0	0	1
	0.05	NAME	ON	DIS	LOWIQ	DELAY[2] ²	DELAY[1] ²	DELAY[0] ²	nFLTMSK	OK
REG7	0x65	DEFAULT®	0	1	0	0	0	0	0	R

1): Default values of ACT8897Q4I11C-T.

O: Regulator turn-on delay bits. Automatically cleared to default values when the input power is removed or falls below the system UVLO.

REGISTER AND BIT DESCRIPTIONS

Table 1:

Global Register Map

OUTPUT	ADDRESS	BIT	NAME	ACCESS	DESCRIPTION
SYS	0x00	[7]	TRST	R/W	Reset Timer Setting. Defines the reset time-out threshold. Reset time-out is 65ms when value is 1, reset time-out is 260ms when value is 0. See <i>nRSTO Output</i> section for more information.
SYS	0x00	[6]	nSYSMODE	R/W	SYSLEV Mode Select. Defines the response to the SYSLEV voltage detector, 1: Generate an interrupt when V _{VDDREF} falls below the programmed SYSLEV threshold, 0: automatic shutdown when V _{VDDREF} falls below the programmed SYSLEV threshold.
SYS	0x00	[5]	nSYSLEVMSK	R/W	System Voltage Level Interrupt Mask. Disabled interrupt by default, set to 1 to enable this interrupt. See the <i>Programmable System Voltage Monitor</i> section for more information
SYS	0x00	[4]	nSYSSTAT	R	System Voltage Status. Value is 1 when V _{VDDREF} is lower than the SYSLEV voltage threshold, value is 0 when V _{VDDREF} is higher than the system voltage detection threshold.
SYS	0x00	[3:0]	SYSLEV	R/W	System Voltage Detect Threshold. Defines the SYSLEV voltage threshold. See the <i>Programmable System Voltage Monitor</i> section for more information.
SYS	0x01	[7:4]	-	R/W	Reserved.
SYS	0x01	[3:0]	SCRATCH	R/W	Scratchpad Bits. Non-functional bits, maybe be used by user to store system status information. Volatile bits, which are cleared upon system shutdown.
REG1	0x20	[7:6]	-	R	Reserved.
REG1	0x20	[5:0]	VSET1	R/W	Primary Output Voltage Selection. Valid when VSEL is driven low. See the <i>Output Voltage Programming</i> section for more information.
REG1	0x21	[7:6]	-	R	Reserved.
REG1	0x21	[5:0]	VSET2	R/W	Secondary Output Voltage Selection. Valid when VSEL is driven high. See the <i>Output Voltage Programming</i> section for more information.
REG1	0x22	[7]	ON	R/W	Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator.
REG1	0x22	[6]	PHASE	R/W	Regulator Phase Control. Set bit to 1 for regulator to operate 180° out of phase with the oscillator, clear bit to 0 for regulator to operate in phase with the oscillator.
REG1	0x22	[5]	MODE	R/W	Regulator Mode Select. Set bit to 1 for fixed-frequency PWM under all load conditions, clear bit to 0 to transit to power-savings mode under light-load conditions.
REG1	0x22	[4:2]	DELAY	R/W	Regulator Turn-On Delay Control. See the <i>REG1, REG2, REG3 Turn-on Delay</i> section for more information.
REG1	0x22	[1]	nFLTMSK	R/W	Regulator Fault Mask Control. Set bit to 1 enable to fault- interrupts, clear bit to 0 to disable fault-interrupts.
REG1	0x22	[0]	ОК	R	Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise.
REG2	0x30	[7:6]	-	R	Reserved.
REG2	0x30	[5:0]	VSET1	R/W	Primary Output Voltage Selection. Valid when VSEL is driven low. See the <i>Output Voltage Programming</i> section for more information.
REG2	0x31	[7:6]	-	R	Reserved.
REG2	0x31	[5:0]	VSET2	R/W	Secondary Output Voltage Selection. Valid when VSEL is driven high. See the <i>Output Voltage Programming</i> section for more information.

REGISTER AND BIT DESCRIPTIONS CONT'D

OUTPUT	ADDRESS	BIT	NAME	ACCESS	DESCRIPTION
REG2	0x32	[7]	ON	R/W	Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator.
REG2	0x32	[6]	PHASE	R/W	Regulator Phase Control. Set bit to 1 for regulator to operate 180° out of phase with the oscillator, clear bit to 0 for regulator to operate in phase with the oscillator.
REG2	0x32	[5]	MODE	R/W	Regulator Mode Select. Set bit to 1 for fixed-frequency PWM under all load conditions, clear bit to 0 to transit to power-savings mode under light-load conditions.
REG2	0x32	[4:2]	DELAY	R/W	Regulator Turn-On Delay Control. See the <i>REG1, REG2, REG3 Turn-on Delay</i> section for more information.
REG2	0x32	[1]	nFLTMSK	R/W	Regulator Fault Mask Control. Set bit to 1 enable to fault- interrupts, clear bit to 0 to disable fault-interrupts.
REG2	0x32	[0]	ОК	R	Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise.
REG3	0x40	[7:6]	-	R	Reserved.
REG3	0x40	[5:0]	VSET1	R/W	Primary Output Voltage Selection. Valid when VSEL is driven low. See the <i>Output Voltage Programming</i> section for more information.
REG3	0x41	[7:6]	-	R	Reserved.
REG3	0x41	[5:0]	VSET2	R/W	Secondary Output Voltage Selection. Valid when VSEL is driven high. See the <i>Output Voltage Programming</i> section for more information.
REG3	0x42	[7]	ON	R/W	Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator.
REG3	0x42	[6]	PWRSTAT	R/W	Configures regulator behavior with respect to the nPBIN input. Set bit to 0 to enable regulator when nPBIN is asserted.
REG3	0x42	[5]	MODE	R/W	Regulator Mode Select. Set bit to 1 for fixed-frequency PWM under all load conditions, clear bit to 0 to transition to power-savings mode under light-load conditions.
REG3	0x42	[4:2]	DELAY	R/W	Regulator Turn-On Delay Control. See the <i>REG1, REG2, REG3 Turn-on Delay</i> section for more information.
REG3	0x42	[1]	nFLTMSK	R/W	Regulator Fault Mask Control. Set bit to 1 enable to fault- interrupts, clear bit to 0 to disable fault-interrupts.
REG3	0x42	[0]	ОК	R	Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise.
REG4	0x50	[7:6]	-	R	Reserved.
REG4	0x50	[5:0]	VSET	R/W	Output Voltage Selection. See the <i>Output Voltage</i> <i>Programming</i> section for more information.
REG4	0x51	[7]	ON	R/W	Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator.
REG4	0x51	[6]	DIS	R/W	Output Discharge Control. When activated, discharges LDO output to GA through $1.5k\Omega$ when in shutdown. Set bit to 1 to enable output voltage discharge in shutdown, clear bit to 0 to disable this function.
REG4	0x51	[5]	LOWIQ	R/W	LDO Low-IQ Mode Control. Set bit to 1 for low-power operating mode, clear bit to 0 for normal mode.
REG4	0x51	[4:2]	DELAY	R/W	Regulator Turn-On Delay Control. See the <i>REG4, REG5, REG6, REG7 Turn-on Delay</i> section for more information.
REG4	0x51	[1]	nFLTMSK	R/W	Regulator Fault Mask Control. Set bit to 1 enable to fault- interrupts, clear bit to 0 to disable fault-interrupts.
REG4	0x51	[0]	ОК	R	Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise.

REGISTER AND BIT DESCRIPTIONS CONT'D

OUTPUT	ADDRESS	BIT	NAME	ACCESS	DESCRIPTION
REG5	0x54	[7:6]	-	R	Reserved.
REG5	0x54	[5:0]	VSET	R/W	Output Voltage Selection. See the <i>Output Voltage</i> <i>Programming</i> section for more information.
REG5	0x55	[7]	ON	R/W	Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator.
REG5	0x55	[6]	DIS	R/W	Output Discharge Control. When activated, discharges LDO output to GA through $1.5k\Omega$ when in shutdown. Set bit to 1 to enable output voltage discharge in shutdown, clear bit to 0 to disable this function.
REG5	0x55	[5]	LOWIQ	R/W	LDO Low-IQ Mode Control. Set bit to 1 for low-power operating mode, clear bit to 0 for normal mode.
REG5	0x55	[4:2]	DELAY	R/W	Regulator Turn-On Delay Control. See the <i>REG4, REG5, REG6, REG7 Turn-on Delay</i> section for more information.
REG5	0x55	[1]	nFLTMSK	R/W	Regulator Fault Mask Control. Set bit to 1 enable to fault- interrupts, clear bit to 0 to disable fault-interrupts.
REG5	0x55	[0]	ОК	R	Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise.
REG6	0x60	[7:6]	-	R	Reserved.
REG6	0x60	[5:0]	VSET	R/W	Output Voltage Selection. See the Output Voltage Programming section for more information.
REG6	0x61	[7]	ON	R/W	Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator.
REG6	0x61	[6]	DIS	R/W	Output Discharge Control. When activated, discharges LDO output to GA through $1.5k\Omega$ when in shutdown. Set bit to 1 to enable output voltage discharge in shutdown, clear bit to 0 to disable this function.
REG6	0x61	[5]	LOWIQ	R/W	LDO Low-IQ Mode Control. Set bit to 1 for low-power operating mode, clear bit to 0 for normal mode.
REG6	0x61	[4:2]	DELAY	R/W	Regulator Turn-On Delay Control. See the <i>REG4, REG5, REG6, REG7 Turn-on Delay</i> section for more information.
REG6	0x61	[1]	nFLTMSK	R/W	Regulator Fault Mask Control. Set bit to 1 enable to fault- interrupts, clear bit to 0 to disable fault-interrupts.
REG6	0x61	[0]	ОК	R	Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise.
REG7	0x64	[7:6]	-	R	Reserved.
REG7	0x64	[5:0]	VSET	R/W	Output Voltage Selection. See the <i>Output Voltage Programming</i> section for more information.
REG7	0x65	[7]	ON	R/W	Regulator Enable Bit. Set bit to 1 to enable the regulator, clear bit to 0 to disable the regulator.
REG7	0x65	[6]	DIS	R/W	Output Discharge Control. When activated, discharges LDO output to GA through $1.5k\Omega$ when in shutdown. Set bit to 1 to enable output voltage discharge in shutdown, clear bit to 0 to disable this function.
REG7	0x65	[5]	LOWIQ	R/W	LDO Low-IQ Mode Control. Set bit to 1 for low-power operating mode, clear bit to 0 for normal mode.
REG7	0x65	[4:2]	DELAY	R/W	Regulator Turn-On Delay Control. See the <i>REG4, REG5, REG6, REG7 Turn-on Delay</i> section for more information.
REG7	0x65	[1]	nFLTMSK	R/W	Regulator Fault Mask Control. Set bit to 1 enable to fault- interrupts, clear bit to 0 to disable fault-interrupts.
REG7	0x65	[0]	ОК	R	Regulator Power-OK Status. Value is 1 when output voltage exceeds the power-OK threshold, value is 0 otherwise.

SYSTEM CONTROL ELECTRICAL CHARACTERISTICS

 $(V_{VP1} = V_{VP2} = V_{VP3} = 3.6V, T_A = 25^{\circ}C$, unless otherwise specified.)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage Range		2.7		5.5	V
UVLO Threshold Voltage	V _{VDDREF} Rising	2.2	2.45	2.65	V
UVLO Hysteresis	V _{VDDREF} Falling		200		mV
	REG1 and REG5 Enabled. REG2, REG3, REG4, REG6 and REG7 Disabled		190		
Supply Current	REG1, REG2, REG3, REG4 and REG5 Enabled. REG6 and REG7 Disabled		340		μA
	REG1, REG2, REG3, REG4, REG5, REG6 and REG7 Enabled		420		
Shutdown Supply Current	All Regulators Disabled		1.5	3.0	μA
Oscillator Frequency		1.8	2	2.2	MHz
Logic High Input Voltage [®]		1.4			V
Logic Low Input Voltage				0.4	V
Leakage Current	$V_{nIRQ} = V_{nRSTO} = 4.2V$			1	μA
Low Level Output Voltage [©]	I _{SINK} = 5mA			0.35	V
nRSTO Delay			260 ³		ms
Thermal Shutdown Temperature	Temperature rising		160		°C
Thermal Shutdown Hysteresis			20		°C

①: PWRHLD, PWREN, VSEL are logic inputs.

②: nPBSTAT, nIRQ, nRSTO are open drain outputs.

③: Typical value shown. Actual value may vary from 227.9ms to 291.2ms.

STEP-DOWN DC/DC ELECTRICAL CHARACTERISTICS

(V_{VP1} = V_{VP2} = V_{VP3} = 3.6V, T_A = 25°C, unless otherwise specified.)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
Operating Voltage Range		2.7		5.5	V
UVLO Threshold	Input Voltage Rising	2.5	2.6	2.7	V
UVLO Hysteresis	Input Voltage Falling		100		mV
Quiescent Supply Current	Regulator Enabled		65	90	μA
Shutdown Current	V_{VP} = 5.5V, Regulator Disabled		0	1	μA
	V _{OUT} ≥ 1.2V, I _{OUT} = 10mA	-1%	$V_{NOM}^{\mathbb{O}}$	1%	
Output Voltage Accuracy	V _{OUT} < 1.2V, I _{OUT} = 10mA	-2%	$V_{NOM}^{\rm O}$	2%	V
Line Regulation	$V_{VP} = Max(V_{NOM}^{\circ} + 1, 3.2V)$ to 5.5V		0.15		%/V
Load Regulation	I _{OUT} = 10mA to IMAX [©]		0.0017		%/mA
Power Good Threshold	V _{OUT} Rising		93		$%V_{NOM}$
Power Good Hysteresis	V _{OUT} Falling		2		$%V_{NOM}$
	$V_{OUT} \ge 20\%$ of V_{NOM}	1.8	2	2.2	MHz
Oscillator Frequency	V _{OUT} = 0V		500		kHz
Soft-Start Period			400		μs
Minimum On-Time			75		ns
REG1	-				
Maximum Output Current		1.1			Α
Current Limit		1.55	1.80	2.05	Α
PMOS On-Resistance	I _{SW1} = -100mA		0.16		Ω
NMOS On-Resistance	I _{SW1} = 100mA		0.16		Ω
SW1 Leakage Current	V _{VP1} = 5.5V, V _{SW1} = 0 or 5.5V		0	1	μA
REG2	· · ·				
Maximum Output Current		1.1			А
Current Limit		1.55	1.80	2.05	Α
PMOS On-Resistance	I _{SW2} = -100mA		0.16		Ω
NMOS On-Resistance	I _{SW2} = 100mA		0.16		Ω
SW2 Leakage Current	V _{VP2} = 5.5V, V _{SW2} = 0 or 5.5V		0	1	μA
REG3	· · ·				•
Maximum Output Current		1.2			Α
Current Limit		1.55	1.80	2.05	А
PMOS On-Resistance	I _{SW3} = -100mA		0.16		Ω
NMOS On-Resistance	I _{SW3} = 100mA		0.16		Ω
SW3 Leakage Current	V _{VP3} = 5.5V, V _{SW3} = 0 or 5.5V		0	1	μA

 $\oplus: V_{\text{NOM}}$ refers to the nominal output voltage level for V_{OUT} as defined by the Ordering Information section.

2: IMAX Maximum Output Current.

LOW-NOISE LDO ELECTRICAL CHARACTERISTICS

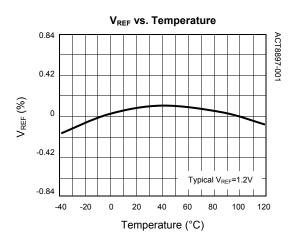
 $(V_{INL} = 3.6V, C_{OUT4} = C_{OUT5} = 1.5\mu$ F, $C_{OUT6} = C_{OUT7} = 2.2\mu$ F, LOWIQ[] = [0], $T_A = 25^{\circ}$ C, unless otherwise specified.)

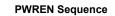
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Operating Voltage Range		2.5		5.5	V	
Output Voltage Accuracy	V _{OUT} ≥ 1.2V, T _A = 25°C, I _{OUT} = 10mA	-1%	$V_{\text{NOM}}^{\mathbb{D}}$	2%		
	V _{OUT} < 1.2V, T _A = 25°C, I _{OUT} = 10mA	-2%	$V_{NOM}^{\mathbb{O}}$			
Line Regulation	$V_{INL} = Max (V_{OUT} + 0.5V, 3.6V) \text{ to } 5.5V$ LOWIQ[] = [0] 0.05		0.05			
	V _{INL} = Max (V _{OUT} + 0.5V, 3.6V) to 5.5V LOWIQ[] = [1]		0.5		mV/V	
Load Regulation	I _{OUT} = 1mA to IMAX [©]		0.08		V/A	
Dever Symphy Dejection Datio	f = 1kHz, I _{OUT} = 20mA, V _{OUT} =1.2V		75			
Power Supply Rejection Ratio	f = 10kHz, I _{OUT} = 20mA, V _{OUT} =1.2V		65		dB	
	Regulator Enabled, LOWIQ[] = [0]		37	60		
Supply Current per Output	Regulator Enabled, LOWIQ[] = [1]		31	52	μA	
	Regulator Disabled		0	1		
Soft-Start Period	V _{OUT} = 2.9V		140		μs	
Power Good Threshold	V _{out} Rising		89		%	
Power Good Hysteresis	V _{OUT} Falling		3		%	
Output Noise	I _{OUT} = 20mA, f = 10Hz to 100kHz, V _{OUT} = 1.2V		50		μV _{RMS}	
Discharge Resistance	LDO Disabled, DIS[] = 1		1.5		kΩ	
REG4	·					
Dropout Voltage [®]	I _{OUT} = 80mA, V _{OUT} > 3.1V		90	180	mV	
Maximum Output Current		150			mA	
Current Limit [®]	V_{OUT} = 95% of regulation voltage	200			mA	
Stable C _{OUT4} Range		1.5		20	μF	
REG5		-				
Dropout Voltage	I _{OUT} = 80mA, V _{OUT} > 3.1V		140	280	mV	
Maximum Output Current		150			mA	
Current Limit	V_{OUT} = 95% of regulation voltage	200			mA	
Stable C _{OUT5} Range		1.5		20	μF	
REG6	•					
Dropout Voltage	I _{OUT} = 120mA, V _{OUT} > 3.1V		90	180	mV	
Maximum Output Current		250			mA	
Current Limit	V_{OUT} = 95% of regulation voltage	300			mA	
Stable C _{OUT6} Range		2.2		20	μF	
REG7	-	-			-	
Dropout Voltage	I _{OUT} = 120mA, V _{OUT} > 3.1V		140	280	mV	
Maximum Output Current		250			mA	
Current Limit	V _{OUT} = 95% of regulation voltage	300			mA	
Stable COUT7 Range		2.2		20	μF	

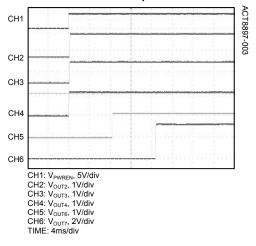
 \oplus : V_{NOM} refers to the nominal output voltage level for V_{OUT} as defined by the *Ordering Information* section.

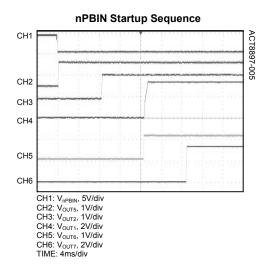
2: IMAX Maximum Output Current.

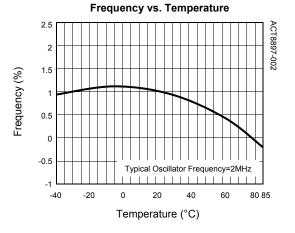
③: Dropout Voltage is defined as the differential voltage between input and output when the output voltage drops 100mV below the regulation voltage (for 3.1V output voltage or higher)

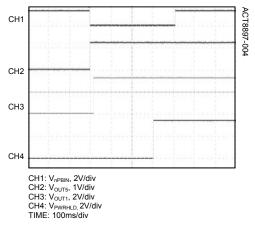

④: LDO current limit is defined as the output current at which the output voltage drops to 95% of the respective regulation voltage. Under heavy overload conditions the output current limit folds back by 30% (typ)

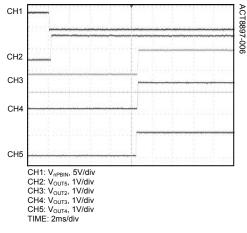





TYPICAL PERFORMANCE CHARACTERISTICS


($V_{VP1} = V_{VP2} = V_{VP3} = 3.6V$, $T_A = 25^{\circ}C$, unless otherwise specified.)





PWRHLD holding OUT1 & OUT5 after nPBIN is released

Innovative Power™ - 16 Active-Semi Proprietary—For Authorized Recipients and Customers - 16 ActivePMU[™] is trademark of Active-Semi. I²C[™] is a trademark of NXP.

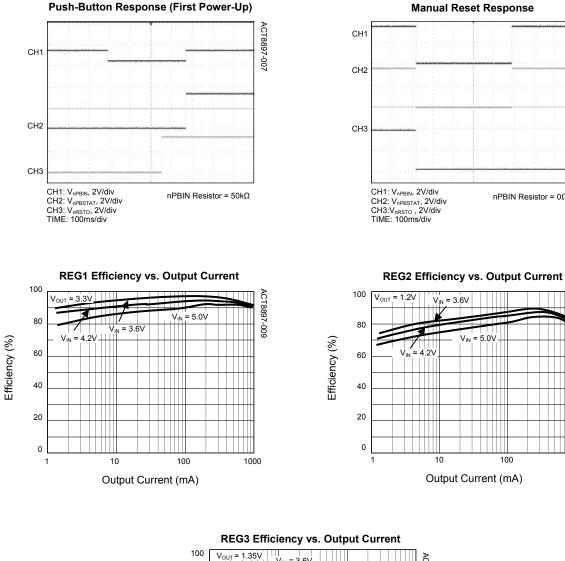
ACT8897-008

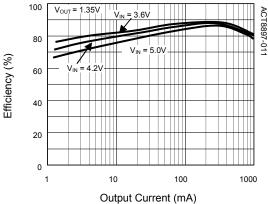
ACT8897-010

1000

nPBIN Resistor = 0Ω

V_{IN} = 3.6V

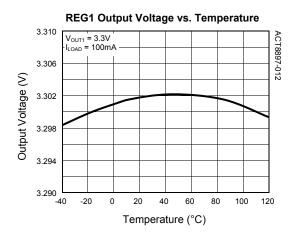

10


V_{IN} = 5.0V

100

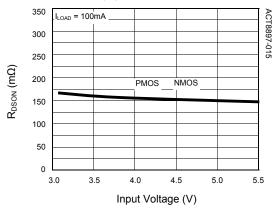
TYPICAL PERFORMANCE CHARACTERISTICS CONT'D

($T_A = 25^{\circ}C$, unless otherwise specified.)



TYPICAL PERFORMANCE CHARACTERISTICS CONT'D

($T_A = 25^{\circ}C$, unless otherwise specified.)

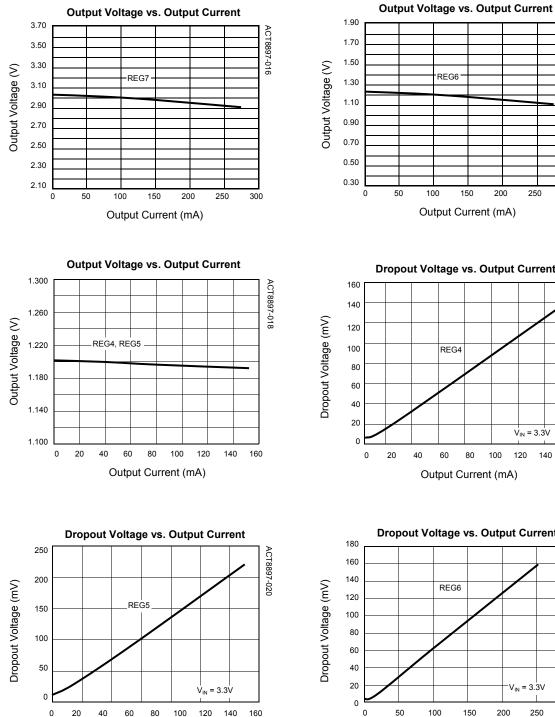


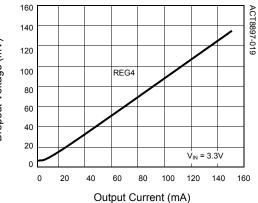
REG2 Output Voltage vs. Temperature 1.310 V_{OUT2} = 1.3V I_{LOAD} = 100mA ACT8897-013 1.306 Output Voltage (V) 1.302 1.298 1.294 1.290 -40 -20 0 20 40 60 80 100 120 Temperature (°C)

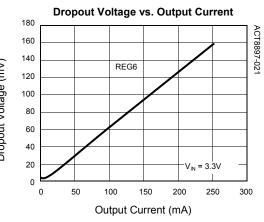
REG3 Output Voltage vs. Temperature 1.360 V_{OUT3} = 1.35V I_{LOAD} = 100mA ACT8897-014 1.356 Output Voltage (V) 1.352 1.348 1.344 1.340 , -40 -20 0 20 40 60 80 100 120

Temperature (°C)

REG1, 2, 3 MOSFET Resistance

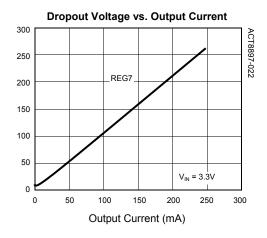


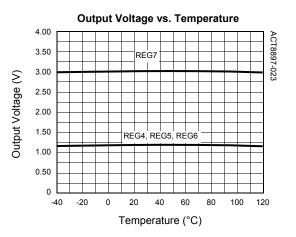

TYPICAL PERFORMANCE CHARACTERISTICS CONT'D

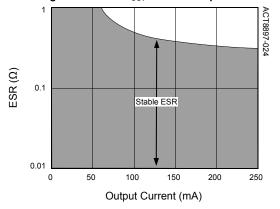

(T_A = 25°C, unless otherwise specified.)

ACT8897-017 REG6 150 200 250 300 Output Current (mA)

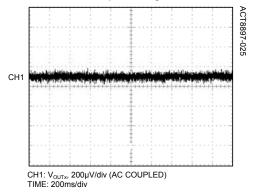
Dropout Voltage vs. Output Current


Output Current (mA)




TYPICAL PERFORMANCE CHARACTERISTICS CONT'D

($T_A = 25^{\circ}C$, unless otherwise specified.)



Region of Stable COUT ESR vs. Output Current

LDO Output Voltage Noise

SYSTEM CONTROL INFORMATION

Interfacing with the Samsung S5PC100, S5PC110 and S5PV210 Processors

The ACT8897 is optimized for use in applications using the S5PC100, S5PC110 and S5PV210 processors, supporting both the power domains as well as the signal interface for these processors.

The following paragraphs describe how to design ACT8897 with S5PV210 Processor, but the design guidelines are directly applicable to S5PC100 and S5PC110 as well.

While the ACT8897 supports many possible configurations for powering these processors, one of the most common configurations is detailed in this datasheet. In general, this document refers to the ACT8897 pin names and functions. However, in cases where the description of interconnections

between these devices benefits by doing so, both the ACT8897 pin names and the Samsung processor pin names are provided. When this is done, the S5PV210 pin names are located after the ACT8897 pin names, and are italicized and located inside parentheses. For example, PWREN (*XPWRRGTON*) refers to the logic signal applied to the ACT8897's PWREN input, identifying that it is driven from the S5PV210's XPWRRGTON output. Likewise, OUT1 (VDD_IO) refers to ACT8897's OUT1 pin, identifying that it is connected to the S5PV210's VDD_IO power domain.

Table 2:

ACT8897 and Samsung S5PV210 Power Domains

POWER DOMAIN	ACT8897 CHANNEL	TYPE	DEFAULT VOLTAGE	CURRENT CAPABILITY
VDD_IO	REG1	DC/DC	3.3V	1100mA
VDD_INT	REG2	DC/DC	1.1V	1100mA
VDD_ARM	REG3	DC/DC	1.25V/1.25V	1200mA
VDD_xPLL	REG4	LDO	1.1V	150mA
VDD_Alive	REG5	LDO	1.1V	150mA
VDD_UOTG_D	REG6	LDO	1.1V	250mA
VDD_UOTG_A	REG7	LDO	3.3V	250mA

Table 3:

ACT8897 and Samsung S5PV210 Power Modes

POWER MODE	CONTROL STATE	POWER DOMAIN STATE	QUIESCENT CURRENT
ALL ON	PWRHLD is asserted, PWREN is asserted	REG1, REG2, REG3, REG4, REG5, REG6 and REG7 are all on	420µA
NORMAL	PWRHLD is asserted, PWREN is asserted, REG6 and REG7 are disabled after system boots up.	REG1, REG2, REG3, REG4 and REG5 are on. REG6 and REG7 are off	340µA
SLEEP	PWRHLD is asserted, PWREN is de-asserted, REG6 and REG7 are disabled default.	REG1 and REG5 are on. REG2, REG3, REG4, REG6 and REG7 are off	190µA
ALL OFF	PWRHLD is de-asserted, PWREN is de-asserted	REG1, REG2, REG3, REG4, REG5, REG6 and REG7 are all off	<18µA

Table 4:

ACT8897 and Samsung S5PV210 Signal Interface

ACT8897	DIRECTION	SAMSUNG S5PV210
PWREN	← →	XPWRRGTON
SCL		Xi2cSCL[0]
SDA	\longleftrightarrow	Xi2cSDA[0]
VSEL		DVS_GPIO [®]
nRSTO	\longrightarrow	XnRESET
nIRQ	\longrightarrow	XEINT0 [©]
nPBSTAT	\longrightarrow	XEINT1 [®]
PWRHLD	<	Power hold GPIO®

①: Optional connection for DVS control.

②, ③: Typical connections shown, actual connections may vary.

(4): Optional connection for power hold control.

Table 5:

Control Pins

PIN NAME	OUTPUT
nPBIN	REG1, REG2, REG3, REG4, REG5, REG6, REG7
PWRHLD	REG1, REG5
PWREN	REG2, REG3, REG4, REG6, REG7

Control Signals

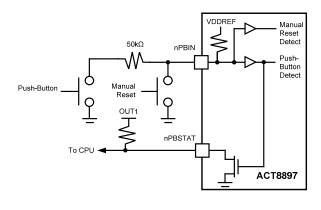
Enable Inputs

The ACT8897 features a variety of control inputs, which are used to enable and disable outputs depending upon the desired mode of operation. PWREN, PWRHLD are logic inputs, while nPBIN is a unique, multi-function input. Refer to Table 5 for a description of which channels are controlled by each input.

nPBIN Multi-Function Input

ACT8897 features the nPBIN multi-function pin, which combines system enable/disable control with a hardware reset function. Select either of the two pin functions by asserting this pin, either through a direct connection to GA, or through a 50k Ω resistor to GA, as shown in Figure 2.

Manual Reset Function


The second major function of the nPBIN input is to provide a manual-reset input for the processor. To manually-reset the processor, drive nPBIN directly to GA through a low impedance (less than 2.5k Ω). When this occurs, nRSTO immediately asserts low, then remains asserted low until the nPBIN input is de-asserted and the reset timeout period expires.

nPBSTAT Output

nPBSTAT is an open-drain output that reflects the state of the nPBIN input; nPBSTAT is asserted low whenever nPBIN is asserted, and is high-Z otherwise. This output is typically used as an interrupt signal to the processor, to initiate a software-programmable routine such as operating mode selection or to open a menu. Connect nPBSTAT to an appropriate supply voltage (typically OUT1) through a $10k\Omega$ or greater resistor.

Figure 2:

nPBIN Input

www.active-semi.com

nRSTO Output

nRSTO is an open-drain output which asserts low upon startup or when manual reset is asserted via the nPBIN input. When asserted on startup, nRSTO remains low until reset timeout period expires after OUT5 reaches its power-OK threshold. When asserted due to manual-reset, nRSTO immediately asserts low, then remains asserted low until the nPBIN input is de-asserted and the reset timeout period expires.

Connect a $10k\Omega$ or greater pull-up resistor from nRSTO to an appropriate voltage supply (typically OUT1).

nIRQ Output

nIRQ is an open-drain output that asserts low any time an interrupt is generated. Connect a $10k\Omega$ or greater pull-up resistor from nIRQ to an appropriate voltage supply. nIRQ is typically used to drive the interrupt input of the system processor.

Many of the ACT8897's functions support interruptgeneration as a result of various conditions. These are typically masked by default, but may be unmasked via the I^2C interface. For more information about the available fault conditions, refer to the appropriate sections of this datasheet.

Note that under some conditions a false interrupt may be generated upon initial startup. For this reason, it is recommended that the interrupt service routine check and validate nSYSLEVMSK[] and nFLTMSK[] bits before processing an interrupt generated by these bits. These interrupts may be validated by nSYSSTAT[], OK[] bits.

Push-Button Control

The ACT8897 is designed to initiate a system enable sequence when the nPBIN multi-function input is asserted. Once this occurs, a power-on sequence commences, as described below. The power-on sequence must complete and the microprocessor must take control (by asserting PWREN or PWRHLD) before nPBIN is de-asserted. If the microprocessor is unable to complete its power-up routine successfully before the user lets the push-button go off, the ACT8897 automatically shuts the system down. This provides protection against accidental or momentary assertions of the push-button. If desired, longer "push-and-hold" times can be easily implemented by simply adding an additional time delay before asserting PWREN or PWRHLD.

Control Sequences

The ACT8897 features a variety of control

sequences that are optimized for supporting system enable and disable, as well as SLEEP mode of the Samsung S5PV210 processor.

Enabling/Disabling Sequence

A typical enable sequence initiates as a result of asserting nPBIN, and begins by enabling REG5. When REG5 reaches its power-OK threshold, nRSTO is asserted low, resettina the microprocessor. REG2, REG3 and REG4 are enabled after REG5 reaches its power-OK threshold for 8ms. When REG2 reaches its power-OK threshold for 8ms, REG1 and REG6 are enabled. When REG2 reaches its power-OK threshold for 16ms, REG7 is enabled. If REG5 is above its power-OK threshold when the reset timer expires, nRSTO is de-asserted, allowing the microprocessor to begin its boot sequence.

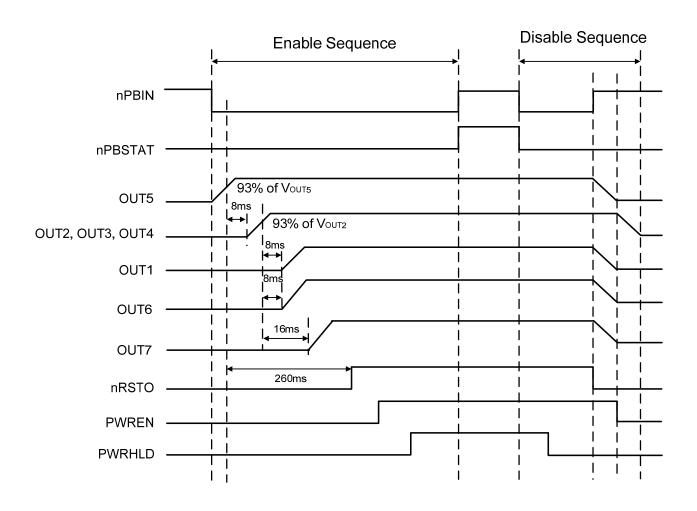
During the boot sequence, the microprocessor must assert PWRHLD, holding REG1 and REG5, and assert PWREN*(XPWRRGTON)*, holding REG2, REG3, REG4, REG6 and REG7 to ensure that the system remains powered after nPBIN is released. REG6 and REG7 can also be enabled/disabled via l²C after microprocessor completes its boot sequence.

Once the power-up routine is completed, the system remains enabled after the push-button is released as long as either PWRHLD or PWREN are asserted high. If the processor does not assert PWRHLD or PWREN(XPWRRGTON) before the user releases the push-button, the boot-up sequence is terminated and all regulators are disabled. This provides protection against "falseenable", when the pushbutton is accidentally depressed, and also ensures that the system remains enabled only if the processor successfully completes the boot-up sequence. To disable REG6 (or REG7) via I²C after the power-up, the software needs to set register bit REG6.ON[] (or REG7.ON[1) to "1" first, then set it back to "0" to turn off the regulator.

As with the enable sequence, a typical disable sequence is initiated when the user presses the push-button, which interrupts the processor via the nPBSTAT output. The actual disable sequence is completely software-controlled, but typically involved initiating various "clean-up" processes before the processor finally de-asserts PWRHLD, which disables REG1 and REG5 after push-button is released. Since the processor loses power of VDD_IO and VDD_Alive, it automatically de-asserts PWREN (XPWRRGTON), and hence shuts the system down by disabling REG2, REG3, REG4, REG6 and REG7.

SLEEP Mode Sequence

The ACT8897 supports Samsung S5PC100, S5PC110 and S5PV210 processors' SLEEP mode operation. Once a successful power-up routine has been completed, SLEEP mode may be initiated through a variety of software-controlled mechanisms.

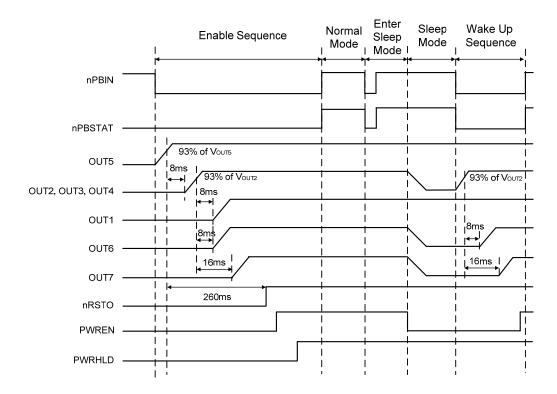

SLEEP mode is typically initiated when the user presses the push-button during normal operation. Pressing the push-button asserts the nPBIN input, which asserts the nPBSTAT output, which interrupts the processor. In response to this interrupt the processor should de-assert PWREN(*XPWRRGTON*), disabling REG2, REG3, REG4, REG6 and REG7. PWRHLD should remain

asserted during SLEEP mode so that REG1 and REG5 remain enabled.

Waking up from SLEEP mode is typically initiated when the user presses the push-button again, which enables REG2, REG3, REG4, REG6 and REG7 and asserts nPBSTAT. Processors should respond by asserting PWREN(XPWRRGTON), which holds REG2, REG3, REG4, REG6 and REG7 so that normal operation may resume. An external interrupt, for instance a RTC interrupt, can also initiate a wake up sequence. When an external interrupt is sent to the processor, the processor should response by getting itself ready to wake up from SLEEP mode first, then assert PWREN(XPWRRGTON), which enables REG2, REG3, REG4, REG6 and REG7 so that the normal operation may resume.

Figure 3:

Enable/Disable Sequence



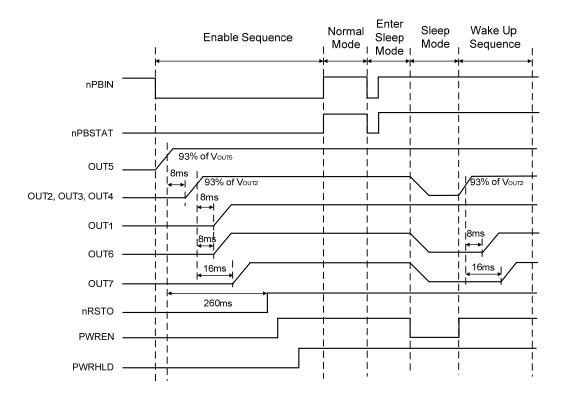


Figure 4:

Sleep Mode and Wake up Sequence (from Push Button)

Figure 5: Sleep Mode and Wake up Sequence (from External Interrupt)

