: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

POWER TYPE SMALL \& SLIM AUTOMOTIVE RELAY

FEATURES

1. Compact type for automotives We successfully developed a power type that is the same size as our CT relay. 2. 30 A maximum switching capacity Switching of 30 A motor loads is possible due to change of COM spring material and other improvements.
2. Still top-of-its-class for silent operation Maintains equally silent operation as our CT relay (ACT).
3. Sealed type

Sealed type makes automatic cleaning possible.

APPLICATIONS

Power windows, Powered seats, Auto door lock, Slide door closers, Power sunroof, etc.

10-terminal layout

*8-terminal type has no terminals.

SPECIFICATIONS

Contact

Arrangement			1 Form $\mathrm{C} \times 2$, 1 Form C
Contact material			Ag alloy (Cadmium free)
Initial contact resistance (Initial) (By voltage drop 6 V DC 1 A)			Typ. $7 \mathrm{~m} \Omega$ (N.O.) Typ. $10 \mathrm{~m} \Omega$ (N.C.)
Rating	Nominal capacity	witching	$\begin{aligned} & \text { N.O.: } 30 \text { A } 14 \mathrm{~V} \text { DC } \\ & \text { N.C.: } 10 \text { A } 14 \mathrm{~V} \text { DC } \end{aligned}$
	Max. carrying current (N.O.)		40 A for 2 minutes, 25 A for 1 hour (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 35 A for 2 minutes, 20 A for 1 hour (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Min. switc	ing capacity\#1	1 A 12 V DC
Expected life (min. operation)	Mechanic	(at 120 cpm)	Min. 10^{6}
	Electrical	Resistive load	Min. $5 \times 10^{4^{*} 1}$
		Motor load	Min. $10^{5 * 2}$ (free)
		Motor load	Min. $5 \times 10^{4 * 3}$ (lock)
Coil			
Nominal operating power			1,000 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
Remarks
${ }^{*}$ At nominal switching capacity, operating frequency: 1s ON, 9s OFF
*2 N.O.: at 7 A (steady), 30 A (inrush)/N.C.: at 15 A (brake) 14 V DC, operating frequency: 0.5 s ON, 9.5 s OFF
*3 At 30A 14 V DC (Motor lock), operating frequency: 0.5s ON, 9.5s OFF
*4 Measurement at same location as "Initial breakdown voltage" section
*5 Detection current: 10 mA
*6 Excluding contact bounce time
*7 Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$

* Half-wave pulse of sine wave: 6 ms
*9 Detection time: $10 \mu \mathrm{~s}$
*10 Time of vibration for each direction; X, Y, direction: 2 hours
Z direction: 4 hours
${ }^{* 11}$ Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.
Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right)$.
* If the relay is used continuously for long periods of time with coils on both sides in an energized condition, breakdown might occur due to abnormal heating depending on the carrying condition. Therefore, please inquire when using with a circuit that causes an energized condition on both sides simultaneously.

Characteristics

Max. operating speed (at nominal switching capacity)			6 cpm
Initial insulation resistance*4			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*5	Between open contacts		500 Vrms for 1 min.
	Between contacts and coil		500 Vrms for 1 min.
Operate time*6 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Release time*6 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Shock resistance ${ }^{\text {a }}$ F		ctional*7	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		tructive*8	Min. 1,000 m/s ${ }^{2}$ \{100G\}
Vibration resistance		ctional*9	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}$ \{4.5G\}
		tructive*10	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}$ \{4.5G\}
Conditions for operation, transport and storage* ${ }^{* 11}$ (Not freezing and condensing at low temperature)		Ambient temp	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5\% R.H. to 85\% R.H.
Mass			Twin type: approx. 8.0 g . 280 z 1 Form C type: approx. 4.0 g . 14 oz

CT (ACTP)

TYPES AND COIL DATA (at $\mathbf{2 0}^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Standard packing; 1 Form C: Carton(tube package) 30pcs. Case 1,500pcs. 1 Form C $\times 2$: Carton(tube package) 30pcs. Case 900pcs.

Contact arrangement	Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance, Ω	Nominaloperating current, mA	Nominal operating power, mW	Usable voltage range, V DC
1 Form C	ACTP112	12	Max. 7.2	Min. 1.0	$144 \pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16
1 Form $C \times 2$ $(8$ terminals type $)$	ACTP212	12	Max. 7.2	Min. 1.0	$144 \pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16
1 Form $C \times 2$ $(10$ terminals type $)$	ACTP512	12	Max. 7.2	Min. 1.0	$144 \pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16

* Other pick-up voltage types are also available. Please contact us for details.

DIMENSIONS(mm inch)

Download CAD Data from our Web site.

1. Twin type (8 terminals)

CAD Data

Dimension:
Tolerance
Max. 1 mm .039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

2. Twin type (10 terminals)

CAD Data

Dimension:
Max. 1 mm . 039 inch:
1 to 3 mm . 039 to 118
Min. 3mm . 118 inch: $\quad \pm 0.3+.012$

Schematic (Bottom view)

[^0] Intervals between terminals is measured at A surface level.

3. Single type (1 Form C)

CAD Data

Pre-soldering

Dimension:
Max. 1mm 039 inch:
1 to 3 mm .039 to 118 inch:
Min. 3mm . 118 inch:

PC board pattern (Bottom view)

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor for power windows

(M) : Power window motor

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature)
Sample: ACTP212, 3pcs.
Contact carrying current: 0A, 10A, 20A

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: ACTP212, 3pcs.
Contact carrying current: $0 \mathrm{~A}, 10 \mathrm{~A}, 20 \mathrm{~A}$

2. Ambient temperature and operating voltage range

3. Distribution of pick-up and drop-out voltage

Sample: ACTP212, 40pcs.

4. Distribution of operate and release time

Sample: ACTP212, 40pcs.

* Without diode

5. Electrical life test (Motor free)

Sample: ACTP212, 3pcs
Load: 7A steady, Inrush 30A
Brake current: 15A 14V DC,
Power window motor actual load (free condition)
Operating frequency: ($O N: O F F=0.5 \mathrm{~s}: 9.5 \mathrm{~s}$)
Ambient temperature: Room temperature
Circuit:

Load current waveform

Inrush current: 30A, Steady current: 7A
Brake current: 15A
10A
100 ms

Change of pick-up and drop-out voltage

Change of contact resistance

6. Electrical life test (Motor lock)

Sample: ACTP212, 3pcs
Load: 30A 14V DC
Switching frequency: (ON : OFF $=0.5 \mathrm{~s}: 9.5 \mathrm{~s}$)
Ambient temperature: Room temperature
Circuit:

Load current waveform

Change of contact resistance

For Cautions for Use, see Relay Technical Information.

[^0]: * Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering.

