imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Energy Management Modular Smart Power Quality Analyzer Type WM3-96

- Display refresh time: 100 msec @ 50 Hz
- Harmonic distorsion analysis (FFT) up to 50th harmonic with both graph and numerical indication (of current and voltage)
- Harmonics source detection
- Optional RS232 + real time clock function with data logging of alarm and MIN/MAX events, monthly energy metering recording

Product Description

32-bit µP-based smart power quality analizer with a built-in configuration key-pad. The housing is for panel

mounting and ensures a degree of protection (front) of IP 65. The instrument is particularly indicated for those application where there is the need to control the power supply quality. The variables being displayed are more than 400.

- Class 0.5 (current/voltage)
- 32-bit µP-based modular smart power quality analyzer
- Graph display (128x64 dots)
- Front size: 96x96 mm
- Measurements of single phase and system variables: W, Wdmd, var, VA, VAdmd, PF, PFavg, V, A, An dmd (for all of them max. and min. values). Energies: kWh and kvarh on 4 quadrants.
- Neutral current measurement
- TRMS measurement of distorted waves (voltage/current)
- Current and voltage inputs with autoranging capability 4x4-dgt instantaneous variable read-out
- 4x9-dgt total energies read-out
- 4x6-dgt partial energies read-out
- 48 independent energy meters to be used as single, dual, multi-time energy management
- Degree of protection (front): IP 65
- Up to 4 optional alarm setpoints
- Up to 4 optional pulse outputs
- Up to 4 optional analogue outputs
- Optional serial RS 422/485 output
- Universal power supply: 18 to 60VAC/DC 90 to 260 VAC/DC
- MODBUS RTU, JBUS, (N2 METASYS protocols on request)

Ordering Key WM3-96AV53H XX XX XX XX X

Model —	
Range code ———	
System ———	
Power supply	
Slot A	
Slot B ———	
Slot C ———	
Slot D	
Options	

Type Selection

Range code		Slot A	A (signal retransmission)	Slot E	3 (signal retransmission)	Slot (C (alarm or pulse out)
AV5:	240/415 VAC - 1/5 AAC	XX: A1:	None Single analogue output, 20mADC (standard)	XX: B1:	None Dual analogue output,	XX: R1:	None Single relay output,
	(max. 300 V (L-N)/ 520 V (L-L) - 6 A)	A2:	Single analogue output, ±5mADC ¹⁾	B2:	20mADC (standard) Dual analogue output,	R2:	(AC1-8AAC, 250VAC) ¹⁾ Dual relay output,
AV7:	(standard) 400/690VAC -	A3:	Single analogue output, ±10mADC ¹	B3:	±5mADC ¹⁾ Dual analogue output, ±10mADC ¹⁾	01:	(AC1-8AÁC, 250VÁC) ¹⁾ Single open collector output (30V/100mADC) ¹⁾
	1/5 AAC (max. 480V (L-N) /	A4:	Single analogue output, ±20mADC ¹	B4:	\pm 1011ADC ⁹ Dual analogue output, \pm 20mADC ¹⁾	02:	Dual open collector out- put (30V/100mADC) ¹⁾
	830 V (L-L) / 6 A ¹⁾	B1:	Dual analogue output, 20mADC (standard)	W1:	Dual analogue output, 10VDC (standard)	D1:	3 digital inputs ¹⁾
System		B2:	Dual analogue output, ±5mADC ¹⁾	W2:	Dual analogue output, ±1VDC ¹⁾	Slot [D (alarm or pulse out)
3:	One phase, three-	B3:	Dual analogue output, ±10mADC ¹⁾	W3:	Dual analogue output, ±5VDC ¹⁾		
	phase system (3 or 4 wires, balan-	B4:	Dual analogue output, ±20mADC ¹⁾	W4:	Dual analogue output, ±10VDC ¹⁾	XX: R2:	None Dual relay output,
	ced load) Three phase system	V1:	Single analogue output, 10VDC (standard)	S1:	Serial port, RS485 multidrop,	02:	(AC1-8AAC, 250VAC) ¹⁾ Dual open collector out-
	(3 or 4 wires, unba- lanced load)	V2:	Single analogue output, ±1VDC ¹⁾		bidirectional ¹⁾	04:	put (30V/100mADC) ¹⁾ 4 open collector out-
_		V3:	Single analogue output, ±5VDC ¹⁾	Note:			puts (30V/100mADC) ¹⁾
Powe	er supply	V4:	Single analogue output, ±10VDC ¹⁾		. + Slot B analogue outputs	Optio	ons
L:	18 to 60VAC/DC ¹⁾	W1:	Dual analogue output, 10VDC (standard)		+ Slot D	X:	None
H:	90 to 260VAC/DC	W2:	Dual analogue output, ±1VDC ¹⁾		digital outputs	S:	Serial RS232 + RTC
		W3:	Dual analogue output, ±5VDC ¹⁾			N: C:	With N2 Metasys protocol options: S+N
¹⁾ On r	equest	W4:	Dual analogue output,				

Specifications are subject to change without notice WM3-96DS 200706

±10VDC 1)

Input Specifications

Number of inputs		Magnetic field	≤ 0.5%RDG, @ 400 A/m
Current	2 (system: single phase)	Temperature drift	≤200ppm/°C
Voltage	6 (system: 3-phase) 2 (system: single phase	Sampling rate	6400 samples/s @ 50Hz
Digital	4 (system: 3-phase) 3 free of voltage contacts for Wdmd, VAdmd, An dmd, PFavg synchronization Reading voltage/current: 17.5 to 25VDC/<8mA	Display	Graph LCD, 128x64pixel, back-lighted. Selectable read-out for the instanta- neous variables: 4x4-dgt or 4x31/2-dgt Total Energies: 4x9-dgt; Datiel: 4x6_dat
Accuracy (display, RS232, RS485) Current (A _{L1} , A _{L2} , A _{L3})	In: 5A, If.s.: 6A, start-up I: 15mA ±0.5% RDG (0.2 to1.2 ln) ±5mA (0.02 to 0.2 ln)	Max. and min. indication	Partial: 4x6-dgt Max. 9999 (999,999,999), Min9999 (-999,999,999)
Current (A _n)	±1% RDG (0.2 to 1.2 ln) @ 40 to 100 Hz	Measurements	Current, voltage, power, energy, harmonic distortion
Voltage AV5 range:	±0.5% RDG (48 to 300 V _{L-N}) ±1% RDG (84 to 519 V _{L-L})		(see "Display pages" table). TRMS measurement of a dis-
AV7 range:	$\pm 0.5\%$ RDG (80 to 480 V _{L-N}) $\pm 1\%$ RDG (139 to 830 V _{L-L}) includes also: frequency, power supply		torted wave (voltage/current). Coupling type: Direct Crest factor: ≤3 (max. 15Ap/500Vp (V L-N) or 15Ap/800Vp (V L-N)
Frequency	and output load influences ±0.1% RDG (40 to 440 Hz)	Ranges (impedances)	
Active power		AV5	58/100 V (>500 kΩ) -
(@ 25°C ± 5°C, R.H. ≤ 60%)	±0.5% (RDG + FS) (PF 0.5 L/C, 0.1 to 1.2 ln, AV5 range) or ±1% RDG (PF 0.5 L/C, 0.1 to 1.2 ln, AV5 range)		1 AAC (≤ 0.3 VA) 58/100 V (>500 kΩ) - 5 AAC (≤ 0.3 VA) 240/415 V (>500 kΩ) -
Reactive power (@ 25°C ± 5°C, R.H. ≤ 60%)	±0.5% (RDG + FS) (PF 0.5 L/C, 0.1 to 1.2 ln, AV5 range) or ±1% RDG (PF 0.5 L/C, 0.1 to 1.2 ln, AV5 range)	AV7	1 AAC (≤ 0.3 VA) 240/415 V (>500 kΩ) - 5 AAC (≤ 0.3 VA) 100/170 V ((>500 kΩ) 1 AAC (≤ 0.3 VA)
Apparent power (@ 25°C ± 5°C, R.H. ≤ 60%)	±0.5% (RDG + FS) (0.1 to 1.2 ln, AV5 range) or ±1% RDG (0.1 to 1.2 ln, AV5 range)		100/170 V (>500 kΩ) - 5 AAC (≤ 0.3 VA) 400/690 V (>500 kΩ) - 1 AAC (≤ 0.3 VA) 400/690 V (>500 kΩ) - 5 AAC (≤ 0.3 VA)
Energies			5 AAC (≤ 0.3 VA)
(@ 25°C ± 5°C, R.H. ≤ 60%)	Active: class 1 according to EN61036	Frequency range	40 to 440 Hz
	Reactive: class 2 according to EN61268 lb: 5A, Imax: 6A 0.1lb: 500mA Start up current: 20mA	Over-load protection Continuous: voltage/current For 1 s AV5 AV7	AV5: 300 V _{LN} /520 V _{LL} /6A AV7: 480 V _{LN} /830 V _{LL} /6A 600 V _{LN} /1040 V _{LL} /120A 960 V _{LN} /1660 V _{LL} /120A
Harmonic distorsion (@ 25°C ± 5°C, R.H. ≤ 60%)	Un: 240V (AV5), 400V (AV7) 1% FS (FS: 100%) phase: ±2°; Imin: 0.1Arms; Imax: 15Ap; Umin: 50Vrms; Umax: 500Vp Sampling frequency 6400 samples/s @ 50Hz	Keypad	4 keys: "S" for enter programming phase and password confir- mation, "UP" and "DOWN" for value programming/functior selection, page scrolling
Additional errors Humidity Input frequency	≤ 0.3%RDG, 60% to 90% R.H. ≤ 0.4%RDG, 62 to 400 Hz		"F" for special functions

Output Specifications

Analogue outputs (on request)	
Number of outputs	Up to 4 (on request)
Accuracy	±0.2% FS
-	(@ 25°C ±5°C, R.H. ≤60%)
Range	0 to 20 mADC,
-	0 to ±20 mADC

0 to ±10 mADC, 0 to ±5 mADC 0 to 10 VDC, 0 to ±10 VDC 0 to ±5 VDC 0 to ±1 VDC

Output Specifications (cont.)

Scaling factor	Programmable within the	Connections	3 wires, max. distance 15m,
-	whole range of retransmis-	Data format	1-start bit, 8-data bit,
	sion; it allows the retrans-		no parity, 1-stop bit
	mission management of all	Baud-rate	9600 bauds
	values from: 0 to 20 mADC,	Protocol Other data	MODBUS (JBUS) as for RS422/485
	$0 \text{ to } \pm 20 \text{ mADC},$ 0 to $\pm 20 \text{ mADC}$		
	$0 \text{ to } \pm 10 \text{ mADC},$	Digital outputs (on request)	Up to 4 outputs (combina-
	$0 \text{ to } \pm 5 \text{ mADC}$		tion of alarms and pulse
	0 to 10 VDC,		outputs) The working of the outputs:
	0 to ±10 VDC		pulse or alarm or both of
	0 to ±5 VDC		them is fully programmable
	0 to ±1 VDC		and is independent from the
Variables to be retransmitted	All (see table"List of the variables		chosen output module. Out-
	that can be connected to:")		puts remotely controlled by
Response time	≤ 200 ms typical		the serial communication port
	(filter excluded, FFT excluded	Pulse outputs (on request)	
Pipplo	3 1/2 dgt indication) $\leq 1\%$ according to IEC 60688-1	Number of outputs	Up to 4, independent
Ripple	and EN 60688-1	Туре	From 1 to 1000 programmable
Temperature drift	200 ppm/°C		pulses for K-M-G Wh, K-M-G varh,
Load: 20 mA output	$\leq 600 \Omega$		open collector (NPN transistor)
±20 mA output	≤ 550 Ω		V _{ON} 1.2 VDC/ max. 100 mA
±10 mA output	≤ 1100 Ω		V _{OFF} 30 VDC max.
± 5 mA output	≤ 2200 Ω		Outputs connectable to total
10 V output	≥10 kΩ	Pulse duration	and partial energy meters 220 ms (ON), \geq 220 ms (OFF)
±10 V output	≥ 10 kΩ	T dise duration	According to DIN43864
± 5 V output	\geq 10 k Ω	Insulation	By means of optocouplers,
± 1 V output	\geq 10 k Ω	modiation	4000 V _{ms} output to
Insulation	By means of optocouplers,		measuring input,
	4000V _{RMS} output to		4000V _{ms} output to supply input.
	measuring input	Note	The outputs can be either
	4000V _{RMS} output to supply input		open collector type or relay
RS422/RS485 output			type (for this latter one see
(on request)	Multidrop		the characteristics men-
	bidirectional (static and		tioned in the ALARMS).
Connections	dynamic variables) 4 wires, max. distance	Alarms outputs (on request)	
Connections	1200m, termination directly	Number of setpoints	Up to 4, independent
	on the module	Alarm type	Up alarm, down alarm, up
Addresses	1 to 255, selectable by key-pad		alarm with latch, down alarm with latch, phase assymetry,
Protocol	MODBUS RTU /JBUS,		phase loss, neutral loss
	(N2 METASYS on request)	Variables to be controlled	All (see table"List of the variables
Data (bidirectional)			that can be connected to:")
Dynamic (reading only)	All display variables (see also	Setpoint adjustment	0 to 100% of the electrical scale
	the table, "List of the variables	Hysteresis	0 to 100% of the electrical scale
Statio (writing and)	that can be connected to")	On-time delay	0 to 255 s
Static (writing only)	All configuration parameters,	Relay status	Selectable, Normally de-
	reset of energy, activation of digital output		energized, normally energized
	Stored energy (EEPROM)	Output type	Relay, SPDT
	max. 999.999.999 kWh/kvarh		AC 1-8A, 250VAC
Data format	1-start bit, 8-data bit, no		DC 12-5A, 24VDC AC 15-2.5A, 250VAC
	parity/even parity,		DC 13-2.5A, 24VDC
	odd parity, 1 stop bit	Min. response time	\leq 150 ms, filter excluded,
Baud-rate	1200, 2400, 4800 and 9600		FFT excluded,
	selectable bauds		setpoint on-time delay: "0s"
Insulation	By means of optocouplers,	Insulation	4000 V _{RMS} output to
	4000 V _{RMS} output to		measuring input,
	measuring inputs		4000V _{RMS} output to supply input
	4000 V _{RMS} output to	Note	The outputs can be either
	supply input		relay type or open collector
RS232 output (on request)	Bidirectional (static and		type (for this latter one, see
	dynamic variables)		the characteristics mentio-
			ned in the PULSE OUTPUTS).

Software Functions

Password 1st level	Numeric code of max. 3 di- gits; 2 protection levels of the programming data Password "0", no protection	Filter action	Display, alarm, analogue and serial outputs (fundamental variables: V, A, W and their derived ones)
2nd level Transformer ratio	Password from 1 to 499, all data are protected For CT up to 30000 A, For VT up to 600 kV	Event logging	Only with RS232 + RTC module. The alarms max/min values will be stored with time (hh:mm:ss) and date
Scaling factor Operating mode	Electrical scale: compression/		(dd:mm:yy) references Max. capacity: 480 events
Electrical range	expansion of the input scale to be connected to up to 4 analogue outputs. Programmable within the whole measuring range	Page Variables	Max. 4/page, one freely prog. page + 26 variable pages + according to the kind of period selection: up to 12 energy meter pages.
Filter Filter operating range Filtering coefficient	0 to 99.9% of the input electrical scale 1 to 255	Display language	English, Italian, French, Ger- man, Spanish

Supply Specifications

AC/DC voltage

90 to 260VAC/DC (standard), 18 to 60VAC/DC (on request),

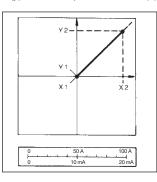
Power consumption

 \leq 30VA/12W (90to 260V) \leq 20VA/12W (18 to 60V)

General Specifications

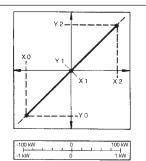
Operating temperature	0 to +50°C (32 to 122°F) (R.H. < 90% non-condensing)		Energy measurements: EN61036, EN61268.	
Storage temperature	-10 to +60°C (14 to 140°F)	Pulse output:	DIN43864	
Insulation reference voltage	(R.H. < 90% non-condensing) 300 V _{RMS} to ground (AV5 input)	Approvals	CE, UL, CSA	
Insulation	4000 V _{RMS} between all inputs/ outputs to ground	Connector	Screw-type, max. 2.5 mm ² wires x 2	
Dielectric strength	4000 V _{RMS} for 1 minute	Housing	00-00-140	
Noise rejection CMRR	100 dB, 48 to 62 Hz	Dimensions Material	96x96x140 mm ABS, self-extinguishing: UL 94 V-0	
EMC	EN 50081-2, EN 50082-2	Degree of protection	Front: IP65, NEMA4x, NEMA12	
Other standards Safety requirements: Product requirements:	IEC 61010-1, EN 61010-1 IEC 60688-1, EN 60688-1	Weight	Approx. 600 g (packing included)	

CARLO GAVAZZI


Function Description

Input and output scaling capability

Working of the analogue outputs (y) versus input variables (x)


Figure A

The sign of measured quantity and output quantity remains the same. The output quantity is proportional to the measured quantity.

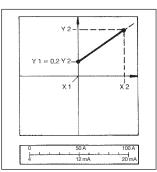
Figure B

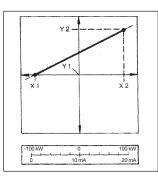
The sign of measured quantity and output quantity changes simultaneously. The output quantity is proportional to the measured quantity.

Figure C

The sign of measured quantity and output quantity remains the same. On the range X0...X1, the output quantity is zero. The range X1...X2 is delineated on the entire output range Y0 = Y1...Y2 and thus presented in strongly expanded form.

Figure D


The sign of measured quantity and output quantity remains the same. With the measured quantity being zero, the output quantity already has the value Y1 = 0.2 Y2. Live zero output.


Figure E

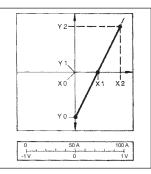

The sign of the measured quantity changes but that of the output quantity remains the same. The output quantity steadily increases from value X1 to value X2 of the measured quantity.

Figure F

The sign of the measured quantity remains the same, that of the output quantity changes as the measured quantity leaves range X0...X1 and passes to range X1...X2 and vice versa.

Mode of Operation

Waveform of the signals that can be measured

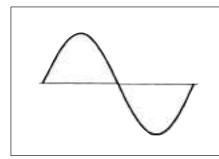


Figure GSine wave, undistortedFundamental content100%Harmonic content0% $A_{rms} =$ $1.1107 | \overline{A} |$

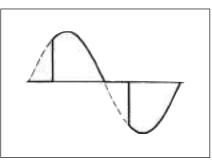


Figure HSine wave, indentedFundamental content10...100%Harmonic content0...90%Frequency spectrum 3rd to 50th harmonic

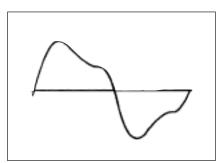
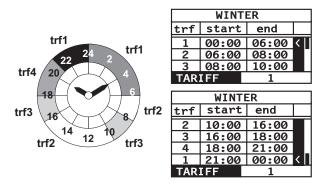


Figure ISine wave, distortedFundamental content70...90%Harmonic content10...30%Frequency spectrum 3rd to 50th harmonic



Analysis principle	FFT		wires the angle cannot be
Harmonic measurement			measured.
Current Voltage	Up to 50th harmonic Up to 50th harmonic	Harmonic details	For every THD page it is pos- sible to see the harmonic
Type of harmonics	THD (VL1)		order.
	THD odd (VL1) THD even (VL1) and also for the other phases: L2, L3. THD (IL1) THD odd (IL1) THD even (IL1) and also for the other phases: L2, L3.	Display pages	The harmonics content is displayed as a graph showing the whole harmonic spectrum. The information is given also as numerical information: THD in % / RMS value THD odd in % / RMS value THD even in % / RMS value single harmonic in % / RMS value
Harmonic phase angle	The instrument measures the angle between the single har- monic of "V" and the single harmonic of "I" of the same order. According to the value of the electrical angle, it is possible to know if the distor- tion is absorbed or generated. Note: if the system has 3	Others	The harmonic distortion can be measured in 2-wire, 3-wire or 4-wire systems. Tw: 0.02


Harmonic distortion analysis

Energy time period management

Time periods	Selectable: single time, dual time and multi-time
Single time Number of energy meters	Total: 4 (9-digit) (no partial meters)
Dual time Number of energy meters Time periods	Total: 4 (9-digit) Partial: 8 (6-digit) 2, programmable within 24 hours
Multi time Number of energy meters Time periods Time seasons	Total: 4 (9-digit) Partial: 48 (6-digit) 4, programmable within 24 hours 3, programmable within 12 months
Pulse outputs	Connectable to total and partial energy meters (Single time, dual time, multi time periods)
Energy metering recording	Energy consumption story, recording of energy metering by months, oldest data: 2 months before current month. Recording of total and partial energy metering

Example of Multi-time energy metering

Display pages

No	1st variable	2nd variable	3rd variable	4th variable	Note
	Selectable	Selectable	Selectable	Selectable	
1	V L1	V L2	V L3	V L-N sys	Sys = Σ
2	V L1-2	V L2-3	V L3-1	V L-L sys	Sys = Σ
3	A L1	A L2	A L3	An	
4	W L1	W L2	W L3	W sys	Sys = Σ
5	var L1	var L2	var L3	var sys	Sys = Σ
6	VA L1	VA L2	VA L3	VA sys	$Sys = \Sigma$
7	PF L1	PF L2	PF L3	PF sys	
8	V L1	A L1	PF L1	W L1	
9	V L2	A L2	PF L2	W L2	
10	V L3	A L3	PF L3	W L3	
11	V L-L sys	PF sys	var sys	W sys	Sys = Σ
12	An	PF sys	Hz	W sys	Sys = Σ
13	A n dmd	VA dmd	PF avg	W dmd	dmd=demand, avg=average
14	(MAX1)	(MAX2)	(MAX3)	(MAX4)	The MAX value can be one of the
15	(MAX5)	(MAX6)	(MAX7)	(MAX8)	above mentioned (No. 1 to No. 13)
16	(MAX9)	(MAX10)	(MAX11)	(MAX12)	
17	(MIN1)	(MIN2)	(MIN3)	(MIN4)	The MIN value can be one of the
18	(MIN5)	(MIN6)	(MIN7)	(MIN8)	above mentioned (No. 1 to No. 13)
19	Histogram FFT	V1 (THD, TADo, THD	e, Single harmonic)	•	Only if analysis V1-A1 is activated
20	Histogram FFT A	A1 (THD, TADo, THD	De, Single harmonic)		Only if analysis V1-A1 is activated
21	Histogram FFT	V2 (THD, TADo, THD	De, Single harmonic)		Only if analysis V2-A2 is activated
22	Histogram FFT A	A2 (THD, TADo, THE	Only if analysis V2-A2 is activated		
23	Histogram FFT	/3 (THD, TADo, THD	Only if analysis V3-A3 is activated		
24	Histogram FFT A3 (THD, TADo, THDe, Single harmonic)				Only if analysis V3-A3 is activated
25	KWh + TOT	KWh – TOT	Kvar+ TOT	Kvar– TOT	-
26	KWh+	KWh-	Kvar+	Kvar-	Partial energy meters

Variables that can be displayed in case of a three-phase system, 4-wire connection.

Used Calculation Formulas

Formulas being used for single-phase measurements

Instantaneous effective voltage

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (V_{1N})_{i}^2}$$

Instantaneous active power

 $W_1 = \frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_i \cdot (A_1)_i$ Instantaneous power factor

 $\cos\phi_1 = \frac{W_1}{VA_1}$

Instantaneous effective current

 $A_1 = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (A_i)_i^2}$

Instantaneous apparent power

 $VA_1 = V_{1N} \cdot A_1$

Instantaneous reactive power

 $VAr_{1} = \sqrt{(VA_{1})^{2} - (W_{1})^{2}}$

Formulas being used for 3-phase measurements

Equivalent three-phase voltage

$$V_{\Sigma} = \frac{V_{12} + V_{23} + V_{31}}{3}$$

Three-phase reactive power

 $VAr_{\Sigma} = (VAr_1 + VAr_2 + VAr_3)$

Neutral current $An = \overline{A}_{L1} + \overline{A}_{L2} + \overline{A}_{L3}$

Three-phase active power

 $W_{\Sigma} = W_1 + W_2 + W_3$ Three-phase apparent power

$$VA_{\Sigma} = \sqrt{W_{\Sigma}^{2} + VAr_{\Sigma}^{2}}$$

Equivalent three-phase power factor
$$\cos\phi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}}$$
(TPF)

Total harmonic distortion

$$THD_{i} = \frac{\sqrt{\sum_{n,n=1}^{T_{n,1}}}}{T_{1,i}}$$

Harmonic values: THDi-THD of parameter T at phase i

Specifications are subject to change without notice WM3-96DS 200706

Tn,i - value of parameter T at the n'th harmonic of phase i

Energy metering

$$k Wh_i = \int_{t_1}^{t_2} P_i(t) dt \cong \Delta t \sum_{n_1}^{n_2} P_{n_2}$$
$$k Varh_i = \int_{t_1}^{t_2} Q_i(t) dt \cong \Delta t \sum_{n_1}^{n_2} Q_{n_2}$$

kWh_i = total consumed active energy at phase i kVArh = total consumed reactive energy at phase i P_i(t) = total RMS active power at pháse i of time t Q_i(t) = total RMS reactive power at phase i of time t $t_1 t_2$ = starting and ending time points of consumption recording P_{n,i} = total RMS active power at phase i of discrete time n Q_{n,i} = total RMS reactive power at phase i of discrete time n Δt = time interval between two successive power consumptions n1, n2 = starting and ending discrete time points of consumption recording

List of the variables that can be connected to:

• max/min variable detection;

analogue outputs;alarm outputs.

No	Variable	1-phase Sys.	3-ph. + N Bal. Sys.	3-ph. + N Unbal. Sys.	3-ph. Bal. Sys.	3-ph. Unbal. Sys.	Note
1	V L1	0	х	x	0	0	
2	V L2	0	х	x	0	0	
3	V L3	0	Х	х	0	0	
4	V L-N sys	0	Х	Х	0	0	Sys = Σ
5	V L1-2	Х	Х	Х	Х	X	
6	V L2-3	0	Х	X	Х	x	
7	V L3-1	0	Х	X	Х	x	
8	V L-L sys	0	Х	X	Х	x	Sys = Σ
9	A L1	х	Х	X	Х	x	
10	A L2	0	Х	X	Х	x	
<u>11</u>	A L3	0	х	x	X	x	
12	An	0	х	x	0	0	Neutral current
13	W L1	Х	х	X	0	0	
14	W L2	0	Х	X	0	0	
15	W L3	0	Х	X	0	0	
16	W sys	0	х	X	Х	x	Sys = Σ
17	var L1	Х	х	X	0	0	
18	var L2	0	х	X	0	0	
19	var L3	0	Х	X	0	0	
20	var sys	0	Х	X	X	x	Sys = Σ
21	VA L1	Х	x	X	0	0	
22	VA L2	0	Х	X	0	0	
23	VA L3	0	Х	X	0	0	
24	VA sys	0	Х	X	X	X	Sys = Σ
25	PF L1	Х	x	x	0	0	
26	PF L2	0	х	X	0	0	
27	PF L3	0	х	X	0	0	
28	PF sys	0	Х	X	X	X	Sys = Σ
29	Hz	X	X	X	X	X	
30	THD V1	X	X	X	X	X	if FFT V1-A1 is activated
31	THDo V1	X	X	X	X	X	if FFT V1-A1 is activated
32	THDe V1	X	X	X	X	X	if FFT V1-A1 is activated
33	THD V2 THDo V2	0	x	X	X	x	if FFT V2-A2 is activated
<u>34</u> 35	THDo V2 THDe V2	0	X	X	X	x	if FFT V2-A2 is activated if FFT V2-A2 is activated
	THDe V2	0	X	X	X	x	if FFT V3-A3 is activated
36	THD V3 THDo V3	0	X	X	X	x	
<u>37</u> 38	THD0 V3	0	X	X	X	X	if FFT V3-A3 is activated if FFT V3-A3 is activated
<u>30</u> 39	THDE V3	0	X	X	X	x	if FFT V1-A1 is activated
<u>39</u> 40	THD AT	X	X X	X X	X	X X	if FFT V1-A1 is activated
40 41	THD0 A1	X		1	X	1	if FFT V1-A1 is activated
41 42	THDE AT	x	X	X	X	X	if FFT V2-A2 is activated
42	THD A2 THDo A2	0	X X	X X	X	X X	if FFT V2-A2 is activated
43	THD0 A2	0	X	X	X X	x	if FFT V2-A2 is activated
44 45	THD A3	0				1	if FFT V3-A3 is activated
45	THD AS	0	X X	X X	X X	X X	if FFT V3-A3 is activated
40	THDe A3	0	X	x			if FFT V3-A3 is activated
47	A n dmd	x		x	X	X	Integration time programmable
			X		X	X	Integration time programmable from 1 to 30 minutes
49	VA dmd	X	X	X	X	X	Integration time prog. from 1 to 30 min.
50	PF avg	X	X	X	X	X	Integration time prog. from 1 to 30 min.
<u>51</u>	W dmd	X	X	X	X	X	Integration time prog. from 1 to 30 min.
52	ASY	0	x	X	Х	X	Integration time prog. from 1 to 30 min.

Note: (x) stands for an "available" variable, (o) stands for a "not-available" variable.

CARLO GAVAZZI

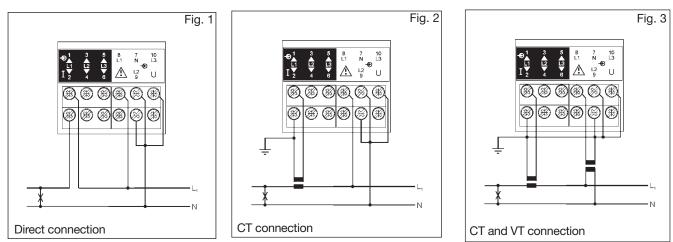
The available modules

The possible module combinations

Туре	N. of	Ordering
	channels	code
WM3-96 base		AD 1016H
WM3-96 N2 METASYS base		AD 1016HN2
AV5.3 measuring inputs		AQ 1018
AV7.3 measuring inputs		AQ 1019
18-60VAC/DC power supply		AP1021
90-260VAC/DC power supply		AP1020
20mADC analogue output	1	AO1050
10VDC analogue output	1	AO1051
±5mADC analogue output	1	AO1052
±10mADC analogue output	1	AO1053
±20mADC analogue output	1	AO1054
±1VDC analogue output	1	AO1055
±5VDC analogue output	1	AO1056
±10VDC analogue output	1	AO1057
20mADC analogue output	2	AO1026
10VDC analogue output	2	AO1027
±5mADC analogue output	2	AO1028
±10mADC analogue output	2	AO1029
±20mADC analogue output	2	AO1030
±1VDC analogue output	2	AO1031
±5VDC analogue output	2	AO1032
±10VDC analogue output	2	AO1033
RS485 output	1	AR1034
Relay output	1	AO1058
Relay output	2	AO1035
Open collector output	1	AO1059
Open collector output	2	AO1036
Open collector output	4	AO1037
Digital inputs	3	AQ1038
RS232 output + RTC (1)	1	AR1039

Basic unit	Slot A	Slot B	Slot C	Slot D
Single analogue output				
Dual analogue output				
RS485 input/output				
Single relay output (*)				
Single open collector out (*)				
Dual relay output (*)				
Dual open coll. out (*)				
4 open coll. output (*)				
3 digital inputs				
Basic unit	Slot E			
RS232 input/output + RTC				

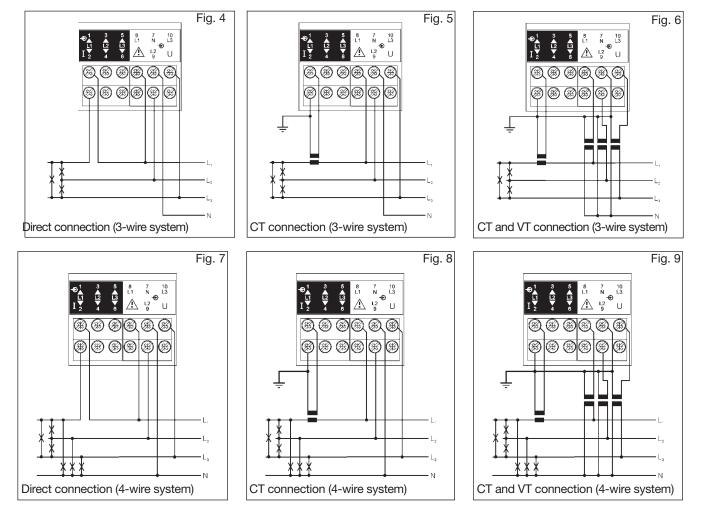
(*) alarm or pulse

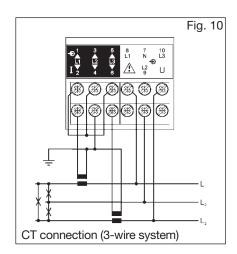


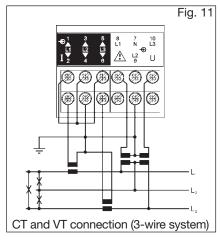
N2-Open Metasys protocol full compatibility (available on request).

(1) The RS232 communication port works as alternative of the RS485 module.

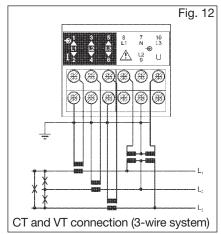
Wiring Diagrams


Single phase input connections

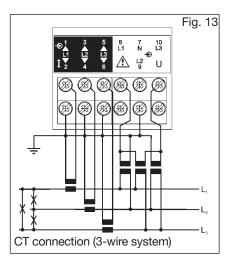


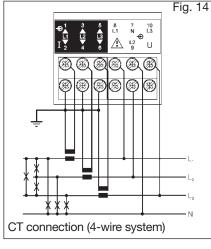

Wiring Diagrams (cont.)

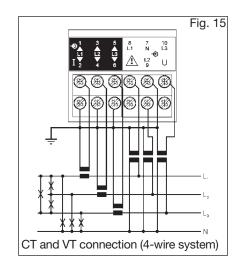
Three-phase wire input connections - Balanced loads



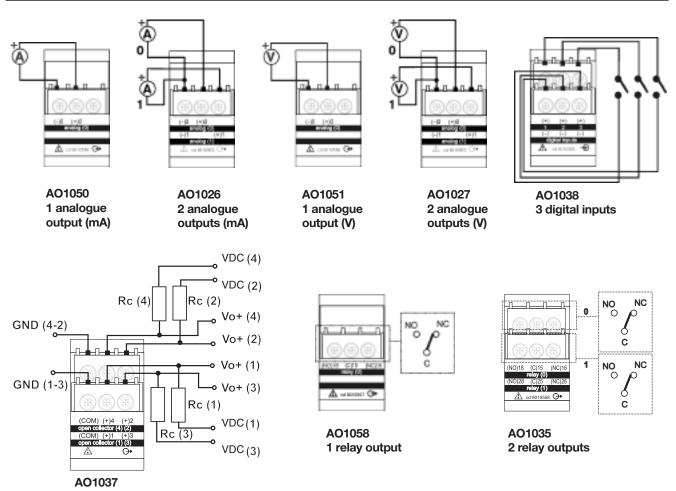
Three-phase, 3-wire ARON input connections - Unbalanced loads


Three-phase, 3-wire input connections - Unbalanced loads



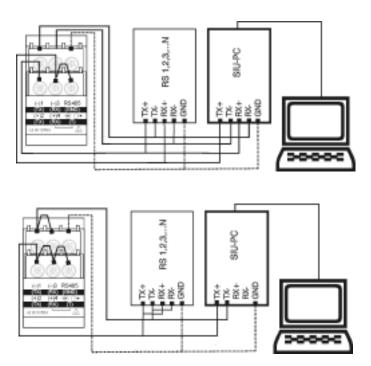

Wiring Diagrams (cont.)

Three-phase three-wire input connections Unbalanced load

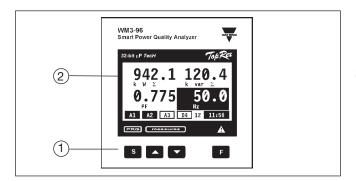


Three-phase four-wire input connections - Unbalanced load

Wiring diagrams (optional modules)

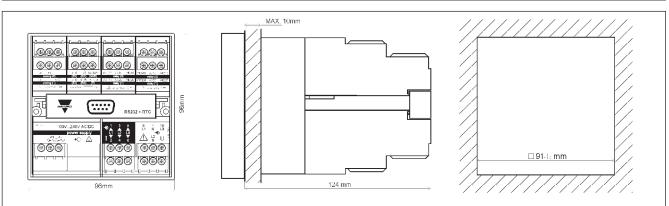


4 open collector outputs: The load resistance (Rc) must be designed so that the closed contact current is lower than 100mA; the VDC voltage must be lower than or equal to 30V.


VDC: power supply voltage output. Vo+: positive output contact (open collector transistor). GND: ground output contact (open collector transistor).

Wiring diagrams (optional modules, cont.)

Front Panel Description



1. Key-pad

Set-up and programming procedures are easily controlled by the 4 pushbuttons.

"S" for enter programming phase and password confirmation,

Dimensions

RS422/485 4-wires connection: additional devices provided with RS422/485 (that is RS 1, 2, 3...N) are connected in parallel.

The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between (Rx+) and (T).

RS422/485 2-wires connection: additional devices provided with RS422/485 (that is RS 1, 2, 3...N) are connected in parallel.

The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between (Rx+) and (T).

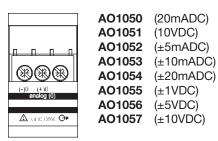
- for value programming/function selection, page scrolling
- "F" for special functions

2. Display

Istantaneous measurements:

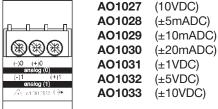
- 4-digit (maximum read-out 9999)

- Energies:
- 9-digit (maximum read-out 99999999).


Alphanumeric indication by means of LCD display for:

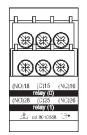
- Displaying the configuration parameters
- All the measured variables.

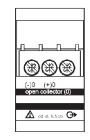
CARLO GAVAZZI

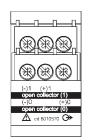

Terminal boards

Single analogue output modules

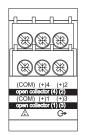
AO1026


Dual analogue outputs

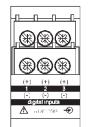

Digital output modules


AO1058 Single relay output

AO1035 Dual relay output

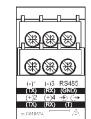


AO1059 Single open collector output



(20mADC)

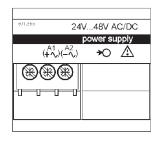
AO1036 Dual open collector output



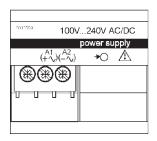
AO1037 4 open collector outputs

Other input/output modules

AQ1038 3 Digital inputs



AR1034 RS485 port



RS232 port + RTC

Power supply modules

AP1021 18-60VAC/DC power supply

AP1020 90-260 VAC/DC power supply