## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## FEATURES

AD5390: 16-channel, 14-bit voltage output DAC
AD5391: 16-channel, 12-bit voltage output DAC
AD5392: 8-channel, 14-bit voltage output DAC
Guaranteed monotonic
INL
$\pm 1$ LSB max (AD5391)
$\pm 3$ LSB max (AD5390-5/AD5392-5)
$\pm 4$ LSB max (AD5390-3/AD5392-3)
On-chip 1.25 V/2.5 V, 10 ppm $/{ }^{\circ} \mathrm{C}$ reference
Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Rail-to-rail output amplifier
Power-down mode
Package types
64-lead LFCSP ( $9 \mathrm{~mm} \times 9 \mathrm{~mm}$ )
52-lead LQFP ( $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ )

## User interfaces

Serial SPI-, QSPI-, MICROWIRE-, and DSP-compatible (featuring data readback)
$I^{2} \mathrm{C}$-compatible interface
Integrated functions
channel monitor
simultaneous output update via $\overline{\text { LDAC }}$
clear function to user-programmable code
amplifier boost mode to optimize slew rate
user-programmable offset and gain adjust
toggle mode enables square wave generation
thermal monitor
Robust 6.5 kV HBM and 2 kV FICDM ESD rating

## APPLICATIONS

Instrumentation and industrial control
Power amplifier control
Level setting (ATE)
Control systems
Microelectromechanical systems (MEMs)
Variable optical attenuators (VOAs)
Optical transceivers (MSA 300, XFP)

FUNCTIONAL BLOCK DIAGRAM


## AD5390/AD5391/AD5392

## TABLE OF CONTENTS

Features ..... 1
Applications ..... 1
Functional Block Diagram .....  1
Revision History ..... 3
General Description .....  4
Specifications .....  5
AD5390-5/AD5391-5/AD5392-5 Specifications ..... 5
AD5390-5/AD5391-5/AD5392-5 AC Characteristics ..... 7
AD5390-3/AD5391-3/AD5392-3 Specifications ..... 8
AD5390-3/AD5391-3/AD5392-3 AC Characteristics ..... 10
Timing Characteristics ..... 11
Serial SPI-, QSPI-, MICROWIRE-, and DSP-Compatible Interface ..... 11
$\mathrm{I}^{2} \mathrm{C}$ Serial Interface. ..... 13
Absolute Maximum Ratings ..... 14
ESD Caution ..... 14
Pin Configuratons and Function Descriptions ..... 15
Terminology ..... 18
Typical Performance Characteristics ..... 19
Functional Description ..... 23
DAC Architecture ..... 23
Data Decoding ..... 24
Interfaces ..... 25
DSP-, SPI-, and MICROWIRE-Compatible Serial Interface ..... 25
$\mathrm{I}^{2} \mathrm{C}$ Serial Interface. ..... 27
$I^{2} \mathrm{C}$ Write Operation ..... 28
4-Byte Mode ..... 28
3-Byte Mode ..... 29
2-Byte Mode ..... 30
AD5390/AD5391/AD5392 On-Chip Special Function Registers ..... 31
Control Register Write ..... 33
Hardware Functions ..... 35
Reset Function ..... 35
Asynchronous Clear Function ..... 35
$\overline{\text { BUSY }}$ and $\overline{\text { LDAC }}$ Functions ..... 35
Power-On Reset ..... 35
Power-Down ..... 35
Microprocessor Interfacing ..... 35
Application Information ..... 37
Power Supply Decoupling ..... 37
Power Supply Sequencing ..... 38
Typical Configuration Circuit ..... 39
AD5390/AD5391/AD5392 Monitor Function ..... 40
Toggle Mode Function ..... 40
Thermal Monitor Function ..... 40
Outline Dimensions ..... 42
Ordering Guide ..... 43

## REVISION HISTORY

6/14-Rev. E to Rev. F
Deleted Table 1; Renumbered Sequentially .....  .4
Changed AD5390-3/AD5391-3/AD5392-3 Input Current from$\pm 10 \mu \mathrm{~A}$ (max) to $\pm 1 \mu \mathrm{~A}$ (max); Table 3 8
Changes to Table 5 ..... 11
Changes to Soft Reset Section ..... 31
Changes to Reset Function Section ..... 35
Replaced ADSP2101 with ADSP-BF527 ..... 36
Added Power Supply Sequencing Section ..... 38
Changes to Ordering Guide ..... 43
6/12—Rev. D to Rev. E
Changes to Table 1 .....  4
Change to Accuracy Parameter, Gain Error, Table 2 .....  .5
Change to Accuracy Parameter, Gain Error, Table 4 .....  8
Added Exposed Pad Notation to Figure 7 and Figure 8 ..... 15
5/12-Rev. C to Rev. D
Changes to Product Title and Features Section .....  .1
Changes to Table 2 .....  .4
Changes to Table 3 .....  6
Changes to Table 4 .....  7
Changes to Table 5 .....  9
Changes to Table 6 ..... 10
Changes to Table 8 ..... 13
Changes to Figure 8 and Figure 10 ..... 14
Changes to Table 9 ..... 16
Changes to Figure 17, Figure 18, Figure 19, And Figure 22 ..... 19
Changes to Figure 23, Figure 24, Figure 25, and Figure 26 ..... 20
Changes to Table 26 ..... 32
Changes to Ordering Guide ..... 40
1/09—Rev. B to Rev. C
Updated Format Universal
Changes to Figure 33 ..... 27
Added Figure 34 and Renumbered Sequentially ..... 27
Changes to Figure 34 ..... 28
Changes to Table 28 ..... 33
Change order of Figure 41 and Figure 42 ..... 36
Changes to Toggle Mode Function Section ..... 37
3/06-Rev. A to Rev. B
Changes to Figure 1 .....  1
Changes to Table 9 ..... 14
Changes to Table 12 and Table 15 ..... 23
Updated Outline Dimensions ..... 39
Changes to Ordering Guide ..... 40
10/04—Rev. 0 to Rev. A
Changes to Features ..... 1
Changes to Table 1 ..... 3
Changes to Table 2 ..... 4
Changes to Table 3 .....  .6
Changes to Table 4 .....  7
Changes to Figure 36 ..... 35
Changes to Figure 37 ..... 36
Changes to Figure 38 ..... 36
Changes to Ordering Guide ..... 41
4/04—Revision 0: Initial Version

## AD5390/AD5391/AD5392

## GENERAL DESCRIPTION

The AD5390/AD5391 are complete single-supply, 16-channel, 14 -bit and 12 -bit DACs, respectively. The AD5392 is a complete single-supply, 8 -channel, 14 -bit DAC. The devices are available in either a 64-lead LFCSP or a 52 -lead LQFP. All channels have an on-chip output amplifier with rail-to-rail operation. All devices include an internal $1.25 / 2.5 \mathrm{~V}, 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference, an on-chip channel monitor function that multiplexes the analog outputs to a common MON_OUT pin for external monitoring, and an output amplifier boost mode that optimizes the output amplifier slew rate.

The AD5390/AD5391/AD5392 contain a 3-wire serial interface with interface speeds in excess of 30 MHz that are compatible with SPI ${ }^{\oplus}$, QSPI ${ }^{\text {ww }}$, MICROWIRE ${ }^{\text {mw }}$, and DSP interface standards and an $\mathrm{I}^{2} \mathrm{C}$-compatible interface supporting a 400 kHz data transfer rate.
An input register followed by a DAC register provides doublebuffering, allowing DAC outputs to be updated independently or simultaneously using the $\overline{\text { LDAC }}$ input. Each channel has a programmable gain and offset adjust register, letting the user fully calibrate any DAC channel.

Power consumption is typically 0.25 mA per channel.

## SPECIFICATIONS

## AD5390-5/AD5391-5/AD5392-5 SPECIFICATIONS

$\mathrm{AV}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{DV}$ DD $=2.7 \mathrm{~V}$ to 5.5 V ; AGND $=\mathrm{DGND}=0 \mathrm{~V}$; REFIN $=2.5 \mathrm{~V}$ external. All specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.

Table 1.

| Parameter | $\begin{aligned} & \hline \text { AD5390-5¹ } \\ & \text { AD5392-5¹ } \end{aligned}$ | AD5391-5 ${ }^{1}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: |
| ACCURACY <br> Resolution Relative Accuracy Differential Nonlinearity Zero-Scale Error Offset Error <br> Offset Error TC Gain Error Gain Temperature Coefficient ${ }^{2}$ DC Crosstalk ${ }^{2}$ | 14 <br> $\pm 3$ <br> $-1 /+2$ <br> 4 <br> $\pm 4$ <br> $\pm 5$ <br> $\pm 0.05$ <br> $\pm 0.06$ <br> 2 <br> 1 | $\begin{aligned} & 12 \\ & \pm 1 \\ & \pm 1 \\ & 4 \\ & \pm 4 \\ & \\ & \pm 5 \\ & \pm 0.05 \\ & \pm 0.06 \\ & 2 \\ & 1 \end{aligned}$ | Bits <br> LSB max <br> LSB max <br> mV max <br> $m V$ max <br> $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ typ <br> \% FSR max <br> \% FSR max <br> ppm FSR/ $/{ }^{\circ} \mathrm{C}$ typ <br> LSB max | Guaranteed monotonic over temperature <br> Measured at Code 32 in the linear region (AD5390-5/AD5391-5); measured at Code 8 in the linear region (AD5391-5) <br> At $25^{\circ} \mathrm{C} \mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |
| REFERENCE INPUT/OUTPUT <br> Reference Input ${ }^{2}$ <br> Reference Input Voltage <br> DC Input Impedance <br> Input Current <br> Reference Range <br> Reference Output ${ }^{3}$ <br> Output Voltage <br> Reference TC <br> Output Impedance | $\begin{aligned} & 2.5 \\ & 1 \\ & \pm 1 \\ & 1 \mathrm{~V} \text { to } \mathrm{AV}_{\mathrm{DD}} / 2 \\ & \\ & \\ & 2.495 / 2.505 \\ & 1.22 / 1.28 \\ & \pm 10 \\ & \pm 15 \\ & 800 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 1 \\ & \pm 1 \\ & 1 \mathrm{~V} \text { to } \mathrm{AV}_{\mathrm{DD}} / 2 \\ & \\ & 2.495 / 2.505 \\ & 1.22 / 1.28 \\ & \pm 10 \\ & \pm 15 \\ & 800 \\ & \hline \end{aligned}$ | V <br> $M \Omega$ min <br> $\mu \mathrm{A}$ max <br> V min/max <br> $V$ min/max <br> $V$ min/max <br> ppm max <br> ppm max <br> $\Omega$ typ | $\pm 1 \%$ for specified performance, <br> $A V_{D D}=2 \times$ REFIN +50 mV <br> Typically $100 \mathrm{M} \Omega$ <br> Typically $\pm 30 \mathrm{nA}$ <br> Enabled via internal/external bit in control register; REF select bit in control register selects the reference voltage <br> At ambient, optimized for 2.5 V operation <br> At ambient when 1.25 V reference is selected <br> Temperature range: $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ <br> Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| OUTPUT CHARACTERISTICS ${ }^{2}$ <br> Output Voltage Range ${ }^{4}$ <br> Short-Circuit Current <br> Load Current <br> Capacitive Load Stability $\begin{aligned} \mathrm{R}_{\mathrm{L}} & =\infty \\ \mathrm{R}_{\mathrm{L}} & =5 \mathrm{k} \Omega \end{aligned}$ <br> DC Output Impedance | $\begin{aligned} & 0 / A V_{\mathrm{DD}} \\ & 40 \\ & \pm 1 \\ & \\ & 200 \\ & 1000 \\ & 0.6 \end{aligned}$ | $\begin{aligned} & 0 / A V_{D D} \\ & 40 \\ & \pm 1 \\ & \\ & 200 \\ & 1000 \\ & 0.6 \end{aligned}$ | V min/max <br> mA max <br> mA max <br> pF max <br> pF max <br> $\Omega$ max |  |
| MONITOR OUTPUT PIN <br> Output Impedance Three-State Leakage Current | $\begin{aligned} & 1000 \\ & 100 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1000 \\ & 100 \end{aligned}$ | $\begin{aligned} & \Omega \text { typ } \\ & \text { nA typ } \end{aligned}$ |  |
| LOGIC INPUTS ${ }^{2}$ <br> V $_{\text {I, }}$ Input High Voltage <br> $\mathrm{V}_{\mathrm{IL}}$, Input Low Voltage $\begin{aligned} & \text { DVDD }>3.6 \mathrm{~V} \\ & \text { DVDD } \leq 3.6 \mathrm{~V} \end{aligned}$ <br> Input Current <br> Pin Capacitance | $\begin{aligned} & 2 \\ & \\ & 0.8 \\ & 0.6 \\ & \pm 10 \\ & 10 \end{aligned}$ | $\begin{aligned} & 2 \\ & \\ & 0.8 \\ & 0.6 \\ & \pm 10 \\ & 10 \end{aligned}$ | V min <br> $\checkmark$ max <br> V max <br> $\mu \mathrm{A}$ max <br> pF max | $D V_{D D}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ <br> Total for all pins, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$ |


| Parameter | $\begin{aligned} & \hline \text { AD5390-5} \\ & \text { AD5392-5 } \end{aligned}$ | AD5391-5 ${ }^{1}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: |
| LOGIC INPUTS (SCL, SDA Only) <br> $\mathrm{V}_{\mathrm{IH}}$, Input High Voltage <br> $\mathrm{V}_{\mathrm{IL}}$, Input Low Voltage <br> In, Input Leakage Current Vhyst, Input Hysteresis Cin, Input Capacitance Glitch Rejection | $\begin{aligned} & 0.7 \times \mathrm{DV}_{\mathrm{DD}} \\ & 0.3 \times \mathrm{DV}_{\mathrm{DD}} \\ & \pm 1 \\ & 0.05 \times \mathrm{DV} \mathrm{VD} \\ & 8 \\ & 50 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.7 \times \mathrm{DV}_{\mathrm{DD}} \\ & 0.3 \times \mathrm{DV}_{\mathrm{DD}} \\ & \pm 1 \\ & 0.05 \times \mathrm{DVDD}_{\mathrm{DD}} \\ & 8 \\ & 50 \end{aligned}$ | V min <br> $V$ max <br> $\mu \mathrm{A}$ max <br> $V$ min <br> pF typ <br> ns max | SMBus-compatible at $\mathrm{DV}_{\mathrm{DD}}<3.6 \mathrm{~V}$ <br> SMBus-compatible at $\mathrm{DV}_{\mathrm{DD}}<3.6 \mathrm{~V}$ <br> Input filtering suppresses noise spikes of $<50 \mathrm{~ns}$ |
| LOGIC OUTPUTS ( $\overline{\text { BUSY }}$, SDO) ${ }^{2}$ <br> Output Low Voltage <br> Output High Voltage <br> Output Low Voltage <br> Output High Voltage <br> High Impedance Leakage Current <br> High Impedance Output Capacitance | $\begin{aligned} & 0.4 \\ & \mathrm{DV}_{\mathrm{DD}}-1 \\ & 0.4 \\ & \mathrm{D} \mathrm{~V}_{\mathrm{DD}}-0.5 \\ & \pm 1 \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.4 \\ & \mathrm{DV}_{\mathrm{DD}}-1 \\ & 0.4 \\ & \mathrm{DV} \mathrm{~V}_{\mathrm{DD}}-0.5 \\ & \pm 1 \\ & 5 \\ & \hline \end{aligned}$ | V max <br> $V$ min <br> $V$ max <br> $V$ min <br> $\mu \mathrm{A}$ max <br> pF typ | $\begin{aligned} & D V_{D D}=5 \mathrm{~V} \pm 10 \% \text {, sinking } 200 \mu \mathrm{~A} \\ & \mathrm{DV} \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \text { SDO only, sourcing } 200 \mu \mathrm{~A} \\ & \mathrm{DV} \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text {, sinking } 200 \mu \mathrm{~A} \\ & \mathrm{DV} \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text { SDO only, sourcing } 200 \mu \mathrm{~A} \end{aligned}$ |
| LOGIC OUTPUT (SDA) ${ }^{2}$ <br> Vol, Output Low Voltage <br> Three-State Leakage Current <br> Three-State Output Capacitance | $\begin{aligned} & 0.4 \\ & 0.6 \\ & \pm 1 \\ & 8 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.6 \\ & \pm 1 \\ & 8 \end{aligned}$ | $V$ max <br> $V$ max <br> $\mu \mathrm{A}$ max <br> pF typ | $\begin{aligned} & \mathrm{I}_{\mathrm{IINK}}=3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=6 \mathrm{~mA} \end{aligned}$ |
| POWER REQUIREMENTS <br> AV ${ }_{D D}$ <br> DVD <br> Power Supply Sensitivity ${ }^{2}$ <br> $\Delta$ Midscale/ $\Delta A V_{D D}$ <br> Ald <br> AldD <br> DIDD <br> AldD (Power-Down) <br> Dlod (Power-Down) <br> Power Dissipation | $\begin{aligned} & 4.5 / 5.5 \\ & 2.7 / 5.5 \\ & -85 \\ & 0.375 \\ & 0.475 \\ & 1 \\ & 20 \\ & 20 \\ & 35 \\ & 20 \end{aligned}$ | $\begin{aligned} & 4.5 / 5.5 \\ & 2.7 / 5.5 \\ & -85 \\ & 0.375 \\ & 0.475 \\ & 1 \\ & 20 \\ & 20 \\ & 35 \\ & 20 \end{aligned}$ | $V$ min/max <br> $\vee$ min/max <br> dB typ <br> mA/channel <br> max <br> mA/channel <br> max <br> mA max <br> $\mu \mathrm{A}$ max <br> $\mu \mathrm{A}$ max <br> mW max <br> mW max | Outputs unloaded, boost off, $0.25 \mathrm{~mA} / \mathrm{channel}$ typ <br> Outputs unloaded, boost on, $0.325 \mathrm{~mA} /$ channel typ $\mathrm{V}_{\mathrm{IH}}=\mathrm{DV}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{DGND}$ <br> Typically 100 nA <br> Typically $1 \mu \mathrm{~A}$ <br> AD5390/AD5391 with outputs unloaded, <br> $A V_{D D}=D V_{D D}=5 \mathrm{~V}$, boost off <br> AD5392 with outputs unloaded, <br> $A V_{D D}=D V_{D D}=5 \mathrm{~V}$, boost off |

[^0]
## AD5390-5/AD5391-5/AD5392-5 AC CHARACTERISTICS

$\mathrm{AV}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{DV}$ DD $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$.
Table 2.

| Parameter | All ${ }^{1}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: |
| DYNAMIC PERFORMANCE |  |  |  |
| Output Voltage Settling Time |  |  | $1 / 4$ scale to $3 / 4$ scale change settling to $\pm 1 \mathrm{LSB}$ |
| AD5390/AD5392 | 3 | $\mu \mathrm{styp}$ | Boost mode off, CR11 $=0$ |
|  | 8 | $\mu \mathrm{s}$ max | Boost mode off, CR11 $=0$ |
| AD5391 | 3 | $\mu \mathrm{styp}$ | Boost mode off, CR11 $=0$ |
|  | 8 | $\mu \mathrm{s}$ max | Boost mode off, CR11 $=0$ |
| Slew rate ${ }^{2}$ | 2.5 | V/ $/$ s typ | Boost mode on |
|  | 1.5 | V/us typ | Boost mode off |
| Digital-to-Analog Glitch Energy | 12 | nV-s typ |  |
| Glitch Impulse Peak Amplitude | 15 | mV typ |  |
| Channel-to-Channel Isolation | 100 | dB typ | See the Terminology section |
| DAC-to-DAC Crosstalk | 1 | nV-s typ | See the Terminology section |
| Digital Crosstalk | 0.8 | nV-s typ |  |
| Digital Feedthrough | 0.1 | nV-s typ | Effect of input bus activity on DAC output under test |
| Output Noise ( 0.1 Hz to 10 Hz ) | 15 | $\mu \mathrm{V}$ p-p typ | External reference midscale loaded to DAC |
|  | 40 | $\mu \mathrm{V}$ p-p typ | Internal reference midscale loaded to DAC |
| Output Noise Spectral Density |  |  |  |
| @ 1 kHz | 150 | $\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$ typ |  |
| @ 10 kHz | 100 | $\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$ typ |  |

[^1]
## AD5390/AD5391/AD5392

## AD5390-3/AD5391-3/AD5392-3 SPECIFICATIONS

$A V_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{DV}$ DD $=2.7 \mathrm{~V}$ to 5.5 V ; AGND $=\mathrm{DGND}=0 \mathrm{~V}$; REFIN $=1.25 \mathrm{~V}$ external. All specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.

Table 3.

| Parameter | $\begin{aligned} & \text { AD5390-3¹ } \\ & \text { AD5392-3¹ } \end{aligned}$ | AD5391-3 ${ }^{1}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: |
| ACCURACY <br> Resolution Relative Accuracy Differential Nonlinearity Zero-Scale Error Offset Error Offset Error TC Gain Error Gain Temperature Coefficient ${ }^{2}$ DC Crosstalk | 14 <br> $\pm 4$ <br> $-1 /+2$ <br> 4 <br> $\pm 4$ <br> $\pm 5$ <br> $\pm 0.05$ <br> $\pm 0.1$ <br> 2 <br> 1 | $\begin{aligned} & 12 \\ & \pm 1 \\ & \pm 1 \\ & 4 \\ & \pm 4 \\ & \pm 5 \\ & \pm 0.05 \\ & \pm 0.1 \\ & 2 \\ & 1 \end{aligned}$ | Bits <br> LSB max <br> LSB max <br> mV max <br> $m V$ max <br> $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ typ <br> \% FSR max <br> \% FSR max <br> ppm FSR/ $/{ }^{\circ} \mathrm{C}$ typ <br> LSB max | Guaranteed monotonic over temperature <br> Measured at code 64 in the linear region <br> At $25^{\circ} \mathrm{C}$ <br> Tmin to $\mathrm{T}_{\text {max }}$ |
| REFERENCE INPUT/OUTPUT <br> Reference Input ${ }^{2}$ <br> Reference Input Voltage <br> DC Input Impedance <br> Input Current <br> Reference Range <br> Reference Output ${ }^{3}$ <br> Output Voltage <br> Reference TC <br> Output Impedance | $\begin{aligned} & 1.25 \\ & 1 \\ & \pm 1 \\ & 1 \mathrm{~V} \text { to } \mathrm{AV} \text { VD/2 } \\ & \\ & \\ & 1.245 / 1.255 \\ & 2.47 / 2.53 \\ & \pm 10 \\ & \pm 15 \\ & 800 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1 \\ & \pm 1 \\ & 1 \mathrm{~V} \text { to } \mathrm{AV} \text { VD/2 } \\ & \\ & 1.245 / 1.255 \\ & 2.47 / 2.53 \\ & \pm 10 \\ & \pm 15 \\ & 800 \\ & \hline \end{aligned}$ | V <br> $\mathrm{M} \Omega$ min <br> $\mu \mathrm{A}$ max <br> V min/max <br> $\vee$ min/max <br> $\vee$ min/max <br> ppm max <br> ppm max <br> $\Omega$ typ | $\pm 1 \%$ for specified performance <br> Typically $100 \mathrm{M} \Omega$ <br> Typically $\pm 30 \mathrm{nA}$ <br> Enabled via internal/external bit in control register; REF select bit in control register selects the reference voltage <br> At ambient, optimized for 1.25 V operation <br> At ambient when 2.5 V reference is selected <br> Temperature range: $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ <br> Temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| OUTPUT CHARACTERISTICS² <br> Output Voltage Range ${ }^{4}$ <br> Short-Circuit Current <br> Load Current <br> Capacitive Load Stability $\begin{aligned} R_{L} & =\infty \\ R_{L} & =5 \mathrm{k} \Omega \end{aligned}$ <br> DC Output Impedance | $\begin{aligned} & 0 / A V_{\mathrm{DD}} \\ & 40 \\ & \pm 1 \\ & \\ & 200 \\ & 1000 \\ & 0.6 \end{aligned}$ | $\begin{aligned} & 0 / A V_{\mathrm{DD}} \\ & 40 \\ & \pm 1 \\ & \\ & 200 \\ & 1000 \\ & 0.6 \end{aligned}$ | V min/max <br> mA max <br> mA max <br> pF max <br> pF max <br> $\Omega$ max |  |
| MONITOR OUTPUT PIN ${ }^{2}$ <br> Output Impedance <br> Three-State Leakage Current | $\begin{aligned} & 1000 \\ & 100 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1000 \\ & 100 \end{aligned}$ | $\begin{aligned} & \Omega \text { typ } \\ & \text { nA typ } \end{aligned}$ |  |
| LOGIC INPUTS ${ }^{2}$ <br> $\mathrm{V}_{\mathrm{H}}$, Input High Voltage <br> $\mathrm{V}_{\mathrm{IL}}$, Input Low Voltage $\begin{aligned} & \text { DVDD }>3.6 \mathrm{~V} \\ & \text { DVDD } \leq 3.6 \mathrm{~V} \end{aligned}$ <br> Input Current <br> Pin Capacitance | $\begin{aligned} & 2 \\ & \\ & 0.8 \\ & 0.6 \\ & \pm 1 \\ & 10 \end{aligned}$ | $\begin{aligned} & 2 \\ & \\ & 0.8 \\ & 0.6 \\ & \pm 1 \\ & 10 \end{aligned}$ | V min <br> $\checkmark$ max <br> $V$ max <br> $\mu \mathrm{A}$ max <br> pF max | $\mathrm{DV} \mathrm{VD}_{\mathrm{D}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ <br> Total for all pins. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |


| Parameter | $\begin{aligned} & \hline \text { AD5390-3¹ } \\ & \text { AD5392-3¹ } \end{aligned}$ | AD5391-3' ${ }^{1}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: |
| Logic Inputs (SCL, SDA Only) |  |  |  |  |
| $\mathrm{V}_{\mathbf{I}}$, Input High Voltage | $0.7 \times$ DV ${ }_{\text {DD }}$ | $0.7 \times$ DV ${ }_{\text {DD }}$ | $V$ min | SMBus-compatible at $\mathrm{DV}_{\mathrm{DD}}<3.6 \mathrm{~V}$ |
| $V_{\text {ILI }}$, Input Low Voltage | $0.3 \times$ DV ${ }_{\text {D }}$ | $0.3 \times$ DV ${ }_{\text {D }}$ | $V$ max | SMBus-compatible at $\mathrm{DV}_{\mathrm{DD}}<3.6 \mathrm{~V}$ |
| $\mathrm{I}_{1 \times}$, Input Leakage Current | $\pm 1$ | $\pm 1$ | $\mu \mathrm{A}$ max |  |
| VHyst, Input Hysteresis | $0.05 \times$ DVDD | $0.05 \times$ DV ${ }_{\text {D }}$ | $V$ min |  |
| Glitch Rejection | 50 | 50 | ns max | Input filtering suppresses noise spikes $<50 \mathrm{~ns}$ |
| Logic Outputs ( $\overline{\mathrm{BUSY}}, \mathrm{SDO})^{2}$ |  |  |  |  |
| Output Low Voltage | 0.4 | 0.4 | $\checkmark$ max | $D V_{D D}=2.7 \mathrm{~V}$ to 5.5 V , sinking $200 \mu \mathrm{~A}$ |
| Output High Voltage | DVDD -0.5 | DVDD -0.5 | $V$ min | DV ${ }_{\text {DD }}=2.7 \mathrm{~V}$ to 3.6 V, SDO only, sourcing $200 \mu \mathrm{~A}$ |
|  | DVDD -0.1 | DVDD -0.1 | $V$ min | DV $\mathrm{DD}=4.5 \mathrm{~V}$ to 5.5 V , SDO only, sourcing $200 \mu \mathrm{~A}$ |
| High Impedance Leakage Current | $\pm 1$ | $\pm 1$ | $\mu \mathrm{A}$ max |  |
| High Impedance Output Capacitance | 5 | 5 | pF typ |  |
| Logic Output (SDA) ${ }^{2}$ |  |  |  |  |
| Vol, Output Low Voltage | 0.4 | 0.4 | $\checkmark$ max | $\mathrm{I}_{\text {SINK }}=3 \mathrm{~mA}$ |
|  | 0.6 | 0.6 | $V_{\text {max }}$ | $\mathrm{I}_{\mathrm{SINK}}=6 \mathrm{~mA}$ |
| Three-State Leakage Current | $\pm 1$ | $\pm 1$ | $\mu \mathrm{A}$ max |  |
| Three-State Output Capacitance | 8 | 8 | pF typ |  |
| POWER REQUIREMENTS |  |  |  |  |
| $A V_{\text {D }}$ | 2.7/3.6 | 2.7/3.6 | $\checkmark$ min/max |  |
| DV ${ }_{\text {DD }}$ | 2.7/5.5 | 2.7/5.5 | $\checkmark$ min/max |  |
| Power Supply Sensitivity ${ }^{2}$ |  |  |  |  |
| $\Delta$ Midscale/ $\Delta$ AV ${ }_{\text {DD }}$ | -85 | -85 | dB typ |  |
| Aldd | 0.375 | 0.375 | mA /channel max | Outputs unloaded, boost off, $0.25 \mathrm{~mA} / \mathrm{ch}$ annel typ |
| Aldo | 0.475 | 0.475 | mA/channel max | Outputs unloaded, boost on, $0.325 \mathrm{~mA} /$ channel typ |
| DID | 1 | 1 | mA max | $\mathrm{V}_{\mathrm{IH}}=\mathrm{DV}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=\mathrm{DGND}$ |
| AldD (Power-Down) | 20 | 20 | $\mu \mathrm{A}$ max | Typically 100 nA |
| Dldo (Power-Down) | 20 | 20 | $\mu \mathrm{A}$ max | Typically $1 \mu \mathrm{~A}$ |
| Power Dissipation | 21 | 21 | mW max | AD5390/AD5391 with outputs unloaded, $A V_{D D}=D V_{D D}=3 V$, boost off |
|  | 12 | 12 | $m W$ max | AD5392 with outputs unloaded, $A V_{D D}=D V_{D D}=3 V$, boost off |

[^2]
## AD5390/AD5391/AD5392

AD5390-3/AD5391-3/AD5392-3 AC CHARACTERISTICS
$A V_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{DV} \mathrm{DD}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$ to AGND.
Table 4.

| Parameter | All ${ }^{1}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: |
| DYNAMIC PERFORMANCE |  |  |  |
| Output Voltage Settling Time |  |  | $1 / 4$ scale to $3 / 4$ scale change settling to $\pm 1 \mathrm{LSB}$ |
| AD5390/AD5392 | 3 | $\mu \mathrm{styp}$ | Boost mode off, CR11 $=0$ |
|  | 8 | $\mu \mathrm{s}$ max | Boost mode off, CR11 $=0$ |
| AD5391 | 3 | $\mu \mathrm{styp}$ | Boost mode off, CR11 $=0$ |
|  | 8 | $\mu \mathrm{s}$ max | Boost mode on, CR11 = 1 |
| Slew Rate ${ }^{2}$ | 2.5 | V/us typ | Boost mode on |
|  | 1.5 | V/us typ | Boost mode off, CR11 $=0$ |
| Digital-to-Analog Glitch Energy | 12 | nV-s typ |  |
| Glitch Impulse Peak Amplitude | 15 | mV typ |  |
| Channel-to-Channel Isolation | 100 | dB typ | See the Terminology section |
| DAC-to-DAC Crosstalk | 1 | nV-s typ | See the Terminology section |
| Digital Crosstalk | 0.8 | nV-s typ |  |
| Digital Feedthrough | 0.1 | nV-s typ | Effect of input bus activity on DAC output under test |
| OUTPUT NOISE (0.1 Hz to 10 Hz ) | 15 | $\mu \mathrm{V}$ p-p typ | External reference midscale loaded to DAC |
|  | 40 | $\mu \mathrm{V}$ p-p typ | Internal reference midscale loaded to DAC |
| Output Noise Spectral Density |  |  |  |
| @ 1 kHz | 150 | $\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$ typ |  |
| @ 10 kHz | 100 | $\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$ typ |  |

[^3]
## TIMING CHARACTERISTICS

## SERIAL SPI-, QSPI-, MICROWIRE-, AND DSP-COMPATIBLE INTERFACE

$\mathrm{DV} \mathrm{VD}_{\mathrm{DD}}=2 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{AV} \mathrm{DD}=2.7 \mathrm{~V}$ to 5.5 V ; $\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 5. 3-Wire Serial Interface ${ }^{1}$

| Parameter ${ }^{\text {2,3 }}$ | Limit at $\mathrm{T}_{\text {Min, }} \mathrm{T}_{\text {max }}$ | Unit | Description |
| :---: | :---: | :---: | :---: |
| $\mathrm{t}_{1}$ | 33 | ns min | SCLK cycle time |
| $\mathrm{t}_{2}$ | 13 | $n \mathrm{nmin}$ | SCLK high time |
| $\mathrm{t}_{3}$ | 13 | $n \mathrm{nmin}$ | SCLK low time |
| $\mathrm{t}_{4}$ | 13 | ns min | $\overline{\text { SYNC }}$ falling edge to SCLK falling edge setup time |
| $\mathrm{ts}^{4}$ | 13 | ns min | $24^{\text {th }}$ SCLK falling edge to $\overline{\text { SYNC }}$ falling edge |
| $\mathrm{t}_{6}{ }^{4}$ | 33 | ns min | Minimum $\overline{\text { SYNC }}$ low time |
| $\mathrm{t}_{7}$ | 10 | ns min | Minimum $\overline{\text { SYNC }}$ high time |
| $\mathrm{t}_{7}$ | 140 | ns min | Minimum $\overline{\text { SYNC }}$ high time in readback mode |
| $\mathrm{t}_{8}$ | 5 | $n s$ min | Data setup time |
| $\mathrm{t}_{9}$ | 4.5 | ns min | Data hold time |
| $\mathrm{t}_{10}{ }^{4}$ | 36 | ns max | $24^{\text {th }}$ SCLK falling edge to $\overline{\text { BUSY }}$ falling edge |
| $\mathrm{t}_{11}$ | 670 | ns max | $\overline{\text { BUSY }}$ pulse width low (single channel update) |
| $\mathrm{t}_{12}{ }^{4}$ | 20 | ns min | $24^{\text {th }}$ SCLK falling edge to $\overline{\text { LDAC }}$ falling edge |
| $\mathrm{t}_{13}$ | 20 | ns min | $\overline{\text { LDAC }}$ pulse width low |
| $\mathrm{t}_{14}$ | 100/2000 | ns min/max | $\overline{\text { BUSY }}$ rising edge to DAC output response time |
| $\mathrm{t}_{15}$ | 0 | $n s$ min | $\overline{\text { BUSY }}$ rising edge to $\overline{\text { LDAC }}$ falling edge |
| $\mathrm{t}_{16}$ | 100 | ns min | $\overline{\text { LDAC }}$ falling edge to DAC output response time |
| $\mathrm{t}_{17}$ | 3 | $\mu \mathrm{styp}$ | DAC output settling time, AD5390/AD5391/AD5392; boost mode off |
| $\mathrm{t}_{18}$ | 20 | ns min | $\overline{\mathrm{CLR}}$ pulse width low |
| $\mathrm{t}_{19}$ | 40 | $\mu \mathrm{s}$ max | $\overline{\mathrm{CLR}}$ pulse activation time |
| $\mathrm{t}_{20}{ }^{5}$ | 20 | ns max | SCLK rising edge to SDO valid |
| $\mathrm{t}_{21}{ }^{4}$ | 5 | ns min | SCLK falling edge to $\overline{\text { SYNC }}$ rising edge |
| $\mathrm{t}_{22}{ }^{4}$ | 8 | $n s$ min | $\overline{\text { SYNC }}$ rising edge to SCLK rising edge |
| $\mathrm{t}_{23}{ }^{4}$ | 20 | ns min | $\overline{\text { SYNC }}$ rising edge to $\overline{L D A C}$ falling edge |

[^4]

Figure 2. Serial Interface Timing Diagram (Daisy-Chain Mode)


Figure 3. Serial Interface Timing Diagram (Standalone Mode)


Figure 4. Serial Interface Timing Diagram (Data Readback Mode)


Figure 5. Load Circuit for Digital Output Timing

## $I^{2} \mathrm{C}$ SERIAL INTERFACE

DV DD $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{AV}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 6. $\mathrm{I}^{2} \mathrm{C}$ Serial Interface ${ }^{1}$

| Parameter ${ }^{2}$ | Limit at $\mathrm{T}_{\text {MIN, }}, \mathrm{T}_{\text {MAX }}$ | Unit | Description |
| :---: | :---: | :---: | :---: |
| Fscl | 400 | kHz max | SCL clock frequency |
| $\mathrm{t}_{1}$ | 2.5 | $\mu s$ min | SCL cycle time |
| $\mathrm{t}_{2}$ | 0.6 | $\mu s$ min | thigh, SCL high time |
| $\mathrm{t}_{3}$ | 1.3 | $\mu s$ min | toow, SCL low time |
| $\mathrm{t}_{4}$ | 0.6 | $\mu s$ min | $\mathrm{thD}_{\text {d }}$ STA, start/repeated start condition hold time |
| $\mathrm{t}_{5}$ | 100 | $n \mathrm{~ns}$ min | tsu, Dat, data setup time |
| $t_{6}{ }^{3}$ | 0.9 | $\mu \mathrm{s}$ max | thi, Dat data hold time |
|  | 0 | $\mu s$ min | $\mathrm{t}_{\mathrm{HD}, \mathrm{DAT}}$ data hold time |
| $\mathrm{t}_{7}$ | 0.6 | $\mu s$ min | $\mathrm{t}_{\text {SU, sta }}$ setup time for repeated start |
| $\mathrm{t}_{8}$ | 0.6 | $\mu s$ min | tsu, sto stop condition setup time |
| $\mathrm{t}_{9}$ | 1.3 | $\mu s$ min | $\mathrm{t}_{\text {BuF, }}$, bus free time between a stop and a start condition |
| $\mathrm{t}_{10}$ | 300 | ns max | $t_{F}$, fall time of SDA when transmitting |
|  | 0 | $n \mathrm{~ns}$ min | $t_{R}$, rise time of SCL and SDA when receiving (CMOS-compatible) |
| $\mathrm{t}_{11}$ | 300 | ns max | $t_{F}$, fall time of SDA when transmitting |
|  | 0 | $n \mathrm{nmin}$ | $\mathrm{t}_{\mathrm{F}}$, fall time of SDA when receiving (CMOS-compatible) |
|  | 300 | ns max | $t_{F}$, fall time of SCL and SDA when receiving |
|  | $20+0.1 C_{\text {B }}$ | ns min | $\mathrm{t}_{\mathrm{F}}$, fall time of SCL and SDA when transmitting |
| $\mathrm{CB}^{4}$ | 400 | pF max | Capacitive load for each bus line |

[^5]SDA


Figure 6. ${ }^{1}$ C Interface Timing Diagram

## AD5390/AD5391/AD5392

## ABSOLUTE MAXIMUM RATINGS

Transient currents of up to 100 mA do not cause SCR latch-up. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 7.

| Parameter | Rating |
| :--- | :--- |
| AV $V_{D D}$ to AGND | -0.3 V to +7 V |
| DVD to DGND | -0.3 V to +7 V |
| Digital Inputs to DGND | -0.3 V to $\mathrm{DV} \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |
| Digital Outputs to DGND | -0.3 V to $\mathrm{DV}+0.3 \mathrm{~V}$ |
| VREF to AGND | -0.3 V to +7 V |
| REFOUT to AGND | -0.3 V to +7 V |
| AGND to DGND | -0.3 V to +0.3 V |
| VOUTX to AGND | -0.3 V to AV DD +0.3 V |
| ESD |  |
| $\quad$ HBM | 6.5 kV |
| FICSM | 2 kV |
| Operating Temperature Range |  |
| $\quad$ Commercial (B Version) | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Junction Temperature (TJ max) | $150^{\circ} \mathrm{C}$ |
| 64-Lead LFCSP, $\theta_{\mathrm{JA}}$ | $22^{\circ} \mathrm{C} / \mathrm{W}$ |
| 52-Lead LQFP, $\theta_{\mathrm{JA}}$ | $38^{\circ} \mathrm{C} / \mathrm{W}$ |
| Reflow Soldering Peak Temperature | $230^{\circ} \mathrm{C}$ |

Stresses above absolute maximum ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ESD CAUTION

|  | ESD (electrostatic discharge) sensitive device. <br> Charged devices and circuit boards can discharge <br> without detection. Although this product features <br> patented or proprietary protection circuitry, damage <br> may occur on devices subjected to high energy ESD. <br> Therefore, proper ESD precautions should be taken to <br> avoid performance degradation or loss of functionality. |
| :--- | :--- |

## PIN CONFIGURATONS AND FUNCTION DESCRIPTIONS


ind no comert
2. THE EXPOSED PAD SHOULD BE CONNECTED TO THE GROUND PLANE.


Figure 9. AD5390/AD5391 LQFP Pin Configuration


NOTES

1. NC = NO CONNECT.
2. THE EXPOSED PAD SHOULD BE CONNECTED TO THE GROUND PLANE. 俞

Table 8. Pin Function Descriptions

| Mnemonic | Function |
| :---: | :---: |
| VOUT X | Buffered Analog Outputs for Channel X. Each analog output is driven by a rail-to-rail output amplifier operating at a gain of 2 . Each output is capable of driving an output load of $5 \mathrm{k} \Omega$ to ground. Typical output impedance is $0.5 \Omega$. |
| SIGNAL_GND 1, SIGNAL_GND 2 | Analog Ground Reference Points for each group of eight output channels. All SIGNAL_GND pins are tied together internally and should be connected to the AGND plane as close as possible to the AD5390/AD5391/AD5392. |
| DAC GND 1 , <br> DAC_GND 2 | Each group of eight channels contains a DAC_GND pin. This is the ground reference point for the internal 14-bit DACs. These pins should be connected to the AGND plane. |
| AGND 1, AGND 2 | Analog Ground Reference Point. Each group of eight channels contains an AGND pin. All AGND pins should be connected externally to the AGND plane. |
| $A V_{D D} 1, A V_{D D} 2$ | Analog Supply Pins. Each group of eight channels has a separate $A V_{D D}$ pin. These pins should be decoupled with 0.1 uF ceramic capacitors and $10 \mu \mathrm{~F}$ tantalum capacitors. Operating range is $5 \mathrm{~V} \pm 10 \%$. |
| DGND | Ground for All Digital Circuitry. |
| DV ${ }_{\text {D }}$ | Logic Power Supply. Guaranteed operating range is 2.7 V to 5.5 V . Recommended that these pins be decoupled with $0.1 \mu \mathrm{~F}$ ceramic capacitors and $10 \mu \mathrm{~F}$ tantalum capacitors to DGND. |
| REF_GND | Ground Reference Point for the Internal Reference. Connect to AGND. |
| REFOUT/REFIN | The AD5390/AD5391/AD5392 contains a common REFOUT/REFIN pin. When the internal reference is selected, this pin is the reference output. If the application necessitates the use of an external reference, it can be applied to this pin and the internal reference disabled via the control register. The default for this pin is a reference input. |
| MON_OUT | Analog Output Pin. When the monitor function is enabled on the AD5390/AD5391, the MON_OUT acts as the output of a 16-to-1 channel multiplexer that can be programmed to multiplex any channel output to the MON_OUT pin. When the monitor function is enabled on the AD5392, the MON_OUT acts as the output of an 8-to-1 channel multiplexer that can be programmed to multiplex any channel output to the MON_OUT pin. The MON_OUT pin output impedance is typically $500 \Omega$ and is intended to drive a high input impedance such as that exhibited by SAR ADC inputs. |
| MON_IN 1, MON_IN 2 | Monitor Input Pins. The AD5390/AD5391/AD5392 contains two monitor input pins to which the user can connect input signals (within the maximum ratings of the device) for monitoring purposes. Any of the signals applied to the MON_IN pins along with the output channels can be switched to the MON_OUT pin via software. An external ADC, for example, can be used to monitor these signals. |
| $\overline{\text { SYNC/ADO }}$ | Serial Interface Pin. This is the frame synchronization input signal for the serial interface. When taken low, the internal counter is enabled to count the required number of clocks before the addressed register is updated. <br> In $I^{2} \mathrm{C}$ mode, ADO acts as a hardware address pin. |
| DCEN/AD1 | Interface Control Pin. Operation is determined by the interface select bit SPI/ $/{ }^{2} \mathrm{C}$. <br> Serial Interface Mode: Daisy-Chain Select Input (level-sensitive, active high). When high, this pin enables daisy-chain operation to allow a number of devices to be cascaded together. <br> $I^{2} \mathrm{C}$ Mode: This pin acts as a hardware address pin used in conjunction with ADO to determine the software address for this device on the $I^{2} \mathrm{C}$ bus. |
| SDO | Serial Data Output. Three-state CMOS output. SDO can be used for daisy-chaining a number of devices together. Data is clocked out on SDO on the rising edge of SCLK and is valid on the falling edge of SCLK. |
| $\overline{\text { BUSY }}$ | Digital CMOS Output. $\overline{\text { BUSY }}$ goes low during internal calculations of the data (x2) loaded to the DAC data register. During this time, the user can continue writing new data to further the $\mathrm{x} 1, \mathrm{c}$, and m registers (these are stored in a FIFO), but no further updates to the DAC registers and DAC outputs can take place. If $\overline{\overline{L D A C}}$ is taken low while $\overline{\mathrm{BUSY}}$ is low, this event is stored. $\overline{B U S Y}$ also goes low during power-on reset and when the $\overline{\text { RESET }}$ pin is low. During this time the interface is disabled and any events on $\overline{\text { LDAC }}$ are ignored. A CLR operation also brings $\overline{B U S Y}$ low. |
| $\overline{\text { LDAC }}$ | Load DAC Logic Input (active low). If $\overline{\overline{L D A C}}$ is taken low while $\overline{B U S Y}$ is inactive (high), the contents of the input registers are transferred to the DAC registers and the DAC outputs are updated. If $\overline{\operatorname{LDAC}}$ is taken low while $\overline{B U S Y}$ is active and internal calculations are taking place, the $\overline{\text { LDAC }}$ event is stored and the DAC registers are updated when $\overline{B U S Y}$ goes inactive. However, any events on $\overline{\text { LDAC }}$ during power-on reset or $\overline{\text { RESET }}$ are ignored. |
| $\overline{\mathrm{CLR}}$ | Asynchronous Clear Input. The $\overline{C L R}$ input is falling edge sensitive. While $\overline{C L R}$ is low, all $\overline{\mathrm{LDAC}}$ pulses are ignored. When $\overline{\mathrm{CLR}}$ is activated, all channels are updated with the data contained in the $\overline{\mathrm{CLR}}$ code register. $\overline{\mathrm{BUSY}}$ is low for a duration of $20 \mu \mathrm{~s}$ (AD5390/AD5391) and $15 \mu \mathrm{~s}$ (AD5392) while all channels are being updated with the $\overline{\mathrm{CLR}}$ code. |
| $\overline{\text { RESET }}$ | Asynchronous Digital Reset Input (falling edge sensitive). The function of this pin is equivalent to that of the power-on reset generator. When this pin is taken low, the state machine initiates a reset sequence to digitally reset the $\mathrm{x} 1, \mathrm{~m}, \mathrm{c}$, and x 2 registers to their default power-on values. This sequence takes $270 \mu$ s maximum. This falling edge of $\overline{\mathrm{RESET}}$ initiates the RESET process and $\overline{\mathrm{BUSY}}$ goes low for the duration, returning high when $\overline{\mathrm{RESET}}$ is complete. While $\overline{\mathrm{BUSY}}$ is low, all interfaces are disabled and all $\overline{\mathrm{LDAC}}$ pulses are ignored. When $\overline{\mathrm{BUSY}}$ returns high, the part resumes normal operation and the status of the $\overline{\text { RESET }}$ pin is ignored until the next falling edge is detected. |


| Mnemonic | Function |
| :---: | :---: |
| PD | Power-Down (level-sensitive, active high). Used to place the device in low power mode, in which the device consumes $1 \mu \mathrm{~A}$ analog current and $20 \mu \mathrm{~A}$ digital current. In power-down mode, all internal analog circuitry is placed in low power mode; the analog output is configured as high impedance outputs or provides a $100 \mathrm{k} \Omega$ load to ground, depending on how the power-down mode is configured. The serial interface remains active during power-down. |
| SPI/ $/ \overline{I^{2} \mathrm{C}}$ | Interface Select Input Pin. When this input is low, $I^{12} \mathrm{C}$ mode is selected. When this input is high, SPI mode is selected. |
| SCLK/SCL | Interface Clock Input Pin. In SPI-compatible serial interface mode, this pin acts as a serial clock input. It operates at clock speeds up to 50 MHz . <br> $I^{2} C$ mode: In $I^{2} \mathrm{C}$ mode, this pin performs the SCL function, clocking data into the device. Data transfer rate in $I^{2} \mathrm{C}$ mode is compatible with both 100 kHz and 400 kHz operating modes. |
| DIN/SDA | Interface Data Input Pin. <br> SPI $/ \overline{I^{2} C}=1$ : This pin acts as the serial data input. Data must be valid on the falling edge of SCLK. <br> $\mathrm{SPI} / \overline{I^{2} \mathrm{C}}=0, I^{2} \mathrm{C}$ mode: In $I^{2} \mathrm{C}$ mode, this pin is the serial data pin (SDA) operating as an open drain input/output. |
| TEST | Test pin (AD5392 only). This pin is used for production testing. For normal operation, this pin should not be connected. |
| NC | No Connect. These pins have no internal connection. |
| Exposed Pad (LFCSP only) | This pad should be connected to the ground plane. |

## TERMINOLOGY

## Relative Accuracy or Endpoint Linearity (INL)

A measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero-scale error and full-scale error and is expressed in least significant bits (LSBs).

## Differential Nonlinearity (DNL)

The difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of 1 LSB maximum ensures monotonicity.

## Zero-Scale Error

The error in the DAC output voltage when all 0 s are loaded into the DAC register. Ideally, with all 0 s loaded to the DAC and $m=$ all 1s, $c=2^{\mathrm{n}-1}, \operatorname{VOUT}_{\text {(Zero-Scale) }}=0 \mathrm{~V}$.

Zero-scale error is a measure of the difference between VOUT (actual) and VOUT (ideal) expressed in mV . It is mainly caused by offsets in the output amplifier.

## Offset Error

A measure of the difference between VOUT (actual) and VOUT (ideal) expressed in mV in the linear region of the transfer function. Offset error is measured on the AD5390-5/AD5391-5/ AD5392-5 with code 32 loaded in the DAC register and with code 64 loaded in the DAC register on the AD5390-3/AD5391-3/ AD5392-3.

## Gain Error

The deviation in slope of the DAC transfer characteristic from ideal and is expressed in \% FSR with the DAC output unloaded. Gain error is specified in the linear region of the output range between VOUT $=10 \mathrm{mV}$ and $\operatorname{VOUT}=A V_{D D}-50 \mathrm{mV}$.

## DC Crosstalk

The dc change in the output level of one DAC at midscale in response to a full-scale code (all 0 s to all 1 s and vice versa) and the output change of all other DACs. It is expressed in LSBs.

## DC Output Impedance

The effective output source resistance. It is dominated by package lead resistance.

## Output Voltage Settling Time

The amount of time it takes for the output of a DAC to settle to a specified level for a $1 / 4$ to $3 / 4$ full-scale input change. It is measured from the rising edge of $\overline{\mathrm{BUSY}}$.

## Digital-to-Analog Glitch Energy

The amount of energy injected into the analog output at the major code transition. It is specified as the area of the glitch in nV -s. It is measured by toggling the DAC register data between 0x1FFF and 0x2000.

## DAC-to-DAC Crosstalk

The glitch impulse that appears at the output of one DAC due to both the digital change and subsequent analog output change at another DAC. The victim channel is loaded with midscale, and DAC-to-DAC crosstalk is specified in nV -s.

## Digital Crosstalk

The glitch impulse transferred to the output of one converter due to a change in the DAC register code of another converter is defined as the digital crosstalk and is specified in nV -s.

## Digital Feedthrough

When the device is not selected, high frequency logic activity on the device's digital inputs can be capacitively coupled both across and through the device to show up as noise on the VOUT pins. It can also be coupled along the supply and ground lines. This noise is digital feedthrough.

## Output Noise Spectral Density

This is a measure of internally generated random noise. Random noise is characterized as a spectral density (voltage per $\sqrt{ } \mathrm{Hz}$ ). It is measured by loading all DACs to midscale and measuring noise at the output. It is measured in $\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$ in a 1 Hz bandwidth at 10 kHz .

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 11. AD5390-5/AD5392-5 Typical INL Plot


Figure 12. AD5390-3/AD5392-3 INL Plot


Figure 13. AD5390/AD5392 INL Histogram Plot


Figure 14. Typical AD5391-5 INL Plot


Figure 15. Typical AD5391-3 INL Plot


Figure 16. AD5390/AD5391/AD5392 REFOUT Temperature Coefficient


Figure 17. AD5390/AD5391/AD5392 Exiting Soft Power-Down


Figure 18. AD5390/AD5391/AD5392 Exiting Hardware Power-Down


Figure 19. AD5390/AD5391/AD5392 Power-Up Transient


Figure 20. AD5390-5/AD5391-5/AD5392-5 Source and Sink Capability


Figure 21. Headroom at Rails vs. Source/Sink Current


Figure 22. AD5390-5/AD5391-5/AD5392-5 Glitch Impulse Energy


Figure 23. AD5390-3/AD5391-3/AD5392-3 Glitch Impulse


Figure 24. AD5390/AD5391/AD5392 Slew Rate Boost Off


Figure 25. AD5390/AD5391/AD5392 Slew Rate Boost On


Figure 26. AD5390/AD5391/AD5392 DIDD Histogram


Figure 27. AD5390/AD5391/AD5392 Adjacent Channel Crosstalk


Figure 28. AD5390/AD5391/AD5392 REFOUT Noise Spectral Density


Figure 29. 0.1 Hz to 10 Hz Output Noise Plot


Figure 30. AD5390-3/AD5391-3/AD5392-3 Source and Sink Current Capability

## FUNCTIONAL DESCRIPTION

 DAC ARCHITECTUREThe AD5390/AD5391 are complete single-supply, 16-channel, voltage output DACs offering a resolution of 14 bits and 12 bits, respectively. The AD5392 is a complete single-supply, 8-channel, voltage output DAC offering 14-bit resolution. All devices are available in a 64-lead LFCSP and 52-lead LQFP, and feature serial interfaces. This family includes an internal select-able 1.25 V/2.5 V, $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference that can be used to drive the buffered reference inputs (alternatively, an external reference can be used to drive these inputs). All channels have an on-chip output amplifier with rail-to-rail output capable of driving a $5 \mathrm{k} \Omega$ load in parallel with a 200 pF capacitance.
The architecture of a single DAC channel consists of a 12-bit and 14-bit resistor-string DAC followed by an output buffer amplifier operating at a gain of 2 . This resistor-string architecture guarantees DAC monotonicity. The 12 -bit and 14-bit binary digital code loaded to the DAC register determines at what node on the string the voltage is tapped off before being fed to the output amplifier. Each channel on these devices contains independent offset and gain control registers, allowing the user to digitally trim offset and gain.


Figure 31. Single-Channel Architecture
These registers let the user calibrate out errors in the complete signal chain including the DAC using the internal m and c registers, which hold the correction factors. All channels are double-buffered, allowing synchronous updating of all channels using the $\overline{\text { LDAC }}$ pin. Figure 31 shows a block diagram of a single channel on the AD5390/AD5391/AD5392.

The digital input transfer function for each DAC can be represented as

$$
x 2=\left((m+2) / 2^{n}\right) \times x 1+\left(c-2^{n-1}\right)
$$

where:
$x 2$ is the data-word loaded to the resistor-string DAC.
$x 1$ is the 12 -bit and 14 -bit data-word written to the DAC input register.
$m$ is the 12-bit and 14-bit gain coefficient (default is all $0 \times 3$ FFE on the AD5390/AD5392 and 0xFFE on the AD5391). The LSB of the gain coefficient is zero.
$n=$ DAC resolution ( $n=14$ for the AD5390/AD5392 and $n=12$ for the AD5391).
$c$ is the 12 -bit and 14-bit offset coefficient (default is $0 \times 2000$ on the AD5390/AD5392 and 0x800 on the AD5391).
The complete transfer function for these devices can be represented as

$$
V O U T=2 \times V R E F \times x 2 / 2^{n}
$$

where:
$x 2$ is the data-word loaded to the resistor-string DAC. $V_{\text {REF }}$ is the reference voltage applied to the REFIN/REFOUT pin on the DAC when an external reference is used ( 2.5 V for specified performance on the AD5390-5/AD5391-5/AD5392-5 and 1.25 V on the AD5390-3/AD5391-3/AD5392-3).

## DATA DECODING

## AD5390/AD5392

The AD5390/AD5392 contain an internal 14-bit data bus. The input data is decoded depending on the data loaded to the REG1 and REG0 bits of the input serial register. This is shown in Table 9.

Data from the serial input register is loaded into the addressed DAC input register, offset (c) register, or gain (m) register. The format data, and the offset (c) and gain (m) register contents are shown in Table 10 to Table 12.

Table 9. Register Selection

| REG1 | REG0 | Register Selected |
| :--- | :--- | :--- |
| 1 | 1 | Input data register (x1) |
| 1 | 0 | Offset register (c) |
| 0 | 1 | Gain register (m) |
| 0 | 0 | Special function registers (SFRs) |

Table 10. AD5390/AD5392 DAC Data Format
(REG1 = 1, REG0 = 1)

| DB13 to DB0 |  |  | DAC Output (V) |
| :---: | :---: | :---: | :---: |
| 111111 | 1111 | 1111 | $2 \mathrm{~V}_{\text {ReF }} \times(16383 / 16384)$ |
| 111111 | 1111 | 1110 | $2 \mathrm{~V}_{\text {REF }} \times(16382 / 16384)$ |
| 100000 | 0000 | 0001 | $2 \mathrm{~V}_{\text {ReF }} \times(8193 / 16384)$ |
| 100000 | 0000 | 0000 | $2 \mathrm{~V}_{\text {REF }} \times(8192 / 16384)$ |
| 011111 | 1111 | 1111 | $2 \mathrm{~V}_{\text {REF }} \times(8191 / 16384)$ |
| 000000 | 0000 | 0001 | $2 \mathrm{~V}_{\text {REF }} \times(1 / 16384)$ |
| 000000 | 0000 | 0000 | 0 |

Table 11. AD5390/AD5392 Offset Data Format

| (REG1 = 1, REG0 = 0)    <br> DB13 to DB0    <br> 111111    1111 |  |  |  |
| :--- | :--- | :--- | :--- |
| 11111 | 1111 | 1111 | +8191 |
| 100000 | 0000 | 0001 | +8190 |
| 100000 | 0000 | 0000 | +1 |
| 01111 | 1111 | 1111 | -1 |
| 000000 | 0000 | 0001 | -8191 |
| 00000 | 0000 | 0000 | -8192 |

Table 12. AD5390/AD5392 Gain Data Format
(REG1 = 0, REG0 = 1)

| DB13 to DB0 |  | Gain Factor |  |
| :--- | :--- | :--- | :--- |
| 111111 | 1111 | 1110 | 1 |
| 101111 | 1111 | 1110 | 0.75 |
| 011111 | 1111 | 1110 | 0.5 |
| 001111 | 1111 | 1110 | 0.25 |
| 000000 | 0000 | 0000 | 0 |

AD5391
The AD5391 contains an internal 12-bit data bus. The input data is decoded depending on the value loaded to the REG1 and REG0 bits of the input serial register. The input data from the serial input register is loaded into the addressed DAC input register, offset (c) register, or gain (m) register. The format data and the offset (c) and gain (m) register contents are shown in Table 13 to Table 15.

Table 13. AD5391 DAC Data Format (REG1 = 1, REG0 = 1)

| DB11 to DBO |  |  | DAC Output (V) |
| :--- | :--- | :--- | :--- |
| 1111 | 1111 | 1111 | $2 \mathrm{~V}_{\text {REF }} \times(4095 / 4096)$ |
| 1111 | 1111 | 1110 | $2 \mathrm{~V}_{\text {REF }} \times(4094 / 4096)$ |
| 1000 | 0000 | 0001 | $2 \mathrm{~V}_{\text {REF }} \times(2049 / 4096)$ |
| 1000 | 0000 | 0000 | $2 \mathrm{~V}_{\text {REF }} \times(2048 / 4096)$ |
| 0111 | 1111 | 1111 | $2 \mathrm{~V}_{\text {REF }} \times(2047 / 4096)$ |
| 0000 | 0000 | 0001 | $2 \mathrm{~V}_{\text {REF }} \times(1 / 4096)$ |
| 0000 | 0000 | 0000 | 0 |

Table 14. AD5391 Offset Data Format (REG1 = 1, REG0 = 0)

| DB11 to DB0 |  |  | Offset (LSB) |
| :--- | :--- | :--- | :--- |
| 1111 | 1111 | 1111 | +2047 |
| 1111 | 1111 | 1110 | +2046 |
| 1000 | 0000 | 0001 | +1 |
| 1000 | 0000 | 0000 | +0 |
| 0111 | 1111 | 1111 | -1 |
| 0000 | 0000 | 0001 | -2047 |
| 0000 | 0000 | 0000 | -2048 |

Table 15. AD5391 Gain Data Format (REG1 = 0, REG0 = 1)

| DB11 to DB0 |  |  | Gain Factor |
| :--- | :--- | :--- | :--- |
| 1111 | 1111 | 1110 | 1 |
| 1011 | 1111 | 1110 | 0.75 |
| 0111 | 1111 | 1110 | 0.5 |
| 0011 | 1111 | 1110 | 0.25 |
| 0000 | 0000 | 0000 | 0 |

## INTERFACES

The AD5390/AD5391/AD5392 contain a serial interface that can be programmed to be DSP-, SPI-, and MICROWIREcompatible, or $\mathrm{I}^{2} \mathrm{C}$-compatible. The SPI $/ \overline{\mathrm{I}^{2} \mathrm{C}}$ pin is used to select the interface mode.

To minimize both the power consumption of the device and the on-chip digital noise, the interface fully powers up only when the device is being written to, that is, on the falling edge of $\overline{\text { SYNC. }}$

## DSP-, SPI-, AND MICROWIRE-COMPATIBLE SERIAL INTERFACE

The serial interface can be operated with a minimum of three wires in standalone mode or four wires in daisy-chain mode. Daisy-chaining allows many devices to be cascaded together to increase system channel count. The SPI $/ \mathrm{I}^{2} \mathrm{C}$ pin is tied to a

Logic 1 pin to configure this mode of operation. The serial interface control pins are described in Table 16.

Table 16. Serial Interface Control Pins

| Pin | Description |
| :--- | :--- |
| $\overline{\text { SYNC, DIN, SCLK }}$ | Standard 3-wire interface pins. |
| DCEN | Selects standalone mode or daisy-chain mode. |
| SDO | Data out pin for daisy-chain mode. |

Figure 2 to Figure 4 show timing diagrams for a serial write to the AD5390/AD5391/AD5392 in both standalone and daisychain mode. The 24 -bit data-word format for the serial interface is shown in Table 17 to Table 19. Descriptions of the bits follow in Table 20.

Table 17. AD5390 16-Channel, 14-Bit DAC Serial Input Register Configuration

| MSB LSB |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{A}} / \mathrm{B}$ | R/W | 0 | 0 | A3 | A2 | A1 | A0 | REG1 | REGO | DB13 | DB12 | DB11 | DB10 | DB9 | DB8 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO |

Table 18. AD5391 16-Channel, 12-Bit DAC Serial Input Register Configuration MSB

| $\overline{\mathrm{A}} / \mathrm{B}$ | $\mathrm{R} / \overline{\mathrm{W}}$ | 0 | 0 | A3 | A2 | A1 | A0 | REG1 | REG0 | DB11 | DB10 | DB9 | DB8 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | X | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table 19. AD5392 8-Channel, 14-Bit DAC Serial Input Register Configuration

| MSB |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | SB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{A}} / \mathrm{B}$ | $\mathrm{R} / \overline{\mathrm{W}}$ | 0 | 0 | 0 | A2 | A1 | A0 | REG1 | REG0 | DB13 | DB12 | DB11 | DB10 | DB9 | DB8 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO |  |

Table 20. Serial Input Register Configuration Bit Descriptions

| Bit | Description |
| :--- | :--- |
| $\bar{A} / B$ | When toggle mode is enabled, this bit selects whether the data write is to the A or B register. With toggle mode disabled, this <br> bit should be set to zero to select the A data register. |
| R/W | The read or write control bit. |
| A3 to A0 | Used to address the input channels. |
| REG1 and | Select the register to which data is written, as outlined in Table 9. |
| REG0 |  |
| DB13 to | Contain the input data-word. |
| DB0 |  |
| $X$ | Don't care condition. |


[^0]:    ${ }^{1}$ The AD5390-5/AD5391-5/AD5392-5 are calibrated with a 2.5 V reference. Temperature range for all versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by characterization, not production tested.
    ${ }^{3}$ Programmable either to 1.25 V typical or 2.5 V typical via the AD5390/AD5391/AD5392 control register. Operating the AD5390-5/AD5391-5/AD5392-5 with a reference of 1.25 V leads to a degradation in performance accuracy.
    ${ }^{4}$ Accuracy guaranteed from VOUT $=10 \mathrm{mV}$ to $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}-50 \mathrm{mV}$.

[^1]:    ${ }^{1}$ Guaranteed by characterization, not production tested.
    ${ }^{2}$ The slew rate can be adjusted via the current boost control bit in the DAC control register.

[^2]:    ${ }^{1}$ The AD5390-3/AD5391-3/AD5392-3 are calibrated with a 1.25 V reference. Temperature range for all versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by characterization, not production tested.
    ${ }^{3}$ Programmable either to 1.25 V typical or 2.5 V typical via the AD5390/AD5391/AD5392 control register. Operating the AD5390-3/AD5391-3/AD5392-3 with a reference of 2.5 V leads to a degradation in performance accuracy.
    ${ }^{4}$ Accuracy guaranteed from VOUT $=39 \mathrm{mV}$ to $\mathrm{AV} \mathrm{VD}_{\mathrm{DD}}-50 \mathrm{mV}$.

[^3]:    ${ }^{1}$ Guaranteed by design and characterization, not production tested.
    ${ }^{2}$ The slew rate can be programmed via the current boost control bit in the AD5390/AD5391/AD5392 control registers.

[^4]:    ${ }^{1}$ Guaranteed by design and characterization, not production tested.
    ${ }^{2}$ All input signals are specified with $\mathrm{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to $90 \%$ of $\left.\mathrm{V}_{\text {cc }}\right)$ and timed from a voltage level of 1.2 V .
    ${ }^{3}$ See Figure 2, Figure 3, Figure 4, and Figure 5.
    ${ }^{4}$ Standalone mode only.
    ${ }^{5}$ Daisy-chain mode only.

[^5]:    ${ }^{1}$ Guaranteed by design and characterization, not production tested.
    ${ }^{2}$ See Figure 6.
    ${ }^{3}$ A master device must provide a hold time of at least 300 ns for the SDA signal (referred to the $\mathrm{V}_{\mathbb{H}} \mathrm{MIN}$ of the SCL signal) to bridge the undefined region of SCL's falling edge.
    ${ }^{4} C_{B}$ is the total capacitance of one bus line in $\mathrm{pF} ; \mathrm{t}_{\mathrm{R}}$ and $\mathrm{t}_{\mathrm{F}}$ measured between 0.3 DV DD and $0.7 \mathrm{DV} V_{D D}$.

