: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

FEATURES

16-bit resolution AD5543
14-bit resolution AD5553
± 1 LSB DNL
± 1 LSB INL
Low noise: $12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
Low power: $\mathrm{I}_{\mathrm{DD}}=10 \mu \mathrm{~A}$
$0.5 \mu \mathrm{~s}$ settling time
4-quadrant multiplying reference input
2 mA full-scale current $\pm \mathbf{2 0 \%}$, with $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$
Built-in R Re $^{\text {facilitates voltage conversion }}$ 3-wire interface
Ultracompact 8-lead MSOP and 8-lead SOIC packages

APPLICATIONS

Automatic test equipment
Instrumentation
Digitally controlled calibration
Industrial control programmable logic controllers

GENERAL DESCRIPTION

The AD5543/AD5553 are precision 16-/14-bit, low power, current output, small form factor digital-to-analog converters (DACs). They are designed to operate from a single 5 V supply with a $\pm 10 \mathrm{~V}$ multiplying reference.
The applied external reference, $\mathrm{V}_{\text {REF }}$, determines the full-scale output current. An internal feedback resistor $\left(\mathrm{R}_{\mathrm{FB}}\right)$ facilitates the $\mathrm{R}-2 \mathrm{R}$ and temperature tracking for voltage conversion when combined with an external operational amplifier.

A serial data interface offers high speed, 3-wire microcontrollercompatible inputs using serial data in (SDI), clock (CLK), and chip select ($\overline{\mathrm{CS}}$).
The AD5543/AD5553 are packaged in ultracompact ($3 \mathrm{~mm} \times$ 4.7 mm) 8-lead MSOP and 8-lead SOIC packages.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Figure 2. Integral Nonlinearity (INL)

Figure 3. Reference Multiplying Bandwidth

TABLE OF CONTENTS

Features 1
Applications.
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Timing Diagrams 4
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 7
Circuit Operation 9
DAC Section 9
Serial Data Interface 10
ESD Protection Circuits 10
PCB Layout and Power Supply Bypassing 10
REVISION HISTORY
12/15-Rev. F to Rev. G
Deleted Positive Output Voltage Section 11
1/12—Rev. E to Rev. F
Added Figure 15, Renumbered Sequentially 8
Change to Table 9 13
Changes to Figure 27 15
Changes to Figure 28 16
Replaced Figure 29, Figure 30, and Figure 31 17
2/11—Rev. D to Rev. E
Added Evaluation Board Section 14
Updated Outline Dimensions 20
Changes to Ordering Guide 21
4/10—Rev. C to Rev. D
Changes to Figure 3 1
Changes to Table 1 3
Moved Timing Diagrams Section 4
Moved Table 4 6
Delete Figure 13; Renumbered Sequentially 8
Changes to Figure 14 8
Changes to Figure 18 9
Moved Table 5 and Table 6 10
Added Reference Selection Section and Amplifier Selection
Section 12
Added Table 7, Table 8, and Table 9;
Renumbered Sequentially. 13
Applications Information 11
Stability 11
Bipolar Output 11
Programmable Current Source 12
Reference Selection 12
Amplifier Selection 12
Evaluation Board 14
System Development Platform 14
AD5543/AD5553 to SPORT Interface 14
Waveform Generator 14
Operating the Evaluation Board 14
Bill of Materials. 18
Outline Dimensions 19
Ordering Guide 20
10/09—Rev. B to Rev. C
Updated Outline Dimensions 14
Changes to Ordering Guide 15
7/09—Rev. A to Rev. B
Updated Format. Universal
Change to Features Section 1
Updated Outline Dimensions 14
Changes to Ordering Guide 15
2/03-Rev. 0 to Rev. AChanges to Ordering Guide 3

AD5543/AD5553

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Iout $=$ virtual $\mathrm{GND}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ full operating temperature range, unless otherwise noted.
Table 1.

Parameter	Symbol	Test Conditions/Comments	$5 \mathrm{~V} \pm 10 \%$	Unit
STATIC PERFORMANCE ${ }^{1}$ Resolution Relative Accuracy Differential Nonlinearity (DNL) Output Leakage Current Full-Scale Gain Error Full-Scale Temperature Coefficient ${ }^{2}$	N INL DNL lout GfsE TCV ${ }_{\text {FS }}$	```\(1 \mathrm{LSB}=\mathrm{V}_{\mathrm{REF}} / 2^{16}=153 \mu \mathrm{~V}\) when \(\mathrm{V}_{\text {REF }}=10 \mathrm{~V}(\mathrm{AD} 543)\) \(1 \mathrm{LSB}=\mathrm{V}_{\text {REF }} / 2^{14}=610 \mu \mathrm{~V}\) when \(\mathrm{V}_{\text {REF }}=10 \mathrm{~V}\) (AD5553) Grade: AD5553C Grade: AD5543C Grade: AD5543B Monotonic Data \(=0 \times 0000, T_{A}=25^{\circ} \mathrm{C}\) Data \(=0 \times 0000, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}}\) maximum Data \(=0 x F F F F\)```	$\begin{aligned} & 16 \\ & 14 \\ & \pm 1 \\ & \pm 1 \\ & \pm 2 \\ & \pm 1 \\ & 10 \\ & 20 \\ & \pm 1 / \pm 4 \\ & 1 \end{aligned}$	Bits Bits LSB max LSB max LSB max LSB max nA max nA max mV typ/max ppm $/{ }^{\circ} \mathrm{C}$ typ
REFERENCE INPUT $V_{\text {REF }}$ Range Input Resistance Input Capacitance ${ }^{2}$	$V_{\text {REF }}$ ReEF Cref		$\begin{aligned} & -15 /+15 \\ & 5 \\ & 5 \end{aligned}$	V min/max $k \Omega$ typ 3 pF typ
ANALOG OUTPUT Output Current Output Capacitance ${ }^{2}$	lout Cout	Data $=0 x F F F F$ for AD5543 Data $=0 \times 3$ FFF for AD5553 Code dependent	2 200	mA typ pF typ
LOGIC INPUTS AND OUTPUT Logic Input Low Voltage Logic Input High Voltage Input Leakage Current Input Capacitance ${ }^{2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{C}_{\mathrm{IL}} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 2.4 \\ & 10 \\ & 10 \end{aligned}$	\vee max V min $\mu \mathrm{A}$ max pF max
INTERFACE TIMING ${ }^{2,4}$ Clock Input Frequency Clock Width High Clock Width Low $\overline{\mathrm{CS}}$ to Clock Setup Clock to $\overline{\mathrm{CS}}$ Hold Data Setup Data Hold	fсık tch tcl tcss tcsh tos tDH	See Figure 4 and Figure 5	$\begin{aligned} & 50 \\ & 10 \\ & 10 \\ & 0 \\ & 10 \\ & 5 \\ & 10 \end{aligned}$	MHz ns min
SUPPLY CHARACTERISTICS Power Supply Range Positive Supply Current Power Dissipation Power Supply Sensitivity	$\mathrm{V}_{\text {DD RANGE }}$ ldD $\mathrm{P}_{\mathrm{DISS}}$ P_{SS}	Logic inputs $=0 \mathrm{~V}$ Logic inputs $=0 \mathrm{~V}$ $\Delta V_{D D}= \pm 5 \%$	$\begin{aligned} & 4.5 / 5.5 \\ & 10 \\ & 0.055 \\ & 0.006 \end{aligned}$	\checkmark min/max $\mu \mathrm{A}$ max mW max \%/\% max

AD5543/AD5553

Parameter	Symbol	Test Conditions/Comments	$5 \mathrm{~V} \pm 10 \%$	Unit
AC CHARACTERISTICS ${ }^{4}$ Output Voltage Settling Time	ts	To $\pm 0.1 \%$ of full scale, Data $=0 \times 0000$ to 0xFFFF to 0×0000 for AD5543 Data $=0 \times 0000$ to $0 \times 3 F F F$ to 0×0000 for AD5553	0.5	$\mu \mathrm{s}$ typ
Reference Multiplying Bandwidth (BW)	BW	$\mathrm{V}_{\text {REF }}=100 \mathrm{mV} \mathrm{rms}$, data $=0 \times F F F F$	6.6	MHz typ
DAC Glitch Impulse	Q	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$, data $=0 \times 7 \mathrm{FFF}$ to 0x8000 for AD5543	7	nV -sec
Feedthrough Error	$\mathrm{V}_{\text {Out }} / \mathrm{V}_{\text {ReF }}$	Data $=0 \times 0000, V_{\text {REF }}=100 \mathrm{mV} \mathrm{rms}$, same channel	-83	dB
Digital Feedthrough	Q	$\mathrm{C}_{\mathrm{s}}=1$ and $\mathrm{f}_{\text {CLK }}=1 \mathrm{MHz}$	7	nV -sec
Total Harmonic Distortion	THD	$\mathrm{V}_{\text {REF }}=5 \mathrm{Vp-p}$, data $=0 \times F F F F, \mathrm{f}=1 \mathrm{kHz}$	-103	dB typ
Output Spot Noise Voltage	e_{N}	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{BW}=1 \mathrm{~Hz}$	12	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

${ }^{1}$ All static performance tests (except lout) are performed in a closed-loop system using an external precision OP177 I-to-V converter amplifier. The AD5543 RFB terminal is tied to the amplifier output. The +IN operational amplifier is grounded, and the DAC lout is tied to the -IN operational amplifier. Typical values represent average readings measured at $25^{\circ} \mathrm{C}$.
${ }^{2}$ These parameters are guaranteed by design and are not subject to production testing.
${ }^{3}$ All ac characteristic tests are performed in a closed-loop system using an AD8038 I-to-V converter amplifier except for THD where an AD8065 was used.
${ }^{4}$ All input control signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}(10 \%$ to 90% of 3 V) and timed from a voltage level of 1.5 V .

TIMING DIAGRAMS

Figure 4. AD5543 Timing Diagram

Figure 5. AD5553 Timing Diagram

AD5543/AD5553

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.3 V to +8 V
$V_{\text {REF }}$ to GND	-18 V to +18 V
Logic Inputs to GND	-0.3 V to +8 V
V(lout) to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Input Current to Any Pin Except Supplies	$\pm 50 \mathrm{~mA}$
Package Power Dissipation	$\left(T_{\text {J Max }}-T_{A}\right.$) $/ \theta_{\text {JA }}$
Thermal Resistance, θ_{JA}	
8-Lead Surface Mount (MSOP)	$150^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead Surface Mount (SOIC)	$100^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature ($\mathrm{T}_{\mathrm{Max}}$)	$150^{\circ} \mathrm{C}$
Operating Temperature Range	
Model B and Model C	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	
R-8, RM-8 (Vapor Phase, 60 sec)	$215^{\circ} \mathrm{C}$
R-8, RM-8 (Infrared, 15 sec)	$220^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 6. Pin Configuration
Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	CLK	Clock Input. Positive edge triggered, clocks data into shift register.
2	SDI	Serial Register Input. Data loads directly into the shift register MSB first. Extra leading bits are ignored.
3	Rfb	Internal Matching Feedback Resistor. This pin connects to an external operational amplifier for voltage output.
4	$V_{\text {ReF }}$	DAC Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance vs. code.
5	lout	DAC Current Output. This pin connects to the inverting terminal of the external precision I-to-V operational amplifier for voltage output.
6	GND	Analog and Digital Ground.
7	VDD	Positive Power Supply Input. Specified range of operation at $5 \mathrm{~V} \pm 10 \%$.
8	$\overline{C S}$	Chip Select. Active low digital input. Transfers shift register data to DAC register on rising edge. See Table 4 for operation.

Table 4. Control Logic Truth Table

CLK	$\overline{\mathbf{C S}}$	Serial Shift Register Function	DAC Register
X	H	No effect	Latched
$\uparrow+^{1}$	L	Shift register data advanced one bit	Latched
X 1	H	No effect	Latched
X 1	$\uparrow+^{1}$	Shift register data transferred to DAC register	New data loaded from serial register

[^0]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. AD5543 INL Error

Figure 8. AD5543 DNL Error

Figure 9. AD5553 INL Error

Figure 10. AD5553 DNL Error

Figure 11. Linearity Error vs. VDD

Figure 12. Supply Current vs. Logic Input Voltage

Figure 13. AD5543 Supply Current vs. Clock Frequency

Figure 14. Power Supply Rejection Ratio (PSRR) vs. Frequency

Figure 16. Settling Time

Figure 17. Midscale Transition and Digital Feedthrough

Figure 15. AD5543/AD5553 Analog Total Harmonic Distortion (THD)

CIRCUIT OPERATION

The AD5543/AD5553 contain a 16-/14-bit current output, DACs, serial input registers, and DAC registers. Both converters use a 3-wire serial data interface.

DAC SECTION

The DAC architecture uses a current steering R-2R ladder design. Figure 18 shows the typical equivalent DAC structure. The DAC contains a matching feedback resistor for use with an external operational amplifier (see Figure 19). With R_{FB} and Iout terminals connected to the operational amplifier output and inverting node, respectively, a precision voltage output is achieved as

$$
\begin{align*}
& V_{\text {OUT }}=-V_{\text {REF }} \times D / 65,536(\mathrm{AD} 543) \tag{1}\\
& V_{\text {OUT }}=-V_{\text {REF }} \times D / 16,384(\mathrm{AD} 5553) \tag{2}
\end{align*}
$$

Note that the output voltage polarity is the opposite of the $\mathrm{V}_{\text {ref }}$ polarity for dc reference voltages.
These DACs are designed to operate with either negative or positive reference voltages. The $V_{D D}$ power pin is only used by the internal logic to drive the on and off states of the DAC switches.

DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY; SWITCHES S1 AND S2 ARE CLOSED, VDD MUST BE POWERED.

Figure 18. Equivalent R-2R DAC Circuit

Note that a matching switch is used in series with the internal $5 \mathrm{k} \Omega$ feedback resistor. If users attempt to measure R_{FB}, power must be applied to $V_{D D}$ to achieve continuity.

NOTES

1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED. 2. C1 PHASE COMPENSATION (4pF TO 6pF) MAY BE REQUIRED IF A1 IS A HIGH SPEED AMPLIFIER.

Figure 19. Voltage Output Configuration
These DACs are also designed to accommodate ac reference input signals. The AD5543 accommodates input reference voltages in the range of -12 V to +12 V . The reference voltage inputs exhibit a constant nominal input resistance value of $5 \mathrm{k} \Omega$ $\pm 30 \%$. The DAC output (Iout) is code dependent, producing various resistances and capacitances. External amplifier choice must take into account the variation in impedance generated by the AD5543 on the inverting input node of the amplifier. The feedback resistance, in parallel with the DAC ladder resistance, dominates output voltage noise. To maintain good analog performance, power supply bypassing of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic or chip capacitors, in parallel with a $1 \mu \mathrm{~F}$ tantalum capacitor, is recommended. Due to degradation of PSRR in frequency, users must avoid using switching power supplies.

SERIAL DATA INTERFACE

The AD5543/AD5553 use a 3-wire ($\overline{\mathrm{CS}}, \mathrm{SDI}, \mathrm{CLK}$) serial data interface. New serial data is clocked into the serial input register in a 16 -bit data-word format for the AD5543. The MSB is loaded first. Table 5 defines the 16 data-word bits. Data is placed on the SDI pin and clocked into the register on the positive clock edge of CLK, subject to the data setup-and-hold time requirements that are specified in the interface timing specifications. Only the last 16 bits clocked into the serial register are interrogated when the $\overline{\mathrm{CS}}$ pin is strobed to transfer the serial register data to the DAC register. Because most microcontrollers output serial data in 8bit bytes, two data bytes can be written to the AD5543/AD5553. After loading the serial register, the rising edge of $\overline{\mathrm{CS}}$ transfers the serial register data to the DAC register; during this strobe, the CLK must not be toggled. For the AD5553, with 16-bit clock cycles, the two LSBs are ignored.

ESD PROTECTION CIRCUITS

All logic input pins contain back-biased ESD protection Zener diodes that are connected to ground (DGND) and VDD, as shown in Figure 20.

Figure 20. Equivalent ESD Protection Circuits

PCB LAYOUT AND POWER SUPPLY BYPASSING

It is a good practice to employ compact, minimum lead length printed circuit board (PCB) layout design. The leads to the input must be as short as possible to minimize infrared drop and stray inductance.
It is also essential to bypass the power supplies with quality capacitors for optimum stability. Supply leads to the device must be bypassed with $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ disc or chip ceramic capacitors. Low ESR $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum or electrolytic capacitors must also be applied at the supplies to minimize transient disturbance and filter out low frequency ripple.

The PCB metal traces between $\mathrm{V}_{\text {ref }}$ and R_{Fb} must also be matched to minimize gain error.

Table 5. AD5543 Serial Input Register Data Format; Data Loaded MSB First Format

B15 (MSB)	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0 (LSB)
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Table 6. AD5553 Serial Input Register Data Format; Data Loaded MSB First Format

B13 (MSB) ${ }^{1}$	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0 (LSB)
D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

[^1]
APPLICATIONS INFORMATION

STABILITY

Figure 21. Optional Compensation Capacitor for Gain Peaking Prevention
In the I-to-V configuration, the Iout of the DAC and the inverting node of the operational amplifier must be connected as close as possible to each other, and proper PCB layout technique must be employed. Because every code change corresponds to a step function, gain peaking may occur if the operational amplifier has limited gain bandwidth product (GBP) and there is excessive parasitic capacitance at the inverting node.
An optional compensation capacitor, C 1 , can be added for stability, as shown in Figure 21. C1 must be found empirically, but 20 pF is generally adequate for the compensation.

BIPOLAR OUTPUT

The AD5543/AD5553 are inherently 2-quadrant multiplying DACs. That is, they can easily be set up for unipolar output operation. The full-scale output polarity is the inverse of the reference input voltage.
In some applications, it may be necessary to generate the full 4-quadrant multiplying capability or a bipolar output swing, which is easily accomplished by using an additional U4 external amplifier configured as a summing amplifier (see Figure 22). In this circuit, the second amplifier, U 4 , provides a gain of 2 that increases the output span magnitude to 5 V . Biasing the external amplifier with a 2.5 V offset from the reference voltage results in a full 4 -quadrant multiplying circuit. The transfer equation of this circuit shows that both negative and positive output voltages are created as the input data (D) is incremented from code zero $\left(\mathrm{V}_{\text {out }}=-2.5 \mathrm{~V}\right.$) to midscale $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$ to full-scale $\left(\mathrm{V}_{\text {out }}=+2.5 \mathrm{~V}\right)$.

$$
\begin{align*}
& V_{\text {OUT }}=(D / 32,768-1) \times V_{\text {REF }}(\text { AD5543 }) \tag{3}\\
& V_{\text {OUT }}=(D / 16,384-1) \times V_{\text {REF }}(\text { AD5553 }) \tag{4}
\end{align*}
$$

For the AD5543, the resistance tolerance becomes the dominant error of which users must be aware.

Figure 22. 4-Quadrant Multiplying Application Circuit

PROGRAMMABLE CURRENT SOURCE

Figure 23 shows a versatile V-I conversion circuit using an improved Howland current pump. In addition to the precision current conversion it provides, this circuit enables a bidirectional current flow and high voltage compliance. This circuit can be used in 4 mA to 20 mA current transmitters with up to 500Ω of load. In Figure 23, it can be shown that if the resistor network is matched, the load current is

$$
\begin{equation*}
I_{L}=\frac{(R 2+R 3) / R 1}{R 3} \times V_{R E F} \times D \tag{5}
\end{equation*}
$$

R3 in theory can be made small to achieve the current needed within the U3 output current driving capability. This circuit is versatile such that AD8510 can deliver $\pm 20 \mathrm{~mA}$ in both directions and the voltage compliance approaches 15 V , which is limited mainly by the supply voltages of U3. However, users must pay attention to the compensation. Without C1, it can be shown that the output impedance becomes

$$
\begin{equation*}
Z_{O}=\frac{R 1^{\prime} R 3(R 1+R 2)}{R 1\left(R 2^{\prime}+R 3^{\prime}\right)-R 1^{\prime}(R 2+R 3)} \tag{6}
\end{equation*}
$$

If the resistors are perfectly matched, Z_{O} is infinite, which is desirable, and behaves as an ideal current source. On the other hand, if the resistors are not matched, Zo can be either positive or negative. Negative can cause oscillation. As a result, C 1 is needed to prevent the oscillation. For critical applications, C 1 can be found empirically but typically falls in the range of a few picofarads (pF).

Figure 23. Programmable Current Source with Bidirectional Current Control and High Voltage Compliance Capabilities

REFERENCE SELECTION

When selecting a reference for use with the AD5543/AD5553 and other devices in this series of current output DACs, pay attention to the output voltage temperature coefficient reference. Choosing a precision reference with a low output temperature coefficient minimizes error sources. Table 7 lists some of the references available from Analog Devices, Inc., that are suitable for use with this range of current output DACs.

AMPLIFIER SELECTION

The primary requirement for the current steering mode is an amplifier with low input bias currents and low input offset voltage. Because of the code dependent output resistance of the DAC, the input offset voltage of an operational amplifier is multiplied by the variable gain of the circuit. A change in this noise gain between two adjacent digital fractions produces a step change in the output voltage due to the amplifier input offset voltage. This output voltage change is superimposed upon the desired change in output between the two codes and gives rise to a differential linearity error, which, if large enough, can cause the DAC to be nonmonotonic.

The input bias current of an operational amplifier also generates an offset at the voltage output because of the bias current flowing in the feedback resistor, R_{FB}.

Common-mode rejection of the operational amplifier is important in voltage switching circuits because it produces a code dependent error at the voltage output of the circuit.
Provided that the DAC switches are driven from true wideband low impedance sources ($\mathrm{V}_{\text {IN }}$ and $A G N D$), they settle quickly. Consequently, the slew rate and settling time of a voltage switching DAC circuit is determined largely by the output operational amplifier. To obtain minimum settling time in this configuration, minimize capacitance at the $\mathrm{V}_{\text {ref }}$ node (the voltage output node in this application) of the DAC. This is done by using low input capacitance buffer amplifiers and careful board design.
Analog Devices offers a wide range of amplifiers for both precision dc and ac applications, as listed in Table 8 and Table 9.

Table 7. Suitable Analog Devices Precision References

Part No.	Output Voltage (V)	Initial Tolerance (\%)	Maximum Temperature Drift (ppm/ ${ }^{\circ} \mathrm{C}$)	Iss (mA)	Output Noise ($\mu \mathrm{V}$ p-p)	Packages
ADR01	10	0.05	3	1	20	SOIC-8
ADR01	10	0.05	9	1	20	TSOT-5, SC70-5
ADR02	5.0	0.06	3	1	10	SOIC-8
ADR02	5.0	0.06	9	1	10	TSOT-5, SC70-5
ADR03	2.5	0.1	3	1	6	SOIC-8
ADR03	2.5	0.1	9	1	6	TSOT-5, SC70-5
ADR06	3.0	0.1	3	1	10	SOIC-8
ADR06	3.0	0.1	9	1	10	TSOT-5, SC70-5
ADR420	2.048	0.05	3	0.5	1.75	SOIC-8, MSOP-8
ADR421	2.50	0.04	3	0.5	1.75	SOIC-8, MSOP-8
ADR423	3.00	0.04	3	0.5	2	SOIC-8, MSOP-8
ADR425	5.00	0.04	3	0.5	3.4	SOIC-8, MSOP-8
ADR431	2.500	0.04	3	0.8	3.5	SOIC-8, MSOP-8
ADR435	5.000	0.04	3	0.8	8	SOIC-8, MSOP-8
ADR391	2.5	0.16	9	0.12	5	TSOT-5
ADR395	5.0	0.10	9	0.12	8	TSOT-5

Table 8. Suitable Analog Devices Precision Operational Amplifier

Part No.	Supply Voltage (V)	Vos Maximum ($\mu \mathrm{V}$)	I_{B} Maximum (nA$)$	0.1 Hz to 10 Hz Noise ($\mu \mathrm{V}$ p-p)	Supply Current ($\mu \mathrm{A}$)	Packages
OP97	± 2 to ± 20	25	0.1	0.5	600	SOIC-8, PDIP-8
OP1177	± 2.5 to ± 15	60	2	0.4	500	MSOP-8, SOIC-8
AD8675	± 5 to ± 18	75	2	0.1	2300	MSOP-8, SOIC-8
AD8671	± 5 to ± 15	75	12	0.077	3000	MSOP-8, SOIC-8
ADA4004-1	± 5 to ± 15	125	90	0.1	2000	SOIC-8, SOT-23-5
AD8603	1.8 to 5	50	0.001	2.3	40	TSOT-5
AD8607	1.8 to 5	50	0.001	2.3	40	MSOP-8, SOIC-8
AD8605	2.7 to 5	65	0.001	2.3	1000	WLCSP-5, SOT-23-5
AD8615	2.7 to 5	65	0.001	2.4	2000	TSOT-5
AD8616	2.7 to 5	65	0.001	2.4	2000	MSOP-8, SOIC-8

Table 9. Suitable Analog Devices High Speed Operational Amplifier

Part No.	Supply Voltage (V)	BW at ACL (MHz)	Slew Rate (V/ $/ \mathrm{s}$)	Vos (Max) ($\mu \mathrm{V}$)	$\mathrm{I}_{\mathrm{B}}(\mathrm{Max})(\mathrm{nA})$	Packages
AD8065	5 to 24	145	180	1500	0.006	SOIC-8, SOT-23-5
AD8066	5 to 24	145	180	1500	0.006	SOIC-8, MSOP-8
AD8021	5 to 24	490	120	1000	10,500	SOIC-8, MSOP-8
AD8038	3 to 12	350	425	3000	750	SOIC-8, SC70-5
ADA4899-1	5 to 12	600	310	35	100	LFCSP-8, SOIC-8
AD8057	3 to 12	325	1000	5000	500	SOT-23-5, SOIC-8
AD8058	3 to 12	325	850	5000	500	SOIC-8, MSOP-8
AD8061	2.7 to 8	320	650	6000	350	SOT-23-5, SOIC-8
AD8062	2.7 to 8	320	650	6000	350	SOIC-8, MSOP-8
AD9631	± 3 to ± 6	320	1300	10,000	7000	SOIC-8, PDIP-8

EVALUATION BOARD

The EVAL-AD5543/EVAL-AD5553 is used in conjunction with an SDP1Z system development platform board available from Analog Devices, which is purchased separately from the evaluation board. The USB to serial peripheral interface (SPI) communication to the AD5543 is completed using this Blackfin-based development board. The software offers a waveform generator.

SYSTEM DEVELOPMENT PLATFORM

The system development platform (SDP) is a hardware and software evaluation tool for use in conjunction with product evaluation boards. The SDP board is based on the Blackfin ADSP-BF527 processor with USB connectivity to the PC through a USB 2.0 high speed port. For more information about this device, see the system development platform web page.

AD5543/AD5553 TO SPORT INTERFACE

The Analog Devices SDP has one SPORT serial port. The SPORT interface is used to control the AD5543/AD5553, allowing clock frequencies up to 30 MHz .

Figure 24. AD5543/AD5553 to SPORT Interface

WAVEFORM GENERATOR

The evaluation board software offers a waveform generator to show every change introduced and transmitted to the output.

OPERATING THE EVALUATION BOARD

The evaluation board requires $\pm 12 \mathrm{~V}$ and +5 V supplies. The $+12 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ and V_{Ss} are used to power the output amplifier, while the +5 V is used to power the $\mathrm{DAC}\left(\mathrm{V}_{\mathrm{DD} 1}\right)$.

Figure 25. Evaluation Board Software—Waveform Generator

BMODE1: PULL UP WITH A 10k RESISTOR TO SET SDP TO BOOT FROM A SPI FLASH ON THE DAUGHTER BOARD

Figure 28. Silkscreen—Component Side View (Top Layer)

Figure 29. Component Side Artwork

Figure 30. Solder Side Artwork

BILL OF MATERIALS

Name	Part Description	Value	PCB Decal	Part Description
$\overline{\overline{C S}}$	Test point		Test point	Red test point
AGND	Test point		Test point	Black test point
C1	Capacitor+	$10 \mu \mathrm{~F}$	RTAJ_A	10 V SMD tantalum capacitor
C2	Capacitor	$0.1 \mu \mathrm{~F}$	C0603	50 V X7R ceramic capacitor
C3	Capacitor	5.6 pF	C0603	Multilayer ceramic capacitor
C4	Capacitor+	$10 \mu \mathrm{~F}$	RTAJ_B	16 V tantalum capacitor
C5	Capacitor	$0.1 \mu \mathrm{~F}$	C0603	50 V X7R ceramic capacitor
C6	Capacitor+	$10 \mu \mathrm{~F}$	RTAJ_B	16 V tantalum capacitor
C7	Capacitor	$0.1 \mu \mathrm{~F}$	C0603	50 V X7R ceramic capacitor
C8	Capacitor+	$10 \mu \mathrm{~F}$	RTAJ_B	16 V tantalum capacitor
C9	Capacitor	$0.1 \mu \mathrm{~F}$	C0603	50 V X7R ceramic capacitor
C10	Capacitor	$0.1 \mu \mathrm{~F}$	C0603	50 V X7R ceramic capacitor
C11	Capacitor	$10 \mu \mathrm{~F}$	C0805	$10 \mathrm{~V} 10 \mu \mathrm{~F}$ ceramic capacitor 10\% X5R 0805
C12	Capacitor	$0.1 \mu \mathrm{~F}$	C0603	50 V X7R ceramic capacitor
GL1	Ground link		Component link	Copper short
J1	CON\POWER5		CON\POWER5	5-pin terminal block
J2	SDP-STANDARD-CONN		CON-120/FX8-120S-SV	120-way connector, 0.6 mm pitch, receptacle
J3	SMB		SMB	Straight PCB mount SMB jack-50 Ω
J4	SMB		SMB	Straight PCB mount SMB jack-50 Ω
SCLK	Test point		Test point	Red test point
SDIN	Test point		Test point	Red testpoint
U1	AD5543/AD5553		SO8NB	Digital-to-analog converter
U2	ADR435		SO8NB	5 V reference
U3	AD8038		SO8NB	Single operational amplifier 8-pin
U4	24LC64		MSO8	$64 \mathrm{~K} 1^{2} \mathrm{C}$ serial EEPROM MSOP8
USB_VBUS	Test point		Test point	Black test point
VOUT	Test point		Test point	Red test point
VREF	Test point		Test point	Red test point
X1	MTHOLE-3MM		MTHOLE-3MM	3 mm NPTH hole
X2	MTHOLE-3MM		MTHOLE-3MM	3 mm NPTH hole

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 32. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body ($R-8$)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model 1,2	INL (LSB)	RES (LSB)	Temperature Range	Package Description	Package Option	Branding
AD5543CRMZ	± 1	16	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	DEV
AD5543CRMZ-REEL7	± 1	16	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	DEV
AD5543BR	± 2	16	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8	
AD5543BRZ	± 2	16	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8	
AD5543BRM	± 2	16	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	DXB
AD5543BRMZ	± 2	16	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	DXB\#
AD5543BRMZ-REEL7	± 2	16	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	DXB\#
AD5553CRM	± 1	14	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	DUC
AD5553CRM-REEL7	± 1	14	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	DUC
AD5553CRMZ	± 1	14	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	DUC\#
AD5553CRMZ-REEL7	± 1	14	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	DUC\#
EVAL-AD5543SDZ				Evaluation Board		

${ }^{1}$ The AD5543 contains 1040 transistors. The die size measures 55 mil $\times 73$ mil or $4,015 \mathrm{sq}$. mil.
${ }^{2} Z$ = RoHS Compliant Part, \# denotes RoHS-compliant product may be top or bottom marked.

[^0]: ${ }^{1} \uparrow+=$ positive logic transition; X means don't care.

[^1]: ${ }^{1}$ A full 16-bit data-word can be loaded into the AD5553 serial input register, but only the last 14 bits entered are transferred to the DAC register when $\overline{C S}$ returns to logic high.

